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Individuals can function as integrated organisms only when infor-
mation and resources are shared across a body. Signals and
substrates are commonly moved using fluids, often channeled
through a network of tubes. Peristalsis is one mechanism for fluid
transport and is caused by a wave of cross-sectional contractions
along a tube. We extend the concept of peristalsis from the canonical
case of one tube to a random network. Transport is maximized
within the network when the wavelength of the peristaltic wave is
of the order of the size of the network. The slime mold Physarum
polycephalum grows as a random network of tubes, and our experi-
ments confirm peristalsis is used by the slime mold to drive internal
cytoplasmic flows. Comparisons of theoretically generated contrac-
tion patterns with the patterns exhibited by individuals of P. poly-
cephalum demonstrate that individuals maximize internal flows by
adapting patterns of contraction to size, thus optimizing transport
throughout an organism. This control of fluid flowmay be the key to
coordinating growth and behavior, including the dynamic changes in
network architecture seen over time in an individual.

acellular | fungi | myxomycete

Many organisms, including diverse species of slime molds
and fungi, grow and forage as remarkably large networks.

Networks explore the environment to locate scarce and spatially
disjunct resources (1). The mechanisms used by an individual to
integrate disparate sources of information, coordinate growth,
and thrive across heterogeneous habitats remain unknown. For-
agers adapt body morphologies around newly discovered mate-
rials, but have no nervous system, and are a stark contrast to
animals, where an evolved neural circuitry coordinates complex
behaviors. In slime molds and fungi, the internal flows within
a tubular network may be critical to the coordination of growth
across an individual.
The slime mold Physarum polycephalum grows as a single com-

plex of tubes and has emerged as a focus of research on network
behaviors. The morphological dynamics of P. polycephalum are
repeatedly characterized as “intelligent” (2–6). For example,
P. polycephalum can connect two food sources, using the shortest
path in a maze (4), and networks connecting multiple food sources
find a good compromise between efficiency, reliability, and cost,
comparable to optimized, man-made, transport networks (5). Op-
timization is also a target of parallel research exploring theo-
retical models of transport networks (7–9). The mechanisms
enabling the growth and coordination of P. polycephalum’s net-
works are unknown.
Networks of P. polycephalum possess a characteristic, periodic

cytoplasmic streaming (“shuttle streaming”); the streaming ex-
tends across an individual (10). The network consists of tubes
made of a gel-like outer layer enclosing the cytoplasmic fluid,
and the fluid oscillates forth and back across a network with
a period of about 100 s (11). The most natural hypothesis to
explain flow suggests it is caused by observed cross-sectional
contractions of the tubes generated by the actin cytoskeleton in
the outer gel layer (12). Contraction-driven flow is a ubiquitous
mechanism causing biological transport, particularly in the form
of peristalsis, which propagates contents within the human

digestive tract and other tubular, linear organs (13). At the heart
of the peristaltic mechanism is a spatial correlation of the phases
of contractions, so that the phase increases linearly with distance
along the tube. This phase pattern causes an oscillatory flow
and moves material along a tube (14). Peristalsis has often been
hypothesized as a transport mechanism in P. polycephalum (15, 16)
and inspired flow calculations in small single-veined individuals
(17); because an organism has a finite size, transport would be
caused primarily by oscillatory flow and not net flux. The exis-
tence of a peristaltic mechanism within the slime mold is sup-
ported by observations of phase waves of contractions (18–21).
However, to the best of our knowledge, all attempts to correlate
contractions with cytoplasmic flow have failed, and some experi-
ments even appear to contradict the existence of peristalsis in
P. polycephalum (22–25).
To explore the organization of flows within P. polycephalum

we investigated individuals growing without food sources, when
the slime molds are actively foraging and the tubes form a closed,
essentially random network (Fig. 1). We first investigated the
cause of flows by measuring the spatiotemporal development of
cross-sectional contractions and cytoplasmic flow and developed
a theoretical description of contraction-driven flow. Using the
data and model we demonstrate that the cytoplasmic flows are in
fact caused by cross-sectional contractions present throughout
the organism. We next investigated the coordination of flows by
monitoring the phases of contractions, which were defined lo-
cally as the fraction of the contraction cycle elapsed relative to
the last maximum (Fig. 1A). We tracked the phases of contrac-
tions at each point in time across entire individuals and gener-
ated maps of the phase dynamics across whole organisms. We
observe an almost linear gradient of phases, with wavelength
scaling with organism size. We derived a theoretical generaliza-
tion of the concept of peristalsis to a network of tubes. This
framework shows that even in a complex network, an almost
linear phase gradient of a single phase cycle is optimal for maxi-
mizing transport. In fact, theoretical phase patterns derived from
this framework across P. polycephalum network architectures,
mapped from real individuals, agree with experimentally ob-
served phase patterns. Thus, flows in P. polycephalum are driven
by peristalsis and optimized for transport across the entire or-
ganism. The lack of any local correlation between cross-sectional
contractions and flow (22–25) is specifically caused by the
propagation of peristaltic flows generated throughout the net-
work and the complexity of the network architecture. The slime
mold P. polycephalum appears to coordinate foraging behavior
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by optimizing transport within its network of tubes, enabling
resources to be distributed across an entire individual.

Results
Cross-Sectional Contractions of Tubes Drive Flows in P. polycephalum.
We let P. polycephalum endocytose fluorescent beads of 1 μm in
diameter and recorded time series of the flowing beads along a
single tube of a network over 30–60 min, using fluorescent im-
aging. Simultaneously, the slime mold was illuminated from be-
low and imaged using bright-field microscopy, at a frame rate of
10 images per minute and magnifications ranging from 1× to 5×
(Materials and Methods). An overlay of the bright-field and
fluorescent images can be seen in Fig. 2A, where the bead
positions at two consecutive time points are shown in red and
green, respectively. The radii of tubes were determined from
the bright-field images, and their spatiotemporal development
served as the sole input to our model of flows within a con-
tracting tube (Fig. 2B).
To explore flows driven by cross-sectional contractions of

tubes, we solve the equations for incompressible fluid flow. If
a= aðz; tÞ is the radius of a tube as a function of its axial co-
ordinate z and time t, the flow velocities u and v along and
perpendicular to the tube follow from solving the Stokes
equations

μ∇2~u=∇P;   with ~u= ðu; vÞ; [1]

combined with the no-slip boundary conditions on the walls,
u= 0 and v= ∂a

∂t at r= a. The Stokes equations are a good ap-
proximation for the flows created by P. polycephalum: Using
a representative tube radius of a0 = 50 μm, a velocity of
u= 1 mm=s, and the kinematic viscosity of water, the Reynolds
number is small, Re= 2ua0=ν∼ 0:1. Moreover, the tube radius a0
is much smaller than the oscillatory boundary layer thicknessffiffiffiffiffiffiffiffi
ν=ω

p
, with ω= 0:05 Hz. Our experiments show that the char-

acteristic length scale of the contraction is much larger than the
radius of the tube, which suggests a generalization of the ansatz
of refs. 14, 26, and 27,
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which satisfies the no-slip boundary condition at r= a. Imposing
∇~u= 0 implies a relationship between the cross-sectionally aver-
aged axial flow velocity u and the contractions ∂a

∂t ,

uðz; tÞ = uðz0; tÞaðz0; tÞ2
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where the cross-sectionally averaged fluid flux isQ= πa2u. In Eq. 5,
the first term describes the flow input to a particular tube from
other tubes at z= z0, whereas the second term is the flow gener-
ated by the contractions in the tube over the length z− z0, ΔQ.
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Fig. 1. (A) Bright-field image of P. polycephalum, a true slime mold
(myxomycete) that grows as a network of tubes. (B) Transmitted light in-
tensity at two sample tubes as a function of time. Vertical lines indicate
maxima of oscillations. The oscillating cross-sectional contractions of a tube
directly modulate the intensity of transmitted light (Fig. S1), enabling the
contraction state and the phase of contractions over time to be identified
and tracked. Phase as a function of time is shown at the top of each graph,
using a periodic color code that cycles from black at zero to blue, green, and
red and then back to black at 2π.
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Fig. 2. Testing for a causal relationship between cross-sectional tube con-
tractions and cytoplasmic flows. (A) Overlay of bright-field (gray) and fluo-
rescent (red and green) images, to simultaneously measure tube radius
along a tube over time and track fluorescent beads advected by the flow.
Moving beads, indicated by arrows, are red in an initial time frame and
green in the time frame taken 1 s later. (B) Illustration of how cross-sectional
contractions (black arrows) of a tube of radius a drive fluid flow (blue
streamlines) along a 3D tube extending in radial r and longitudinal z
dimensions. (C) Flows predicted by the contracting tube model based on
experimentally obtained tube radii. Flow to the right, away from the tube
end (0 mm), is shown in red and that toward the tube end is in blue,
highlighting flow arrests (marked by asterisks) and reversals in white.
Overlaid experimental time points of real flow reversals (dashed lines) show
very good agreement with the model. Moreover, time points where the
model predicts that the flow arrests without reversing its direction (asterisks)
correspond to what is observed experimentally (Movie S1).
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We tested the predictions of this analysis by measuring the tube
radii as described above and then using Eqs. 4 and 5 to compute
the fluid flow at each point in the tube. Fig. 2C shows the pre-
dicted flows along the tube over time. To compare predictions
and observations we measured the times of flow reversals in
experiments, depicted in Fig. 2C by dashed lines. Theoretical
predictions of the time points of flow reversals quantitatively
agree with experiments. Although the flow dynamics agree, we
find that the predicted velocities are significantly (10-fold) smaller
than experimental measurements (Fig. S2). This is likely due to
the measured outer radius of the tube being different from
the inner radius, which actually drives the flow (28) and the ex-
change of matter between the fluid cytoplasm and the gel-like
outer layer (29, 30).

Flows Are Controlled by Spatial Pattern of the Phase of Contractions.
We next explored global patterns of flow across entire slime
molds. The spatiotemporal development of a periodically con-
tracting tube is shaped by four parameters: the spatial pattern of
phase, the baseline radius of the tube, and the amplitude and
period of the contractions (Fig. 1B). In principle, P. polycephalum
could use any of these parameters to control flow patterns. A
striking feature of observed networks is the reproducible ar-
rangement of phases in a pattern, which appeared as the most
likely control parameter in our experiments. By contrast, the tube
radius and its distribution can vary widely from organism to or-
ganism, and tube radii grow and shrink as an organism forages for
food or adapts to its environment. The timescale of morpholog-
ical rearrangements (∼45 min) is much larger than the timescale
over which flow is generated (∼100 s). The periods of contractions
between different tube segments do not vary significantly over
the whole organism or over time, at least not during the time
course of our experiments of 1.5 h (average period±SD is 131± 43 s
for the organism in Fig. 3A). The amplitudes of contractions are
somewhat correlated with the tube radii, with bigger tubes
showing bigger contractions (Fig. S3). However, along a single
tube, the amplitudes of contractions are variable, mostly because
of fluctuations in the contractions (Fig. S4). However, the period

and amplitude distributions are peaked (Fig. S5). For these rea-
sons we focused our analysis on the phase of contraction as the
primary parameter controlling global patterns of flow on time-
scales less than 1 h.
We documented the patterns of phases for organisms of dif-

ferent sizes, ranging from 3 to 17 mm. Results show a robust,
reproducible behavior, and typical examples of a large-, a medium-,
and a small-sized network are displayed in Fig. 3. Contractions
cycle over time, and the phase of the contractions at any single
point in an individual increases linearly as time passes (Fig. 3,
Top to Bottom). However, the spatial phase gradient between
adjacent points along a tube stays constant. The phase gradient
is almost linear and the maximal spatial phase gradient over the
whole organism equals a whole cycle of zero to 2π; strikingly,
this pattern is irrespective of the organism size. In the framework
of a peristaltic wave we observe that there is always about one
wavelength encompassed within an organism of P. polycephalum.
Furthermore, the orientation of the phase gradient in space stays
roughly constant along the direction of the longest axis of the
network in the case of spatially anisotropic organisms, whereas it
can assume virtually any direction in the case of spatially isotropic
organisms (Movies S2–S4). The slime mold P. polycephalum
is known to grow to an arbitrary size, as long as food and the
right environment are provided, which raises the question of
the scale at which the adaption of the phase gradient to size
breaks. We investigated organisms as large as 2.1 cm and still
observed a single wavelength (Fig. S7). Our observations are
consistent with previous research on the scaling of the Aden-
osine-5′-triphosphate gradient with organism size, observed up
to sizes of 50 cm (31).

A Contraction Pattern Consisting of a Single Wavelength Across an
Organism Optimizes Transport. To explore the transport properties
conferred by P. polycephalum’s choice of phase pattern we built
a theoretical description of the phase patterns in the network.
Previous research proves a linear phase gradient is optimal
for transporting matter down a tube when the mechanism of
movement is peristalsis (14). However, the slime mold grows as
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Fig. 3. (A–C) Typical phase patterns of P. poly-
cephalum networks ranging from approximately (A)
17 mm to (C) 3 mm. Independently of size, an almost
linear phase gradient establishes across the network.
The gradient encompasses a single cycle of zero to 2π
extending along the longest axis of an individual.
Colors mark the phases of contractions calculated as
the fraction of the contraction cycle elapsed relative
to the last maximum (Fig. 1B). (A and B, Top) Black
rectangles mark the approximate regions cut at the
end of each experiment to obtain the medium net-
work (B) from the large network (A) and the small
network (C ) from the medium network (B), re-
spectively. For tube architecture see bright-field data
in Fig. S6.
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a random, closed network without net mass transport on the
timescales considered in this work. Mass conservation imposes
that the sum of contraction-driven flows ΔQj in all tubes j∈N has
to total zero,

XN
j∈ tubes

ΔQj = 0: [6]

This has a profound effect on the allowed phase patterns in the
network. To investigate, we neglect variations in the contraction
period 2π=ω, amplitude «, and base radius a0 and consider cross-
sectional contractions of the form

a2ðz; tÞ= a20 + 2a0eeiðφ−ωtÞ: [7]

Eq. 5 then simplifies to

ΔQðz; tÞ= ia0e2πωe−iωt
Zz
z0

dz′eiφðz′Þ: [8]

We assume that networks are discretized into segments of length ℓ,
where the phase within each tube segment is approximately con-
stant. This is a good approximation as long as the characteristic
length scale of contractions is much larger than the tube segment
size considered. If φj is the phase within the jth tube segment,
conservation of mass in Eq. 6 implies

ia0e2πωℓe−iωt
XN

j∈ tubes

eiφj = 0: [9]

The general solution to this constraint is given by any integer
partition of N, where the smallest addend is 2: Namely, if we
consider any sum

PK
k Nk =N, with each Nk ≥ 2, then the phases

are given by

φjðkÞ =
2πj
Nk

: [10]

For the spatial arrangement of the phases we choose a linear
gradient, in which case any set partition with more than one
element gives rise to multiple phase waves along the network.
The solution with a single wavelength across the organism has
the phases of the tubes being the Nth roots of unity; i.e.,
φj = 2πj=N;   j= 1; . . . ;N. All of these solutions equally satisfy
conservation of mass; the fact that P. polycephalum chooses a so-
lution with a single wavelength per organism implies that there
must be another constraint. We know from a single closed peri-
staltic tube that transport is maximized for a single wavelength,
because particles do not need to travel past any node point,
where the fluid flow vanishes (SI Text). In this simple scenario
transport is optimized by a phase pattern going linearly from
zero to 2π from one end of the vein to the other, which is equiv-
alent to minimizing the overall phase difference.
Does this argument translate to a network of contracting

tubes? To investigate this, we choose phases from a solution set
in Eq. 10 with Nk =N and then find the spatial distribution of
phases that minimizes the local differences between the phases.
We do this by first randomly distributing the phases and then
using a Monte Carlo scheme that iterates possible spatial phase
distributions by swapping phases between two tubes if favorable
to achieve small phase differences throughout the network
(Materials and Methods). Fig. 4, Insets A and B, show a random
and an optimized phase pattern for the P. polycephalum network
architecture mapped from the large organism in Fig. 3A, discretized

into tube segments of length ℓ= 0:3274 mm, at least an order of
magnitude smaller than the extent of the organismL, i.e., the length
scale of the phase pattern.
Given the phase patterns, we can now assess the transport

properties of the corresponding networks. We compute for each
homogeneously contracting tube segment the contractions from
Eq. 7 and fluid flows generated by the contractions, using Eq. 4.
The flow boundary conditions for every single tube are calculated
by imposing Kirchhoff’s circuit law. We derive the Taylor dis-
persion for a contracting tube, which is used to equate the ad-
vection–dispersion of a cloud of tracer particles and to determine
the mean distance the cloud travels within the network (Materials
and Methods). Fig. 4 shows the displacement, normalized by the
largest distance L within a network, of a particle cloud over 10
periods of contractions (Movies S5 and S6). The optimized phase
pattern outperforms the random phase pattern more than sev-
enfold in spread after 10 periods and reaches more than 15% of
the total distance within the network, whereas the random phase
pattern covers only about 2%. In the network with the random
phase pattern, particles essentially diffuse with the molecular
diffusion constant κ on the scale of the tube segment, being mixed
fast due to the oscillating flow within individual tube segments.
With the long-ranged correlated phases in the optimized network
the overall flow velocity is highly enhanced. When particles dif-
fuse between faster and slower streamlines, the net diffusivity of
particles is enhanced by a term u2a2=κ∼ e2L2ω2=κ. By the na-
ture of the shuttle flow, there is no selected orientation of trans-
port, and particles are transported away from wherever they enter
the network. However, the particle diffusivity is not isotropic,
given that it is proportional to the squared flow velocity. Dispersal
is, thus, fastest for particles halfway along the phase gradient,
spreading uniformly either way along the direction of the gradi-
ent. This finding is similar to that of a single, closed peristaltic
tube, now generalized to a random network.

Phase Patterns Optimized for Particle Transport Agree with
P. polycephalum Patterns. To what degree are the phase patterns
found in P. polycephalum peristaltic waves on a network? In a
single peristaltic tube the signature of the spatial phase pattern is
unmistakably reflected in the spatial phase correlation. The lin-
ear increase from zero to 2π gives rise to a cosine for the phase
correlation, with perfect anticorrelation for phases separated by
L/2 and perfect correlation for phases separated by L (Fig. 5B).
To compare we now calculate the phase correlation for both
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Fig. 4. Networks optimized for minimal local phase difference maximize
particle transport. Numerically calculated mean displacement of tracer par-
ticles within the large real P. polycephalum network architecture of Fig. 3A is
shown here for theoretically optimized (Inset A, solid line) and random (Inset
B, dashed line) phase patterns. The mean displacement is normalized by the
largest distance L in the network. Arrows mark the site of tracer initiation.
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the experimentally measured phase patterns in P. polycephalum
and the theoretically derived phase patterns on the observed
P. polycephalum network architectures shown in Fig. 3. We de-
fine the phase correlation cðxÞ by the sum over the dot products
of the vector representation of any pair of phases in the network
at a distance x,

cðxÞ = 1
2N

X
k∈N

"
1

nkðxÞ
X

j∈VkðxÞ
~tk~tj

#
 with ~tj =

�
cosφj
sinφj

�
; [11]

with VkðxÞ the ensemble of tubes at a normalized distance x of
tube k and nkðxÞ its cardinal. Both the experimental and the
theoretical phase correlations displayed in Fig. 5 A and B, re-
spectively, show a minimum for phases separated by L/2 and
higher correlations for larger distances—the characteristics of
a single wavelength stretching along the longest axis of the net-
work. In the networks pairs of phases perpendicular to the di-
rection of the phase gradient average out the correlations and
anticorrelations relative to the case of a single peristaltic tube.
On the small network the small number of tube segments lets
fluctuation crumple up the phase correlation. For the theoretical
phase patterns on the large network additional maxima and min-
ima appear for large distances between phases due to the limi-
tations of our very simple Monte Carlo procedure. Forcing the
phase gradient along the shortest axis in a network in the simu-
lations gives rise to a qualitatively very different phase correla-
tion not observed in P. polycephalum (Fig. S8). Thus, the optimal
phase gradient in a spatial anisotropic network forms along the
longest axis of the network to maximize fluid flow and, hence,
transport both in theory and in P. polycephalum.

Discussion
Cytoplasmic flows in networks of P. polycephalum organize on
the scale of the whole organism and are caused by a generalized
version of peristalsis. Our model suggests the movement of sig-
nals and substrates will be optimized when the wavelength of the
peristaltic wave is of the order of the size of the network. Our
data confirm these phase patterns are found within real indi-
viduals of P. polycephalum, independent of organism size. In fact,
transport is optimized to the extent that the direction of the
phase gradient in a network coincides with the longest axis of an
anisotropic individual.
Transport is essential to share information and resources

across an organism. For P. polycephalum Nakagaki et al. (19)
found that environmental conditions can perturb the organism’s
contraction patterns, even giving rise to patterns with multiple
wavelengths. They note that these multiple wavelengths manifest
themselves with very slow solute dispersion, corroborating our
finding that transport is optimal with a single wavelength, which
is actively maintained by P. polycephalum.
How does an organism without a nervous system coordinate its

growth and adapt flow to size, even specifically to the longest axis
of an individual? In our theory the peristaltic wave patterns re-
sult from the interplay of a local rule (minimizing the phase

differences between neighboring vein segments) and a global
constraint (mass conservation). The global constraint may facil-
itate long-range interactions within any individual of arbitrary
size: Although a local change in phase alters locally generated
flow, because mass is conserved, it also alters flows and phases
elsewhere, enabling dynamics at one part of the network to in-
fluence dynamics across an individual. The constraint also ex-
plains the lack of any local correlation between contractions and
fluid flows at any single point of the network, an observation that
led to the dismissal of peristalsis as a mechanism of transport in
previous works (22–25).
Flows may enable the movement of resources within an in-

dividual and avoidance of repellents. Attractive stimuli, including
food sources, increase the frequency of contractions, whereas
repellents decrease the frequency of contractions (32). In the
context of peristaltic waves, the difference implies that attrac-
tants internalized into a network of veins will spread faster than
repellents. If food or toxins are encountered at the rim of
a network, a gradient in the amount of the substance distributed
across the network will persist for a long time, because flow ve-
locity and thus transport vanish at vein ends. Because the food
source or toxin will not be homogenized throughout the network,
the organism may be able to use the gradient to “remember” and
find or avoid the location of the food source or toxin. These
dynamics may also explain an aspect of the natural history of
P. polycephalum. A foraging individual quickly reforms its center
around a food source, for example an oat flake, perhaps because
resources will be more efficiently distributed when they are not at
the edges of a network.
We provide a quantitative model of fluid flows within a slime

mold, enabling a mechanistic understanding of P. polycephalum’s
behaviors; the concepts may translate to other organisms grow-
ing as networks and particularly to fungi. Striking morphological
and behavioral similarities (33), and the discovery of oscillatory
nutrient transport within basidiomycetes (34), suggest common
mechanisms. Knowledge of the flow dynamics within fungal
individuals is limited, but the global constraint of mass conser-
vation will hold for fungal networks. Internal flows may also
function to coordinate behaviors among the fungi, a kingdomwith
critical relevance for ecosystems.

Materials and Methods
Preparation and Imaging of P. polycephalum. Plasmodia of P. polycephalum
(Carolina Biological Supplies) were grown on 1.5% (wt/vol) agar without
nutrients and fed daily with oat flakes (Quaker Oats Company). Eight to 24 h
before imaging, either a newly colonized oat flake or the tip of a foraging
plasmodium was transferred to a new Petri dish. Results from oat flake
plasmodia and growing tips were indistinguishable. Slime molds were
modified by removing growing fans and imaged by transmitted light mi-
croscopy, using a Zeiss Lumar.V12 stereomicroscope, at magnifications be-
tween 1.0× and 10.0×. Petri dishes were illuminated from below, using white
light-emitting diodes on a transmitted light stage (Schott TLS-BF; 84 mm). A
long-pass filter with cutoff λ= 610  nm (20CGA-610; Newport) and a plastic
light diffuser were placed on top of the light stage. Light intensities were
controlled with a custom-made Matlab code (The Mathworks). Images were
taken every 6 s.
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Simulating Phase Patterns of Minimal Phase Difference. We simulated spatial
phase patterns of minimal phase difference with a Metropolis Monte Carlo
simulation, using a custom-written Matlab program (TheMathworks). Phases
satisfying conservation of mass, as stated in Eq. 10, were initially randomly
distributed over the tubes and subsequently the total sum of the squared
phase differences at every node was minimized,

E=
X

j∈tubes

X
k∈CðjÞ

�
φj −φk

�2
; [12]

where CðjÞ denotes all tubes that are immediate neighbors of tube j. To
minimize phase differences two randomly chosen phases were interchanged
according to the Metropolis Monte Carlo procedure. For a large system size
N, where n = number of tube segments, initially aligning the phases linearly
according to the distance between two chosen fixed endpoints bearing
the smallest and the largest phase, respectively, facilitated the path to a lo-
cal minimum. In detail, every tube was scored according to its value of
D=ds +N−de, where ds and de denote the minimal distance along the
network to the start and the end tubes, respectively. Then, the phases were
distributed from the smallest value at the start tube to the largest value at
the end tube according to values of D. We randomly distributed phases
within the class of equivalent Ds. We chose endpoints randomly within
a boundary layer of a sector close to the largest axis of the network’s
enclosing ellipse unless stated otherwise.

Simulating Contraction-Driven Flow in a Closed Network of Tubes. A custom-
ized Matlab program (The Mathworks) was written to solve for the flows
generated by a network of contracting tubes. Given a specific spatial pattern
of phases, the accompanying cross-sectional contractions and fluid flows
arising from contractions are calculated according to Eqs. 4, 5, and 7,

assuming parameter values of a0 = 50  μm, e= 0:1a0, and ω= 0:05 Hz. The
additional flow component caused by inflows from neighboring tubes is
computed by imposing Kirchoff’s circuit law. Toward this end, the flows
arising only from contractions in individual tubes were interpreted as
inflows at network nodes, and then the additional flow component at every
time step was derived as in ref. 8.

The advection–dispersion of the cross-sectionally averaged concentration
of tracer particles C within the flow was simulated with a Crank–Nicolson
implementation of a partial differential equation describing the effective
transport dynamics along the longitudinal axis, also known as Taylor dis-
persion (35, 36). The Taylor dispersion in a contracting tube was derived with
the center manifold approach introduced by Mercer and Roberts (37) and
was eventually found to be equivalent to the dispersion in a rigid tube with
spatially varying cross-section (38),

∂C
∂t

=
∂
∂z

( 
−u−

u2a
24κ

∂a
∂z

+ 2
κ

a
∂a
∂z

!
C +

 
κ+

u2a2

48κ

!
∂C
∂z

)
; [13]

where κ denotes the molecular diffusivity.
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SI Text
Particle Transport in a Closed Peristaltic Tube Is Maximal for a Single
Wavelength.To show that a single wavelength maximizes transport
we calculate the maximal distance traveled by a particle in a single
closed tube of length L. We impose a peristaltic wave satisfying
conservation of mass by choosing a linear phase gradient defined
by φðzÞ= 2πnz=L. As long as n is an integer, mass is conserved.
Now we can solve for a particle’s trajectory along the center line
of the tube by equating dzðtÞ=dt= 2uðz; tÞ, using the contractions

defined in Eq. 7. For small contraction amplitudes «, the maxi-
mal distance traveled by a particle starting at position z0 is

Δzmax =
4eL
a0nπ

ð1− cosð2nπz0=LÞÞjsinðπnz0=LÞj: [S1]

Hence, the distance a particle travels is maximized for n= 1, i.e.,
for a single wavelength, because the particle does not need to
pass by any node points, where the fluid flow is zero.
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Fig. S1. Correlation between the transmitted light intensity through a vein and the diameter of the vein.
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Fig. S2. Quantitative comparison of experimentally measured velocities and velocities calculated from the contracting vein model based on measured vein
radii. The calculated velocities are a factor of 10 smaller than measured velocities. This is likely due to the measured outer radius of the tube being different
from the inner radius, which actually drives the flow and the exchange of matter between the fluid cytoplasm and the gel-like outer layer.
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average transmitted light intensity through the vein (sliding average over 10 min).
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Fig. S4. Variability of contraction amplitudes. (A) A typical time series of transmitted light intensity through a vein. (B) The same time series as in A, detrended
by subtracting the local mean (running average over 10 min) and filtered with a Gaussian filter of width σ = 18s. These are the data that are used in all further
data analysis (determining the phase of the contractions, their amplitude, and period).
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Fig. S5. Distribution of contraction parameters for all veins of the large slime mold shown in Fig. 3A. (A) Histogram of the period of contractions. (B) His-
togram of the relative amplitude of the oscillations in transmitted light intensity. The relative amplitude of oscillations is defined as the ratio between the
amplitude of oscillations in light intensity and the average transmitted light intensity through the vein (sliding average over 10 min).

Fig. S6. (A–C) Bright-field microscopy snapshot of the (A) large, (B) medium, and (C) small P. polycephalum networks of Fig. 3.
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Fig. S7. Phase pattern within the largest network of P. polycephalum analyzed by us, extending up to 2.1 cm.
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Fig. S8. Comparison of phase gradient aligned along the longest and the shortest spatial extent. (A) Phase pattern forced along the longest and shortest
spatial extents by keeping the smallest and the largest phase fixed at opposing vein segments in the spatially anisotropic P. polycephalum network architecture
of Fig. 3B. (B) Phase correlation displays two minima for the phase gradient along the shortest axis in comparison with the single minimum for the phase
gradient along the longest axis, turning the orientation of the phase gradient distinguishable within the phase correlation.

Movie S1. Fluorescent beads of diameter 1 μm were endocytosed by P. polycephalum and tracked. Red and green dots correspond to the positions of the
beads at 1-s intervals.

Movie S1
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Movie S2. Evolution of phase pattern of the large slime mold individual of Fig. 3A over time. The color code indicates the phase of the contractions as the
fraction of the contraction elapsed relative to the last maximum. The color code is periodic, cycling from black at zero to blue, green, and red and back to black
at a phase of 2π.

Movie S2

Movie S3. Evolution of phase pattern of the medium slime mold individual of Fig. 3B over time. The color code indicates the phase of the contractions as the
fraction of the contraction elapsed relative to the last maximum. The color code is periodic, cycling from black at zero to blue, green, and red and back to black
at a phase of 2π.

Movie S3

Movie S4. Evolution of phase pattern of the small slime mold individual of Fig. 3C over time. The color code indicates the phase of the contractions as the
fraction of the contraction elapsed relative to the last maximum. The color code is periodic, cycling from black at zero to blue, green, and red and back to black
at a phase of 2π.

Movie S4
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Movie S5. Concentration profile of a cloud of tracer particles dispersion over 10 periods within the large P. polycephalum network architecture of Fig. 3A for
random phases. Corresponding phase pattern is shown in Fig. 4, Inset B. Radii of vein segments scale with the actual contraction state of the vein. Logarithmic
scale for concentration profile goes from high (bright) to zero (black).

Movie S5

Movie S6. Concentration profile of a cloud of tracer particles dispersion over 10 periods within the P. polycephalum network architecture of Fig. 3A for
optimized phases. Corresponding phase pattern is shown in Fig. 4, Inset A. Radii of vein segments scale with the actual contraction state of the vein. Loga-
rithmic scale for concentration profile goes from high (bright) to zero (black).

Movie S6
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