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Subject

The anisotropic, elongated shape of bacteria such as Bacillus subtilis plays an important role in the
spatial organization of dense bacterial suspensions. Indeed, the rod-like shape of individual bacteria
induces an alignment between neighbors, ultimately leading to the formation of larger spatial domains
characterized by a local orientational order. When bacteria are on a 2D plane surface, ordered domains
appear reminiscent of a ferromagnetic phase (Fig. 1a). However, in contrast with non-living passive
systems, these domains evolve in time as bacteria grow and divide [2].

growth rate in response to high mechanical pressure (11), although
we note that other factors such as a decrease in nutrient concen-
tration or an increase in waste concentration could be acting in
conjunction. At this final stage, the cells in the chambers are
nematically ordered along the axis of the channel, which coincides
with the direction of the expansion flow. Our main conjecture from
this experiment is that the nematic ordering of cells is driven by the
self-generated growth-induced expansion flow. It is in marked
contrast with thermal systems such as liquid crystals and polymers,
where nematic ordering is driven by steric exclusion of rod-like
molecules and a corresponding entropy maximization (12).

To understand the mechanism of cell ordering during colony
growth, we first developed a continuum model of the colony
dynamics derived from the general equations of nematodynamics
(13) suitably generalized to include the effects of cell growth and
division (see SI Text). These equations describe the temporal
evolution of coarse-grained density, !(x, z, t), velocity, v ! (vx, vz)(x,
z, t), pressure, p(x, z, t), and tensor order parameter, Q(x, z, t),
characterizing local cell orientation. We assume that the cell density
grows exponentially at a rate " and that this growth does not have
a direct effect on local orientation because offspring maintain the

orientation of their mother cell just after division. However, the
exponential increase in cell mass increases the pressure within the
colony, which generates an expansion flow that leads to cell
ordering. For flows in long channels, the continuum model may be
formulated in terms of dynamical equations for the amplitudes of
the coarse-grained fields (model A; see Fig. 2 and Materials and
Methods).

To accommodate the constant cellular growth rate, ", the
expansion flow in the asymptotic regime must have a longitudinal
velocity profile v(z) ! "z (in dimensional form). This velocity
profile is driven by a parabolic pressure distribution, p ! "L2/#(1 "
z2/L2), where L is the half-length of the channel and # is the friction
coefficient, thus the pressure in the middle of the channel (z ! 0)
scales as L2 and for long channels may reach high values. There is
experimental evidence that high pressure affects cell function and
in particular can slow down or stop cell growth (11). This effect, in
turn, helps to alleviate the pressure buildup in large colonies. We
also observed a significant slowdown of the cell growth at the late
stage of the colony development (see above). To incorporate this
effect, we replaced the constant cell growth rate, ", in the model by
"0[1 " (p/pc)2], with a certain critical value of pressure, pc, at which
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Fig. 1. Experimental results for bacterial growth and ordering from an evenly distributed low-density seeding of cells. (A–C) Three snapshots of E. coli monolayer
growth and ordering in a quasi-2D open microfluidic cavity taken at 60, 90, and 138 min from the beginning of the experiment. (D–F) Velocity and density profiles along
the channel corresponding to the snapshots to the left. (G–I) Time traces of mean density, velocity gradient, and order parameter.
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FIG. 2. Configuration with four +1/2 defects. Shown on the
top left is the top view image between crossed polarizers of a
4[+1/2] nematic shell. The bottom left shows the schematics of the
defect arrangement. On the right is the angular distance β between
nearby defects as a function of u. The blue squares correspond to
experimental data from [13] and the solid red line is the result of the
minimization of the free energy in Eq. (7) with h0 = 0.02.

between i and j . When varying the geometry of the shell, h(θ )
is also an implicit function of two additional dimensionless
parameters: (i) the renormalized minimal thickness h0 and
(ii) u ≡ (R − a)/R, where a denotes the inner radius of the
shell [see Fig. 1(c)]. In our experiments, we observe that h0 is
constant and independent of the shell nature and geometry. On
physical grounds, this can be explained by the fact that it is the
disjoining pressure between the inner and outer interfaces that
sets the value of h0 [16] (see [18] for a recent numerical study
on the effects of varying h0). Hence, we are only left with the
parameter u, which actually measures the thickness gradient
within the shell, and thus rigorously write h(θ ; u) for the local
thickness. Finally, for each of the defect configurations, we
minimize the total free energy F [see Eq. (4)] with respect to
the angular positions and obtain the equilibrium angles as a
function of u only. In the small-angle approximation, one can
easily show using purely geometrical considerations that the
local thickness h(θ ; u) reads

h(θ ; u) = h0 + g(u)
θ2

2
+ o(θ2), (5)

where g is a dimensionless function of u only, reading

g(u) = (1 − h0)(u − h0)
1 − u

. (6)

Let us start with the tetravalent 4[+1/2] configuration. To
confront our model, we use experimental data of nematic shells
from Ref. [13]. The reasons for such a choice are twofold.
First, all defects in this configuration are singular lines such
that the arrangement of the director field remains essentially
two dimensional. As mentioned above, this feature is crucial
in our approach. Second, the exact structure of those lines is
well known, which, as we will see below, is not always the case
in cholesterics. This configuration is thus the best candidate
to check the validity of the present model. It is notably
characterized by four outer defects located at the vertices of a
folded rhombus (see Fig. 2). The experimental central angle β
between two nearby defects, identical for each pair of defects
and taken from Ref. [13], is plotted as a function of u. Noting
that θ1 = θ3, θ2 = θ4, and h(θmin

13 ; u) = h(θmin
24 ; u) = h0, the

free energy of the 4[+1/2] configuration reads

F4[+1/2](θ1,θ2; u) = 4U12h
(
θmin

12 ; u
)
+ (U13 + U24)h0

+ 2E0
1[h(θ1; u) + h(θ2; u)], (7)

where the interaction energies read

U12(θ1,θ2) = −1
4

log
(

θ2
1 + θ2

2

2

)
, (8a)

U13(θ1) = −1
2

log(θ1

√
2), (8b)

U24(θ2) = −1
2

log(θ2

√
2), (8c)

and the angle θmin
12 in Eq. (7) is given by

θmin
12 = θ1θ2√

θ2
1 + θ2

2

. (9)

The two parameters θ1 and θ2 fully characterize the positions of
the defects. We set rc,1/2 ∼ 10 nm ∼ 10−4R for R = 100 µm,
consistently with reported values [8,29]. Minimizing the free
energy with respect to θ1 and θ2 and noting that β =

√
θ2

1 + θ2
2 ,

we obtain the equilibrium curve β(u) (see Fig. 2). Fitting the
experimental data to β(u) with respect to h0 yields excellent
agreement for h0 = 0.02. The latter value of h0, equal to 1 µm
when R = 50 µm, is consistent with the current and previous
experimental studies [13,16]. This first result can be seen as a
calibration of the model and we will use the above value of h0
as a reference throughout the following.

We now look into the configuration consisting of two +1
disclination lines. In Fig. 3 we report data obtained from
a previous study [16], measured for shells with different
cholesteric pitches p = 9.3, 6, and 3.6 µm (see green squares
in Fig. 3). Noting that θ1 = θ2 ≡ θ and h(θmin

12 ; u) = h0, the
free energy of the 2[+1] configuration reads

F2[+1](θ ; u) = U12h0 + 2E0
1h(θ ; u), (10)

where the interaction energy reads

U12(θ ) = −2 log(θ
√

2). (11)
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FIG. 3. Configuration with two +1 defects. Shown on the top
left is the top view image between crossed polarizers of a 2[+1]
cholesteric shell. The bottom left shows the schematics of defect
arrangement. On the right is the angular position θ as a function of
u. Green squares show the experimental data from [16] for which a
rolling average was performed. The inset displays a picture of the
intricate structure of the +1 disclination in a cholesteric shell.

062701-3

(b)

Figure 1: (a) Bacteria on a flat 2D surface, showing local orientational order [2]. (b) Liquid crystals on
a spherical shell. The color depends on the local orientation of the molecules. Two topological defects
are observed (black circles) [1].

When constrained on the curved surface of a sphere, anisotropic shapes such as rods cannot be
perfectly aligned and defects appear, corresponding to singularities of the orientational order. These
defects are clearly visible when making shells of liquid crystals [1], which are rod-like molecules, see
Fig. 1b. When the passive, immobile liquid crystals are replaced by a rod-like, active system of mi-
crotubules that are able to propel themselves, defects start moving and evolving on the surface of the
sphere.

In this internship, we ask how topology influences the dynamics of defects in a system of bacteria
constrained to living on the surface of a sphere. Bacteria will not necessarily be able to swim at the
surface of a sphere, but will grow and divide, which will influence the dynamics of defects. The intern-
ship will have both an experimental and theoretical component. On the experimental side, the intern
will adapt a microfluidic setup to produce air bubbles in water, and add bacteria at the air/water inter-
face. On the theoretical side, we shall compute and analyze the phase transition point when evolving
from a low bacterial density isotropic phase to the high density nematic phase. Combining experiments
and theory will help understand how topological defects smoothly arise in a geometrically frustrated
medium.
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