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We study microfluidic self-digitization in Hele-Shaw cells using pancake droplets anchored to surface-
tension traps. We show that above a critical flow rate, large anchored droplets break up to form two
daughter droplets, one of which remains in the anchor. Below the critical flow velocity for breakup, the
shape of the anchored drop is given by an elastica equation that depends on the capillary number of the
outer fluid. As the velocity crosses the critical value, the equation stops admitting a solution that satisfies
the boundary conditions; the drop breaks up in spite of the neck still having finite width. A similar breaking
event also takes place between the holes of an array of anchors, which we use to produce a 2D array of
stationary drops in situ.
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I. INTRODUCTION

One of the underlying drivers in microfluidics is to
miniaturize the standard multiwell plate and transform it
into an integrated programmable device, while replacing
the hundreds of wells typical today with thousands or more
nanoliter-scale compartments. Early success has been
achieved by using deformable chambers that could be
opened or closed using an external pressure source [1]. In
parallel, droplet-based microfluidics continues to attract
ever-increasing interest since it provides an elegant way to
encapsulate an initial sample into a large number of
independent microcompartments. However, the traditional
droplet production and manipulation methods all rely on
the drops flowing in a row in a linear microfluidic channel.
Studying the contents of these drops [2,3] is, therefore,
more akin to flow cytometry than to multiwell plates.
Recently, several groups have shown how to array

droplets in microfabricated traps, particularly in a wide
two-dimensional (2D) region [4,5]. These devices typically
allow a droplet density of several hundred per cm2, far
beyond what is currently possible outside microfluidics.
Nevertheless, these devices must still be coupled to a
traditional drop production device before they are brought
to the observation chamber. While the underlying physical
mechanisms for these drop production devices is now well
understood [6,7], they are poorly adapted in practice to
making a limited number of stationary drops. For this
reason, quasi-two-dimensional devices have been designed
to break an initially large drop into stationary subdroplets
that are held in pockets on the side of a sinuous channel

[8–10], while truly 2D devices allow much higher density
of trapped droplets [11].
Here we describe the ability to break droplets in situ

in a wide chamber, by pushing them over a truly two-
dimensional array of microfabricated traps [12]. We elu-
cidate the physical mechanisms first on a single droplet
and show that it is well described by a set of universal
curves given by the elastica equation. The drop then
breaks through a singularity in the curves beyond a critical
deformation, leading to a well-characterized and robust
size. In addition to its applications for droplet arrays, this
route to breaking a liquid interface provides fundamental
insight into the evolution of drops and bubbles in all
confined geometries, where the traditional Rayleigh-
Plateau instability is not active.

II. EXPERIMENTAL SETUP

The experimental setup consists of a wide chamber
(width w ¼ 2.5 mm) in which the drops can be anchored
in a central trap, as shown in Figs. 1(a) and 1(b). The
chamber height h and the anchor diameter d are in the range
35–50 μm and 75–200 μm, respectively. The height of the
anchor e is chosen to be of the order of the height of the
channel. All devices are made out of polydimethylsiloxane
(PDMS, Dow Corning). The droplets studied here are
produced by a flow-focusing junction upstream of the
chamber [Fig. 1(b)], designed such that the drops are forced
to adopt a pancake shape of radius R ≫ h in the chamber.
Droplets of fluorinated oil are produced in a glycerol-water
mixture with 2% sodium dodecyl sulfate (SDS) as a
surfactant. The oil viscosities μoil range between 1.2 and
24 cP, whereas the outer phase viscosity μ varies between
0.89 and 3.3 cP by varying the water-to-glycerol ratio.
The interfacial tension between the drop and the outer
liquid has a typical value γ ∼ 17 mN=m.
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During a typical experiment, a droplet is anchored on a
surface energy trap, and the outer velocity is increased step
by step. A typical measurement of the drop evolution is
shown in Fig. 1(c), where the smallest width of the drop
neck is reported. We observe that the neck reaches a
stationary value when the outer fluid is flowing below
the critical velocity. At the critical velocity, the neck begins
to decrease from a finite value, slowly at first, but then this
decrease is accelerated until the neck width becomes equal

to the channel height. Because of this loss of confinement
locally, the Rayleigh-Plateau instability becomes active
and the neck breaks, as observed previously for different
droplet production situations [6,7,13].
For a given setup and droplet volume, we find that there

exists a critical capillary number Ca⋆ ¼ μU⋆=γ above
which the droplet either escapes from the anchor [12]
[Fig. 1(d1)], or breaks on the anchor [Fig. 1(d2)]. In this
second regime, the drop leaves behind a daughter droplet
small enough to remain anchored at the breakup velocity
U⋆: the daughter droplet lies in the trapped region of the
phase diagram, as indicated by the diamond in Fig. 1(d). In
the rest of this paper, we focus on the breakup regime
exclusively.

III. RESULTS AND DISCUSSION

A. Droplet shape: Theory and experiments

The droplet stationary shapes are imposed by the
pressure difference between the two sides of the interface.
The flat microfluidic chamber can be modeled as a Hele-
Shaw cell, so we adopt a two-dimensional depth-averaged
formalism to describe the system. Then, the pressure drop
in the flow direction x is related to the average flow velocity
U according to

poðxÞ ¼ −24
μU
h2

xþ const; ð1Þ

where poðxÞ is the pressure in the outer aqueous phase.
The pressure pi inside the oil drop is constant [12,14] and
is related to the outside pressure poðxÞ by the Laplace
relation:

pi − poðxÞ ¼ γ

�
κ⊥ þ π

4
κ∥

�
; ð2Þ

where κ⊥ and κ∥ are the curvatures in the perpendicular
and the parallel planes, respectively [15]. Away from the
anchor, the curvature in the perpendicular plane is assumed
constant κ⊥ ¼ 2=h.
The droplet 2D shape rðsÞ, where s denotes the interface

arclength, is described in Fig. 2(b). The tangent to the
droplet interface is obtained by differentiating the position
with respect to the arclength r0ðsÞ ¼ ðcos θðsÞ; sin θðsÞÞ,
and the in-plane curvature is given by κ∥ ¼ θ0ðsÞ.
Differentiating Eq. (2) with respect to s and using
Eq. (1) in the particular case where x ¼ rðsÞ · ex yields
an elastica equation:

θ00ðs̄Þ − R2

l2
cos θðs̄Þ ¼ 0; ð3aÞ

where l ¼ h
ffiffiffiffiffiffiffiffiffiffi
π=96

p
Ca−1=2 denotes the “viscocapillary

length” of the problem, and the radius R of the undeformed
droplet is used to nondimensionalize the problem
(nondimensional variables, such as s̄, are denoted with a
bar). Equation (3a) is a 2D pendant drop equation [12,16].

(a) (b)

(d)

(c)

FIG. 1. (a) Schematic of an anchor of diameter d and height e,
trapping a drop of radius R (no external flow); the chamber height
is h. (b) Sketch of the microfluidic device: droplets are produced
with a flow focuser and trapped on an anchor centered in the
observation chamber, w ¼ 2.5 mm. (c) Typical evolution of the
droplet neck width (see inset) as the outer flow velocity U is
increased. When the critical velocity is passed, the neck never
reaches a stationary state; instead, it decreases until it matches
the channel height (h ¼ 49 μm), where it becomes unstable by
Rayleigh-Plateau instability. (d) For a given microchannel, a
trapped droplet either escapes from its anchor at a critical value
of the capillary number (grayed area, R≲ 600 μm) or breaks on
the anchor (R≳ 600 μm), leaving a smaller droplet behind.
Experimental points for droplets of FC-40 in glycerol-water
mixtures of different viscosities: μ ¼ 0.93 cP (dark gray),
μ ¼ 1.6 cP (medium gray), and μ ¼ 3.3 cP (black). SDS is used
as a surfactant at a concentration of 2% in all cases.
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Note that the droplet shape does not depend on its
viscosity: the only viscosity entering the problem (through
l) is the external fluid viscosity. To qualitatively check this
prediction, we show in Fig. 2(d) the shapes of three
different droplets of different viscosities (between 0.77
and 24 cP) but similar volumes and at the same value of Ca.
The drops, indeed, have similar shapes that cannot be
distinguished from each other.
Secondary variables are now defined to ease the

integration of the problem. The cumulative dimensionless
area swept by the droplet interface ᾱðs̄Þ is defined as the
solution of

α0ðs̄Þ ¼ ȳðs̄Þx0ðs̄Þ: ð3bÞ
The drop shape is obtained by integrating Eqs. (3a) and (3b)
with a shooting method. For given values of d̄ and l̄, we use
the curvature κ0 ¼ κ̄∥ðs̄ ¼ 0Þ as the sole shooting param-
eter and search for the values of κ0 that satisfy the geometric
condition ȳ ¼ d̄ at ᾱ ¼ π=2. The droplet shape rðsÞ is then
fully defined by the triplet fd̄; l̄; κ0g.

The calculations of κ0 are first performed for different
values of l̄, while keeping d̄ constant, and the whole
process is repeated for different values of d̄. This leads to a
catalog of shapes that can be used to fit the experimental
droplet shapes. For each experimental condition, the best-
fitting shape is found, and its associated triplet is called
fdf;lf; κ̄0fg. Since all numerical shapes are obtained using
dimensionless variables, it is also necessary to redimen-
sionalize them, and we call Rf the radius of the best-fitting
shape for each fit. There is a very good agreement between
numerical and experimental shapes, as shown in Fig. 2(c).
We also find excellent agreement between Rf and R, with a
difference of at most 5% between both values, the best fits
being obtained for low values of l.
A quantitative comparison between theory and experi-

ments is obtained by comparing the evolution of the fitting
parameter l−2

f ¼ R2
f=l

2
f with the experimental value of

Ca=h2. The resulting values are plotted in Fig. 2(a), which
displays the data for different channel geometries, droplet
and outer fluid viscosities, and trap diameters. The data
verify the scaling predicted by theory l−2 ∼ Ca=h2, with a
prefactor (approximately 60) that differs from the predic-
tion (96=π ≃ 31), most likely because of dynamic surfac-
tant effects [12]. Taken together, the above results show that
the droplet shape is well described by the elastica for
forcing values below the breaking threshold.

B. Droplet breakup: Theory and experiments

We now turn to the breaking. The solutions to the elastica
equation can be plotted as a family of curves in the
(κ0, 1=l2) plane, for different values of d̄; see Fig. 3(a).

The curves all display a monotonic increase of κ0 with 1=l2

until a maximum value of 1=l2 where they reach a turning
point, and after which no values of κ0 are found. The
folding of the branch of solutions is associated to an
exchange of stability at the marginally stable turning point.
This implies that no stationary solutions to the elastica
equation can be found beyond this point, and the equilib-
rium can be reached only through a dynamic process which
is not accounted for by the static model. We call l⋆ the
value of l̄ at the turning point of the curve and, therefore,
expect that the droplet will break at l̄ ¼ l⋆ even though
the droplet neck still has a finite width, as shown in the
inset of Fig. 3(a).
Experimentally, increasing quasistatically the flow rate

around a droplet pinned on an anchor amounts to walking
along a curve with increasing 1=l2. This leads to an
increase in κ0 until the value of l ¼ l⋆ is reached,
corresponding to a critical velocity U⋆ beyond which there
are no stationary solutions. For each experiment, we
compare the fitted value of l⋆

f with the predicted value

l⋆ in Fig. 3(b). The agreement between the two is
remarkable, confirming the interpretation of the breaking:

FIG. 2. (a) Evolution of the fitting parameter lf with the value
of Ca=h2, for different channel heights, trap diameters, and
droplet fluid viscosities. The cloud of data points confirms that
l−2 ∼ Ca=h2. (b) Photograph of an anchored droplet under flow
and system of coordinates in which the interface rðsÞ is derived.
s is the arclength along the interface, and r0ðsÞ is its tangent.
(c) From left to right: Droplet shape for increasing outer
fluid velocities. Orange dotted lines are the best-fitting elastica
shape. (d) Three droplets of different viscosities (μ1 ¼ 1.2;
μ2 ¼ 4.1; μ3 ¼ 24 cP) but similar volumes, for the same value
of μU=γh2: the droplet shape is independent of the droplet
viscosity.
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above the velocity U⋆, no equilibrium droplet shape can be
found that satisfies the elastica equation with the imposed
boundary conditions. We find that the larger df, the larger
the value of 1=l⋆; i.e., in a given experimental setup with a
fixed trap diameter d, the critical velocity U⋆ leading to
breakup is smaller for large droplets than it is for small
droplets.
In many situations it is important to determine the

volume of the trapped fluid in the anchor, for example,
if the device is used to observe biological samples. This
determination is equivalent to predicting, in our 2D view,
the projected area Ad of the droplet left on the anchor after
breakup. We expect the area to depend both on the diameter
of the trap d and on the droplet radius R. The dependence of
Ad on d is dictated by the boundary condition that the trap
imposes on the droplet shape. The dependence on R comes
from the geometry of the breakup: we experimentally and
numerically observe that, for a given d, the pinch-off
distance from the anchor increases with R, occurring farther
downstream of the trap for larger drops. Rescaling all
lengths by R, we show the evolution of the dimensionless
areaAd=R2 as a function of d̄ ¼ d=R for both experimental

results and theoretical simulations in Fig. 4(a). Note that a
perfect agreement cannot be expected between the theo-
retical and experimental results since the model is 2D,
whereas 3D effects are present close to the anchor. Still, the
trends of the two curves are identical.

IV. CONCLUSION

We now examine the practical implications of the
demonstrated method. A droplet breaks on an anchor as
long as the outer flow velocity satisfies U > U⋆. In this
sense, one does not need a precise flow control to produce a
droplet: pushing the outer flow using a hand-held syringe is
sufficient to break droplets. Also, the only relevant vis-
cosity coming into play is the viscosity μ of the outer fluid:
since U⋆ does not depend on the inner fluid viscosity, the
singularity occurs at the same time for droplets of a given
volume so that there is no difference between breaking
droplets of a viscous fluid such as Fluorinert FC-70 (3M)
(μ ¼ 24 cP) or breaking droplets of Novec fluid HFE-7500
239 (3M) (μ ¼ 1.2 cP). The volume left on the trap is
dependent on the geometries of the trap and that of the
drop: the sole important dimensionless parameter is d̄.
Therefore, whatever the fluids used, their surface tensions,
or viscosities, two drops of the same volume will break on

FIG. 4. (a) Remaining area (dimensionless) as a function of
d̄ ¼ d=R. Dots: experiments. Line: theoretical prediction. Insets:
Two droplets of different sizes left on the same anchor
(d ¼ 150 μm) by two different drops. (b) An array made up
of 1568 individual drops produced through self-digitization. The
aqueous solution contains fluorescein to aid in the visualization.
We use square anchors with side d ¼ 130 μm in a channel of
height h ¼ 35 μm. Scale bar: 2 mm.

(a)

(b)

FIG. 3. (a) Branches of solutions of the elastica shown in the

plane ð1=l2; κ̄0Þ, each corresponding to a given value of d̄. The
stable part (unstable) is denoted with a black line (gray line). For a

given d̄, the critical value 1=l⋆2 at which the drop breaks is
indicated by a star corresponding to the turning point of the
branch of solutions. Yellow line shows the interpolation of a
discrete number of turning points. Inset: Shape of the anchored

drop at the critical value of 1=l⋆2. (b) Comparison between

experimental values of 1=l⋆2 at which the drops break with the
theoretical prediction from part (a).
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an anchor of diameter d into droplets of the same size Ad
that depends solely on d and R.
The breakup of a single droplet can be generalized to an

array of traps of any dimension, as shown in Fig. 4(b),
which shows an array of 112 × 14 drops. In this experi-
ment, an aqueous “puddle” initially fills the chamber and is
then pushed by a flow of a wetting oil. The drops, which are
produced at 10 Hz, detach as the front passes the anchors.
Again, the interface connecting two anchors is described
by an elastica equation, albeit with different boundary
conditions than the single anchor, and breaks when the
enclosed volume is reduced below a critical value. Such
devices are directly applicable to bioassays and preview
droplet-based microfluidic multiwell plates.
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