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SI Materials and Methods
The experiments were performed in microchannels made using
standard soft lithography techniques. First, a mold was etched by
depositing a dry-film photoresist on a glass slide and exposing it to
a UV lamp through a photomask. The film then was developed in
an aqueous solution of potassium to yield the negative of the
channel design. This then constituted a mold over which poly-
dimethylsiloxane was poured and allowed to polymerize. This
microchannel was then cut out and bonded on another glass slide
by passing the two surfaces in an oxygen plasma.
We used perfluorodecalin (PFD) to form the liquid plugs because

of itsgoodwettingproperties(contactangle∼238)andinertness.PFD
is a fluorocarbon oil with viscosity μ= 5:1× 10−3 Pa·s and surface
tension γ= 19:3× 10−3 N/m. The plugs were separated by air bub-
bles. The fluids were controlled using either a water column, whose
height determined the pressure head, or a programmable pressure
controller (Fluigent MFCS-8C, generously lent by Fluigent S.A.),
which provided precise and programmable pressure control.
The microchannel geometry presented a narrow Y-shaped

junction (width = 200 μm) upstream of the test section (Fig. 5).
This narrow region provided the ability to form liquid plugs re-
liably. The channel width then increased downstream of this
junction, thus reducing the plug length equivalently. This geometry
therefore provided better control of plug formation and length
than using channels with constant width.
Experiments were recorded with a high-speed camera (Photron

Fastcam 1024 PCI) through a stereomicroscope at 0.7× magnifi-
cation. The resolution of the camera was 1,024 × 1,024 pixels,
which yielded 1 pixel for 24:8 μm. The camera allowed image
sequences to be captured at frame rates up to 1,000 images per
second at full resolution. Image analysis was then performed using
ImageJ software.

SI Model of Plug Motion and Rupture
In this section, we develop an analytical model to describe the
motion of the gas–liquid train as the plugs change in size and
eventually rupture in a straight channel. In this model, we ig-
nore the effects of gravity and inertia by recalling that the Bond
and Weber numbers are small. Moreover, because the experi-
ments take place at small to moderate Reynolds and capillary
numbers (Table S2), we limit ourselves to a minimal one-di-
mensional model that treats the plugs as discrete resistors. The
aim, therefore, is not to describe the hydrodynamic behavior of
our system in detail but to capture the essential mechanisms
that lead to the cascade of ruptures.
As in the main text, we suppose that the total resistance to flow

can be written as the sum of the resistances for individual plugs,
which in turn can be separated into three contributions (1). The
first one, Rv, is due to viscous dissipation in the bulk of the liquid;
the other two correspond to capillary resistance at the front and
rear interfaces, Rf and Rr, respectively. We also note that the
fluid velocity V is nearly conserved at all locations in the channel.
We therefore write the balance between driving pressure and
resistance to flow as:

ΔP =
X
k

RkV =
X
k

h
Rv
k +Rf

k +Rr
k

i
V : [S1]

The theoretical description aims at estimating the different
resistance terms and their coupling with the plug velocities. An
event-driven model of the coupling yields the evolution in time of
the velocities and resistances, as discussed in the main text.

Problem Formulation. We consider a train of N liquid plugs pushed
at a constant pressure head ΔP in a straight rectangular micro-
channel of height h and width w. The variables, defined in Fig. S3,
are the positions xkðtÞ of the plugs’ rear interfaces (numbered from
right to left, beginning with the most advanced one); their lengths
LkðtÞ; the radii erkðtÞ and efkðtÞ of their rear and front menisci; and
the cross-sectional area Sðx; tÞ of the lumens open to air at position
x between the plugs. This description of the meniscus shape in-
troduces two effects in the one-dimensional model developed
here. First, the radii ef and er determine the location at which fluid
is exchanged with the films on the walls. Second, the front–rear
asymmetry between the two curvatures leads to an additional re-
sistance to flow, as described below.
The plugs leave a liquid film on the walls, whose thickness is

variable: we define the cross-sectional area open to air behind
plug k as SrkðtÞ= Sðxk − erk; tÞ, whereas one has Sfk = Sðxk +Lk +
efk; tÞ in front of the plug. The amount of liquid deposited on the
wall behind each plug depends on its velocity Vk (2–4), defined
as the speed of its rear interface, VkðtÞ= dxkðtÞ=dt. On the other
hand, the plug velocities are related to the flow rate QðtÞ through
VkðtÞ= QðtÞ=SrkðtÞ.
The velocity of each plug may be different from its neighbors in

principle, because they each can leave a film of different thickness.
Nevertheless, experimental observations show that the plug ve-
locities remain within less than 10% of one another for all
experiments, as shown, for example, in Fig. S4 or observed in
Figs. 2 and 3 in the main text. In the present model, the problem
therefore is simplified by assuming that the plugs all travel at the
same velocity V(t), which comes to equating the thickness of the
rear films. Therefore, we can simplify the notation by writing
SrkðVkÞ= SrðV Þ.
Based on the parameters above, the dimensionless equations

are obtained by introducing a characteristic length ℓ=
ffiffiffiffiffiffi
wh

p
,

a characteristic pressure ΔP= 2σ=ℓ, and the viscocapillary
timescale τ= μℓ=σ. Using these definitions, the dimensionless
speed of the plug train is just the capillary number Ca= μV=σ. In
the following text, variables with tildes indicate dimensionless
quantities.
Evolution of plug lengths.Theequationgiving thevariationof theplug
length as a function of time is obtained by expressing a balance
between thefluid collected from the previous plug and thefluid left
behind. Let S0 =wh= ℓ2, then, during a time interval δt the length
of the plug changes by δL, the volume of the plug changes by S0δL,
the fluid collected ahead is ðS0 − SfkÞVδt, and the fluid left behind is
ðS0 − SrðV ÞÞVδt; hence,

S0δL =
�
S0 − Sfk

�
Vδt− ðS0 − SrðV ÞÞVδt: [S2]

After simplification, rewriting Eq. S2 in dimensionless form
yields

d~Lk

d~t
=
�
~SrðCaÞ− ~Skf

�
~X ;~t

��
Ca: [S3]

A relation between ~S
r
and the capillary number Ca can be ob-

tained by combining the scaling law proposed by Aussillous and
Quéré (5) for the thickness of the liquid layer left behind a moving
plug in a cylindrical channel and the empirical extension of this
formula obtained by de Lózar et al. (6) for rectangular channels.
By noting that 1− ~Sr is nothing but what they call the wet fraction,
we obtain
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~Sr = 1−
A + B dC  a2=3
1 + C dC  a2=3 ; [S4]

where A, B, and C are constants and

cCa =
h
1+ 0:12ðα− 1Þ+ 0:018ðα− 1Þ2

i
Ca

is an effective capillary number correcting for the departure of the
aspect ratio α=w=h away from the square case α= 1. The best fit
with the experimental data displayed in figure 3 in ref. 6 for α= 12
provides A= 0:021, B= 3:4, and C= 5:2 in the range of capillary
numbers of interest.
The section of air in front of each plug ~Sk

f is obtained by
keeping track of the amount of liquid left on the wall by the
preceding plug.
Pressure balance and plug velocities. A second set of equations is
obtained by equilibrating the driving pressure head with the
pressure drops from viscous dissipation in the bulk of the liquid
plugs Δ~Pv and at the successive liquid–air interfaces Δ~Pi:

Δ~P = Δ~Pv + Δ~Pi: [S5]

The viscous pressure drop is obtained by recalling the pres-
sure-flow rate relation for a single fluid flowing in a rectangular
channel (7):

ΔPv =
12μ
wh3

QL; [S6]

where Q is the flow rate and L is the length of the plug. It is
common to extend this formula to account for the viscous pressure
drop in a train of plugs, when they are sufficiently long and suffi-
ciently far apart, by summing the individual contributions (see,
e.g., ref 1):

ΔPv =
X
k

12μ
wh3

QLk: [S7]

Recalling that Q= SrV , in dimensionless form Eq. S7 reads:

Δ~Pv = 6  Ca  ~Srα
X
k

~Lk: [S8]

The interface pressure differences are the result of deforma-
tions of the interfaces away from their static shapes. Indeed, for
plugs at rest, curvatures at the front and the rear compensate
their effects, leading to a uniform pressure within each plug.
When the plugs move, interfaces depart from their static shapes,
which leads to pressure drop corrections at both the front and
rear interfaces, Δ~Pi

f and Δ~Pi
r, respectively:

Δ~Pi = Δ~Pi
f + Δ~Pi

r: [S9]

Quantity Δ~Pi
r can be estimated from the study of an air finger

flowing in a channel, viewed as the tip of the following air bubble. The
formula obtained by Bretherton (2), valid at low capillary numbers
for a cylindrical tube, has been extended by Wong et al. (3) for
a square channel, andmore recently to the rectangular case byHazel
and Heil (4). By means of numerical simulations, these authors have
shown that ΔPrðα;CaÞ= f ðαÞΔPrðα= 1;CaÞ, tabulating f ðαÞ for
α∈ ½1; 2�. It turns out that in this range, their data are well fitted by
the expression αf ðαÞ= 1+ 0:52ðα− 1Þ, that is, f ðαÞ= 0:52+ 0:48=α.
This expression is not surprising because the pressure difference

should scale as the shear with, in a first approximation, additive
contributions from the two directions, cross-stream in 1/h and
spanwise in 1=w= 1=αh. Accordingly, we are confident that the
extrapolation to our conditions α= 12:7 is reliable.
On the other hand, Hazel and Heil have corrected the result of

Wong et al. (3) for the finiteness of Ca. Their data for the dy-
namical contribution to ΔP in a square channel are in the form
DCa2=3, where D is a constant. Our fitting of their data in figure 8
of ref. 4, over the range Ca∈ ½10−3; 0:3�, yields D = 4.1. Turning
to dimensionless quantities, we finally obtain

Δ~Pi
r = Dα1=2f ðαÞCa2=3

[and Dα1=2f ðαÞ= 8:1 for α= 12:7]. Thus, for a set of N plugs
moving at the same velocity, we obtain:

Δ~Pi
r = NDα1=2 f ðαÞCa2=3: [S10]

Finally, as to the front interfaces, following Ody et al. (8) and
assuming that the apparent dynamic contact angle θa of the front
meniscus [as defined by Chebbi (9)] is the same in the two
principal directions, the pressure jump at the front interface of
a single plug can be computed from

ΔPf
i = σ

�
2
w
+
2
h

�
ð1− cos θaÞ: [S11]

The apparent contact angles of each plug are not necessarily
identical because the macroscopic films covering the channel wall
ahead of themmay be different. The dimensionless expression for
the train of plugs then reads

Δ~Pi
f =

X
k

h+w
ℓ

ð1− cos  θakÞ: [S12]

The first plug moves on a dry substrate, with an apparent
dynamic contact angle obtained from the Hoffman-Tanner law
(10, 11):

θa1 = ECa1=3; [S13]

in which the constant E has been determined for PFD plugs
moving in rectangular microchannels by Ody et al. (8) as E= 4:9.
The following plugs move on a substrate that is prewetted by
a macroscopic film. According to Chebbi (9), the apparent dy-
namic contact angle at the front of a plug advancing in a cylin-
drical tube of radius R over a fluid film of thickness e∞ far away
from the meniscus is given by

tan  θa = ð3CaÞ1=3F
�
ð3CaÞ−2=3~e  cosθa

�
; [S14]

where

FðyÞ =
X3
j= 0

bn½log10   y�n; [S15]

where ~e= e∞=R and the bn are tabulated in ref. 9; values rounded
to two significant figures are given here for the reader’s conve-
nience: b0 = 1:4, b1 = − 0:59, b2 = − 3:2× 10−2, and b3 = 3:1× 10−3.
To adapt this formula to our case, we estimate the relative fluid
thickness ~e as ð1− ~S

f
kÞ1=2. Furthermore, because apparently no

extension of this formula to the rectangular geometry exists, we
introduce an empirical correction coefficient K so that in di-
mensionless form, we obtain
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tan  θak = Kð3CaÞ1=3F
�
ð3CaÞ−2=3

�
1− ~Sk

f�~X ;~t
	1=2
cos  θak
: [S16]

The coefficient K, the only quantity not directly extracted from
the literature, has been fixed to adjust time scales in the simu-
lations to those of the laboratory experiments. We find K ’ 1:3.
Plug dynamics. The equations derived above allow us to solve the
coupled problem of the plug lengths and liquid deposition, re-
sistance to flow, and plug velocity. By inverting this system, one
obtains the capillary number at each time and thus computes the
positions of the plugs. The model therefore provides a closed set
of equations used to predict the dynamics of a train of plugs
pushed at constant pressure head.

Application. The formulation above now can be expanded to be
solved numerically. Eqs. S8 and S10 allow us to write

Rv =
2μ
ℓ

"
6 ~Sr α

X
k

~Lk

#
; [S17]

Rr =
2μ
ℓ
NDα1=2f ðαÞCa−1=3: [S18]

At low capillary number, expanding Eqs. S12 and S16 at lowest
order yields

Δ~Pi
f =

h+w
2ℓ

X
k

θa2k ; [S19]

θak = Kð3CaÞ1=3F
�
ð3CaÞ−2=3

�
1− ~Sk

f�~X ;~t
	1=2

; [S20]

which leads to

Rf =
μ
ℓ

"
h+w
ℓ

#
Ca−1=3

"
12+ 32=3 K2

XN
k= 2

F2
�
ð3CaÞ−2=3

�
1− ~Sk

f�~X ;~t
	1=2

#:

[S21]

Fig. S5 displays the predicted variation of the front interface
resistance of a single plug moving in a prewetted channel as
a function of the capillary number for different relative thick-
nesses of the macroscopic film ahead of the plug ~e. It shows that
Eq. S20, which is the lowest-order approximation to Eq. S16,
gives sufficiently accurate results in the range of capillary num-
bers of interest. Accordingly we may rely on Eq. S21, which both
provides a better insight into the physics of the problem and is

simpler to implement. The important phenomenon to be seen in
Fig. S5 is the systematic decrease of the front interface resistance
with ~e for all values of the capillary number, which we call the
“lubrication effect.”
Finally, Fig. S6 shows the variation of the total interfacial

resistance Ri =Rf
i +Rr

i of the first plug (dashed curve) and the
following plugs (full lines) as a function of the capillary number
Ca and the relative thickness of the liquid film ~e. A monotonic
decrease of the interfacial resistance is observed when the cap-
illary number increases for all values of ~e between 10−1 and 10−5,
as well as for the dry substrate (~e= 0).

Physical Origin of the Cascade. Initially, a train of plugs is created by
alternately pushing some air and some liquid in aY-junction with
low input pressure. The initial state therefore is a set of N plugs
separated by air bubbles coated by a thin layer of liquid, with dry
substrate ahead of the first plug. When a large pressure head ΔP
is applied at the beginning of an experiment, all the liquid plugs
leave a larger amount of liquid on the walls than what they may
recover from the liquid film ahead of them. The amount of liquid
left indeed increases with the capillary number, according to
Eq. S4. This leads to a decrease in the plugs’ length, Eq. S3, and
thus of the viscous resistance, Eq. S17. Because ΔP=RV and
the pressure head is constant, this resistance decrease induces
an increase in the plug velocity. In turn, this velocity increase
is exacerbated by the decrease in the interface resistance
Ri =Rf

i +Rr
i (Fig. S6). Another phenomenon contributing to the

reduction of the front interface resistance is the lubrication ef-
fect generated by the interplug liquid film. As its thickness in-
creases with the plug velocity, a further reduction in the front
interface resistance results (Fig. S5).
Finally, each plug rupture provokes a brutal decrease in the in-

terfacial resistance due to the reduction in the number of interfaces,
which locally thickens the prewetting film. This leads to a large
acceleration of the plugs and thus to more and more plug ruptures.

Computation. The system of equations has been solved using an
event-driven code: Between two plug ruptures, the system is
solved by a finite difference method. Each time a rupture takes
place, the interfacial resistance is updated. Owing to the large
increase in the plug velocities, mesh refinement was performed to
determine the time step between two computations and to
maintain accuracy.

Input Parameters. Table S1 summarizes the parameters used in our
simulations. Using the value of the capillary number shown in Fig.
S4 for the capillary number, which corresponds to a maximum
velocity of V ’ 4× 10−2 m/s, we obtain the estimates quoted in
Table S2 for the dimensionless parameters of the problem.
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Fig. S1. Dynamics of a set of polydisperse plugs pushed at constant pressure head 4.8 kPa. (A and B) Plug positions as functions of time, experimental and
simulated, respectively. The variation in the capillary number with time is given to the right of A, where the gray dashed line indicates the time when several
plugs break almost simultaneously.
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Fig. S2. Influence of bifurcations on the fluid redistribution in the network. (A and B) Two sequences show the evolution of plugs inside the last five gen-
erations of the network driven at a pressure head of 3.5 kPa with slightly different timing. In A, the liquid plug in the first generation divides before the
cascade takes place; thus, only one of the daughter plugs is broken while the adjacent path is reinforced by the other daughter. In B, the plug ruptures before
the bifurcation and the adjacent path remains weakened. The time separating the two images is 14 ms.
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Fig. S3. Sketch of the problem, showing plug k surrounded by plugs k− 1 and k+ 1. Liquid is shown in white and air in gray. The moving plugs (velocity
Vk =dxk=dt) leave a film behind them thicker than the film they encounter in front. The cross-sectional area open to air behind plug k (Srk) therefore may be
different from the air surface in front (Sfk). The wetting liquid forms menisci of radius er at the rear and ef at the front.
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Fig. S4. Evolution of the capillary number μVk=σ associated with the rear interface of 10 plugs pushed at a constant pressure head 4.8 kPa. Each dashed line
corresponds to the capillary number of a given plug k, and the plain line corresponds to the capillary averaged over all the plugs. This figure corresponds to Fig.
3 in the main text.

Fig. S5. Evolution of the front interface resistance of a plug moving in a prewetted channel as a function of the capillary number Ca for different values of the
relative thickness of the macroscopic film preceding the plug ~e. The squares correspond to solutions of the exact (Eq. S16) and the lines to its lowest-order
expansion (Eq. S20).
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Fig. S6. Interfacial resistance Ri =Rf
i +Rr

i of a single plug as a function of the capillary number Ca, moving on a substrate either dry (dashed line) or prewetted
by a macroscopic film for different relative thicknesses ~e (solid lines).

Table S1. Value of parameters used in our simulations

Parameter Symbol Value Unit

Channel width w 700 μm
Channel height h 55 μm
Surface tension σ 19:3× 10−3 N/m
Viscosity μ 5:1× 10−3 kg/m·s2

Density ρ 2× 103 kg/m3

Table S2. Value of dimensionless parameters in the problem

Number Formula Maximum value

Re ρV ℓ=μ 10
Ca μV=σ 10−2

We ρV2ℓ=σ 10−1

Bo ρgh2=σ 0.2

Movie S1. Evolution of a single plug of initial length L0 = 740 μm pushed at constant pressure head 2 kPa. Time is slowed by a factor of 250. This movie
illustrates Fig. 1 in the main text.

Movie S1

Movie S2. Dynamics of a set of equally spaced monodisperse plugs. The initial length of the plugs is Lk;0 = 780 μm, and the distance separating two adjacent
plugs is dk ’ 2 mm. The whole train is pushed at constant pressure head 2.0 kPa. Time is slowed by a factor of 10. This movie illustrates Fig. 2 in the main text.

Movie S2
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Movie S3. Dynamics of a set of polydisperse plugs pushed at constant pressure head 4.8 kPa. Time is slowed by a factor of 10. This movie illustrates Fig. 3 in
the main text.

Movie S3

Movie S4. Dynamics of an initial set of liquid plugs pushed at a constant pressure head ΔP = 3:5 kPa in a six-generation bifurcating network. Time is slowed by
a factor of 10. This movie illustrates Fig. 5 in the main text.

Movie S4

Baudoin et al. www.pnas.org/cgi/content/short/1211706110 7 of 7

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211706110/-/DCSupplemental/sm03.avi
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211706110/-/DCSupplemental/sm04.avi
www.pnas.org/cgi/content/short/1211706110

