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We consider the motion of a finger of low-viscosity fluid as it propagates into a
branching network of fluid-filled microchannels – a scenario that arises in many appli-
cations, such as microfluidics, biofluid mechanics (e.g. pulmonary airway reopening)
and the flow in porous media. We perform experiments to investigate the behaviour of
the finger as it reaches a single bifurcation and determine under what conditions the
finger branches symmetrically. We find that if the daughter tubes have open ends, the
finger branches asymmetrically and will therefore tend to reopen a single path through
the branching network. Conversely, if the daughter tubes terminate in elastic chambers,
which provide a lumped representation of the airway wall elasticity in the airway
reopening problem, the branching is found to be symmetric for sufficiently small
propagation speeds. A mathematical model is developed to explain the experimentally
observed behaviour.

1. Introduction
Flows in which a finger of low-viscosity fluid propagates into a tube and displaces

another fluid of larger viscosity are of relevance in many applications, such as oil
extraction (Homsy 1987), microfluidic devices for droplet transport (Link et al. 2004)
and pulmonary biomechanics (Gaver, Samsel & Solway 1990).

For instance, many respiratory diseases, such as respiratory distress syndrome, may
cause the occlusion of the pulmonary airways with viscous fluid. Occluded airways
are believed to be reopened by a propagating air finger, in a process that involves a
complicated interaction between a viscous free-surface flow and the deformation of
the elastic airway wall. The mechanics of airway reopening in an individual airway
have been investigated by many authors (e.g. Gaver et al. 1990; Hazel & Heil 2003),
but these studies ignore the fact that the pulmonary airways branch frequently.
This raises the question of whether the propagating air finger will reopen the entire
pulmonary tree or simply follow a single path, keeping most of the lung occluded.
(Cassidy, Gavriely & Grotberg (2001) performed experiments to determine how short
liquid plugs propagate through rigid bifurcations.) The question is also of relevance in
‘gas embolotherapy’, a novel technique aimed at starving tumour cells of their blood
supply (see Calderon & Bull 2004).

Similar questions arise in microfluidic technology. Many microfluidic devices are
designed to transport samples of fluid through complicated networks of channels in
order to perform chemical or bio-chemical tests (Song, Tice & Ismagilov 2003).
The use of drops as vehicles for the transport offers many advantages, such as
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Figure 1. (a) Model problem: low-viscosity fluid is injected into a branching tube. The
propagating fingers displace some of the more viscous fluid that initially filled the tube; the
remaining viscous fluid is deposited on the tube walls. The two daughter tubes are terminated
by large elastic chambers. (b) Sketch of the experimental set-up (not to scale). The total volume
of fluid contained in the channel is approximately 0.5 µl while the volume in the end chambers
is approximately 50 µl.

the control of dispersion and wall contact, as well as the possibility of activating
chemical reactions at controlled locations, e.g. through droplet merging. Other uses
of bubbles and drops in microfluidics include the production of controlled micro-
emulsions through the breakup of long bubbles as they advance through a branching
network of microchannels (Link et al. 2004). It is therefore important to understand
the dynamics of the drop transport in order to predict the path and the breakup of
individual drops.

Here, we study these questions at the level of a single bifurcation and consider
the model problem shown in figure 1(a). A finger of low-viscosity fluid propagates
along a parent tube which branches into two daughter tubes which have identical
cross-sections. The finger is driven by the injection of fluid at a constant flow rate, Q,
and displaces a viscous fluid of viscosity µ which is much larger than the viscosity of
the finger. We denote the surface tension between the two fluids by σ . The daughter
tubes terminate in two large elastic chambers which provide a lumped representation
of the wall elasticity in the pulmonary airways. We wish to establish the conditions
under which the finger continues to propagate symmetrically along the two daughter
tubes once it has passed the bifurcation.

2. Experimental set-up
We performed experiments using the set-up sketched in figure 1(b). A Y-shaped

channel of rectangular cross-section (W × H =200µm × 100 µm) was fabricated using
standard microfluidic soft lithography methods (Quake & Scherer 2000). A mould
was made by etching a 100 µm layer of photoresist on the surface of a silicon wafer.
The mould was then covered with a thick layer of liquid poly(dimethylsiloxane)
(PDMS) which was allowed to solidify before we created cylindrical chambers at
the ends of the three branches: a thin hole at the end of the parent branch for
the fluid injection, and two larger end chambers (holes with 1.6 mm radii) at the
ends of the two daughter channels. The large end chambers were sealed with thin
elastic membranes of thickness h = 50 µm, also made of PDMS (Young’s modulus
E � 9 × 105 N m−2 and Poisson’s ratio ν = 0.5). Finally, the PDMS block was bonded
onto a glass microscope slide.
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Figure 2. Snapshot of the branching finger. The positions of the two tips are recorded over
a sequence of successive images, allowing the velocity of the fingers to be determined.

The experiments were conducted by first filling the channels with silicone oil
(viscosity µ = 100 cP) until the end membranes were taut. PDMS is permeable to
gas, therefore the air that initially filled the channels could escape through the thin
membranes when the silicone oil was injected. After the membranes were slightly pre-
stretched, a finger of perfluorodecalin (PFD; viscosity µPFD = 2.9 cP) was injected.
This was done using a syringe pump with a 100 µl glass syringe, at flow rates in
the range 1–60 nl s−1, resulting in finger velocities of 50–3000 µms−1 in the main
branch. The choice of fluids was guided by the requirements that the two fluids be
incompressible and immiscible, and that they wet the PDMS and the glass surfaces.
The surface tension between the two fluids is approximately σ = 50 mN m−1.

Image sequences of the advancing fingers were taken through a stereo-microscope
at × 7.11 magnification, using a digital camera at 2000 × 2000 pixel resolution. A
typical image is shown in figure 2. We tracked the position of the advancing fingers
in the two daughter tubes over a sequence of images to determine the speed of the
two finger tips.

3. Experimental results
Figure 3 shows the evolution of the finger velocities in the two daughter tubes

for fingers that are driven by the injection of fluid at two different flow rates. At
low flow rates the fingers propagate at approximately the same speed, resulting in
an approximately symmetric branching pattern. Conversely, at higher flow rates, any
small initial difference in the finger speeds increases rapidly as the fingers propagate
into the daughter tubes, resulting in strongly asymmetric branching. We observe
that in both cases the sum of the two finger speeds remains constant within experi-
mental error. Experiments conducted in open-ended channels, i.e. without the elastic
membranes, always displayed strongly asymmetric propagation, regardless of the
driving flow rate. Finally, we note that the initial filling of the viscous oil into an
air-filled channel always occurred in a symmetric manner, both with and without the
elastic membranes. This is consistent with the experiments of Cassidy et al. (2001) who
found that finite-length plugs of oil branched symmetrically when flowing through a
symmetric air-filled bifurcation.
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Figure 3. Time series of the velocity of the advancing fingers in channels 1 (�) and 2 (×) as a
function of time, for two different forcing flow rates. The sum of the two velocities (*) remains
approximately constant.

0 0.2 0.4 0.6 0.8 1.0

0

150

300

450

U
1 

– 
U

2 
(µ

m
 s

–1
)

Normalized time, tUp/2Lc

61.78 µm s–1

107.3
125.0
252.6
478.8
606.7
767.8
941.6
1881

‘Asymmetric’

‘Symmetric’

‘Asymmetric’

‘Symmetric’

Velocity in parent branch, Up

Figure 4. Evolution of the velocity difference for the fingers in the two daughter branches.
At low flow rates, the velocity differences remain constant. When the velocity in the parent
branch exceeds a threshold, the difference in the velocities increases rapidly. We refer to the
two regimes as ‘symmetric’ and ‘asymmetric’, respectively.

Results for channels with elastic chambers are presented in figure 4 where the
symmetry of the branching is characterized by plotting the difference between the
finger velocities as a function of the ‘normalized distance’ tUp/2Lc, where Lc = 1.7 cm
is the length of the daugther channels. This ordinate facilitates a direct comparison
between the different experiments whose duration varies significantly.

At small flow rates, the difference in finger speeds remains approximately constant.
When the velocity in the parent channel becomes larger than a threshold, the velocity
difference increases rapidly as the fingers propagate along the daughter branches – the
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experiment ends when the ‘faster’ finger reaches the downstream end of its daughter
tube. For a given microchannel, the faster finger is always associated with the same
branch, suggesting that small imperfections in the fabrication process produce the
initial perturbation. These initial perturbations are strongly amplified at high flow
rates but remain almost constant if the flow rate is below a threshold. For simplicity,
we will refer to the two regimes as ‘asymmetric’ and ‘symmetric’, respectively.

The signature of the asymmetric regime is also observed when the low-viscosity
finger is not continuous, but made up of discrete drops. These drops may be produced
by a splitting of the PFD finger at the entrance of the microchannel, for example if the
connecting tube is lined with silicone oil. As the train of drops reaches the bifurcation,
each is split into two ‘daughter droplets’ which travel down the daughter channels.
The length ratio of the two daughter drops depends on the relative velocity in the two
branches. In the symmetric case, the size ratio remains constant as successive drops
arrive at the bifurcation, indicating a constant velocity difference. In the asymmetric
case, the velocity difference increases and so does the length ratio of the divided
daughter drops. This ratio may eventually diverge as the fast finger approaches the
end of the channel and the flow in the other branch slows to a halt.

4. Analysis
We will now develop a simple mathematical model to explain the experimental

observations. Since the finger is driven by the injection of fluid at a constant flow rate
Q, the pressure, pdr (t), required to drive the finger at this rate varies with time. We
denote the lengths of the fluid-filled parts of the daughter tubes ahead of the finger tips
by Li(t) (i = 1, 2) and assume that the daughter tubes have the same cross-sectional
area, A.

As the fingers propagate, they displace most of the viscous fluid that initially filled
the tube; far behind the finger tips, a thin stationary film of the more viscous fluid is
deposited on the tube walls (see Taylor 1961). We denote the flow rate in daughter
tube i by Qi = Ui Ai , where Ai is the cross-sectional area occupied by the finger
which propagates with speed Ui . In the absence of inertial and gravitational effects,
a reasonable approximation for microfluidic devices, we have Ai = A α(Ui), where
the function α(Ui) has been determined for many tube shapes (e.g. Bretherton (1961)
and Reinelt & Saffman (1985) for circular tubes; Wong, Radke & Morris (1995)
for polygonal tubes; and Hazel & Heil (2002) for tubes of elliptical and rectangular
cross-section – we will refer to these references collectively as ‘R’). Conservation of
mass requires that Q1 + Q2 = Q.

In each of the daughter tubes, the pressure drop across the occluded section has
three components: (i) the Poiseuille pressure drop ahead of the finger tip, �ppois =
µRLi(t)Qi(t), where the flow resistance R depends on the tube’s cross-section. For
instance, for a circular tube of radius a, we have R = 8/(πa4); values for other
cross-sections can be found in the literature (e.g. White 1991); (ii) the pressure drop
across the curved tip of the finger, �ptip = C(Ui), where the function C(Ui) for many
tube shapes is available from the references R (we note that �ptip includes capillary
and viscous contributions); (iii) the pressure pelast in the chambers at the end of the
daughter tubes. Provided the membranes that close the (otherwise rigid) chambers
are elastic, pelast depends only on the chambers’ instantaneous volume and we assume
that pelast i(t) = k

∫ t

0
Qi(τ ) dτ + p0i , where k is a constant and p0i is the pressure in

chamber i at time t = 0.
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Assuming that the viscous pressure drop in the fingers can be neglected, the fingers
in both daughter tubes are subject to the same driving pressure pdr (t), and we have

pdr (t) = C(Ui) + µRLi(t)Qi(t) + k

∫ t

0

Qi(τ ) dτ + p0i for i = 1, 2, (4.1)

where Qi(t) = AUi(t)α(Ui(t)). Differentiating the two equations in (4.1) with respect
to t yields

dpdr (t)

dt
=

dUi(t)

dt

dC(U )

dU

∣∣∣∣
U=Ui (t)

+ kAα(Ui(t))Ui(t) + µAR
(

dLi(t)

dt
α(Ui(t))Ui(t)

+ Li(t)
dUi(t)

dt

dα(U )

dU

∣∣∣∣
U=Ui (t)

Ui(t) + Li(t) α(Ui(t))
dUi(t)

dt

)
for i = 1, 2.

Together with the two equations Ui = −dLi/dt (for i=1, 2), this provides a system
of four ordinary differential equations, augmented by the algebraic constraint
U1(t)α(U1(t)) + U2(t)α(U2(t)) = Q/A. Thus, we have five equations for the five
unknowns pdr , U1, U2, L1 and L2. If p01 = p02, these equations admit the symmetric
solution Li(t) = l0 − Ut , where the finger velocity Ui = U in both daughter tubes is
given implicitly by

Uα(U) =
1

2

Q

A
. (4.2)

We determine the stability of this solution by writing the velocities as Ui(t) = U+εÛi(t),
where ε � 1, with similar expansion for all other quantities. A straightforward linear

stability analysis then yields the relations L̂1(t) + L̂2(t) = 0 and dp̂dr/dt = 0 for the
perturbed quantities. The velocity perturbations are governed by∫ Ûi (t)

Ûi (t=0)

du

u
=

∫ t

0

UF(U)

G(U, τ )
dτ, (4.3)

where

G(U, t) = (l0 − Ut)

(
α(U) +

dα(U )

dU

∣∣∣∣
U

U
)

+
1

µRA

dC(U )

dU

∣∣∣∣
U

(4.4)

and

F(U) = α(U)

(
2 − k

µUR

)
+ Udα(U )

dU

∣∣∣∣
U

(
1 − k

µUR

)
. (4.5)

If the right-hand side of (4.3) is negative, the perturbation velocities Ûi decay, indic-
ating that the symmetrically branching solution is stable. To analyse equation (4.3),
we first consider the simplifications α ≡ 1 (ignoring the presence of the fluid film that
the advancing fingers deposit on the channel walls) and C ≡ 0 (ignoring the pressure
jump over the air–liquid interface). In this case, (4.3) simplifies to∫ Ûi (t)

Ûi (t=0)

du

u
=

∫ t

0

2U − k/(µR)

l0 − Uτ
dτ. (4.6)

The denominator of the integrand on the right-hand side represents the instantaneous
length of the fluid-filled part of the daughter tubes and is therefore always positive.
Perturbations to the symmetrically branching finger will therefore grow if U exceeds
the critical value Uc = k/(2µR). Hence at small velocities, when the flow resistance is
dominated by the vessel stiffness, the finger will branch symmetrically. Conversely, at
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Figure 5. The fraction α of the tube’s cross-section that is occupied by the propagating finger
as a function of the capillary number Ca = µU/σ for tubes with square cross-sections. Results
for tubes of rectangular, circular and elliptical cross-sections are qualitatively similar.

large finger velocities, the resistance to the flow is dominated by the viscous losses
and the propagating finger will tend to open a single path through the branching
network.

Without the approximations used in the derivation of (4.6), we must determine the
signs of various terms in (4.4) and (4.5). References R show that dC(U )/dU > 0 and,
using Hazel & Heil’s (2002) computational results, we find that α + U (dα/dU )|U > 0
(see figure 5 for the case of tubes with square cross-section; the curves for tubes
with rectangular, circular and elliptical cross sections are qualitatively similar). Hence
G(U, t) > 0, implying that the growth or decay of the perturbations is determined by
the sign of F which we rewrite in non-dimensional form as

F(Ca) = α(Ca)

(
2 − K

Ca

)
+ Ca

dα(Ca)

dCa

(
1 − K

Ca

)
. (4.7)

Here, Ca = µU/σ is the capillary number based on the propagation speed of the
symmetrically propagating fingers and the dimensionless parameter K = k/(Rσ ) is a
measure of the stiffness of the elastic end chambers.

Figure 6 shows plots of F(Ca) for square tubes and for a range of values of the
parameter K. Also shown (as dashed lines) are the approximations F(Ca) ≈ 2 −
K/Ca which correspond to the simplifications α ≡ 1 and C ≡ 0 used in the derivation
of (4.6). Figure 6 shows that the critical velocity Uc obtained from the approximate
analysis provides an excellent prediction for critical velocity at which the symmetrically
branching solution becomes unstable. This is because the capillary pressure jump
affects only the magnitude of the growth rate, but not its sign, therefore setting C ≡ 0
does not affect the prediction for Uc. Furthermore, at small capillary number, the
thickness of the fluid film that the propagating finger deposits on the channel walls
is small, therefore the approximation α ≡ 1 becomes more accurate as the capillary
number is reduced. This explains why the discrepancy between the exact and the
approximate solutions for Uc decreases with Ca. Both analyses show that if k = 0,
corresponding to the case when the end chambers are open to the atmosphere and
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Figure 6. The function F(Ca) for tubes of square cross-section, plotted for various values of
the stiffness parameter K. If F < 0 (> 0), the finger branches symmetrically (asymmetrically).
The dashed lines represent the approximation F = 2 − K/Ca which provides excellent
predictions for F(Ca) = 0. Results for tubes of rectangular, circular and elliptical cross-sections
are qualitatively similar.

offer no resistance to the flow, we have F > 0, implying that the finger will branch
asymmetrically.

5. Comparing theory and experiment
To compare theory and experiment, we must estimate the (volumetric) stiffness

k of the end chambers. As discussed in § 2, the end chambers are circular holes
of radius a = 1.6 mm which are sealed with elastic membranes. Before the start of
the experiment, the membranes were pre-stretched by injecting silicone oil until
their centres were deflected outwards by approximately ŵ ≈ 400 µm. Eschenauer &
Schnell’s (1986) large-displacement analysis of pressure-loaded circular membranes
provides the relation between the chamber pressure and the membrane’s maximum
deflection, pelast(ŵ), and the corresponding chamber volume, V (ŵ). Using these results
we obtain the volumetric stiffness

k =
dpelast

dŵ

(
dV

dŵ

)−1

=
6Eh3

πa6

(
(23 − 9ν)

7(1 − ν)

(
ŵ

h

)2

+
8

3(1 − ν2)

)
, (5.1)

which has a strong nonlinear dependence on ŵ. The volume of PFD injected during
the actual experiment is small relative to the total volume of the pressure chambers.
Therefore, the injection of the PFD finger causes only small additional deflections and
k can be expected to remain approximately constant throughout the experiment. The
flow resistance R of a rectangular channel of width W and aspect ratio 2:1 is given
by R = 139.93/W 4 (see White 1991). Using the estimates for the physical parameters
given in § 2, we obtain K = k/(Rσ ) ≈ 1.0 × 10−3, indicating that the transition to non-
axisymmetric branching should occur at a capillary number of Ca ≈ K/2 = 5.0 × 10−4.
This compares favourably with the experimental data of figure 4 which shows that
the transition between symmetric and asymmetric branching occurs for a finger
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velocity (in the parent branch) of U ≈ 2U between 478 µms−1 and 606 µm s−1. This
corresponds to capillary numbers (based on the velocities in the daughter branches)
between Ca =µU/σ = 4.78 × 10−4 and 6.06 × 10−4.

6. Discussion
We have studied the propagation of low-viscosity fingers in a fluid-filled branching

network of microchannels and have analysed the behaviour of the finger as it
passes a single bifurcation. The behaviour was shown to depend mainly on the
relative importance of viscous and elastic forces, characterized by the dimensionless
parameter λ= k/(2µUR). Viscous effects dominate if the finger velocity and/or the
viscous flow resistance are large, so that λ< 1. In this regime, the finger branches
asymmetrically and will tend to open a single path through the network. This is
because any perturbation that increases the length of one air finger relative to the
length of the other, reduces the viscous flow resistance offered by the column of
viscous fluid ahead of the finger tip. This causes the velocity of the longer finger to
increase, enhancing the initial difference in finger length even further. We note that
the ‘inverse’ of this mechanism is responsible for the symmetric propagation of the
oil fingers that displace the air that initially fills the channel when the experiment is
first set up. If a small local imperfection in the channel geometry momentarily allows
one of the oil fingers to propagate slightly faster than the other, the resulting increase
in the finger length increases the flow resistance and causes the finger to slow down,
allowing the other finger to catch up.

Conversely, if the air finger propagates sufficiently slowly and/or if the stiffness
of the end chambers is sufficiently large so that λ> 1, the finger tends to branch
symmetrically. This is because the slightly stronger inflation of the elastic end chamber
that is connected to the branch conveying the longer finger, creates a strong restoring
pressure which reduces the finger velocity until the volumes of both end chambers
are approximately equal again.

In the context of the pulmonary airway reopening problem, our results suggest that
the reopening of occluded airways should be performed at small speeds to encourage
symmetric branching of the air finger as it propagates into the bronchial tree, though
it is important to re-iterate that our model provides an extreme simplification of the
conditions in the pulmonary airways. For instance, our model is based on a highly
idealized geometry; our lumped representation of the wall elasticity ignores the fact
that the wall deformation interacts with the fluid flow near the finger tip. Furthermore,
while symmetric branching of the propagating air finger is clearly desirable, any
attempt to optimize airway reopening procedures will be subject to many additional,
and possibly conflicting, constraints. For instance, Bilek, Dee & Gaver (2003) showed
that airway reopening at small flow rates may result in cellular damage owing to
an increase in the stresses on the airway wall. Finally, we assumed the finger to be
driven by an imposed flow rate rather than a controlled driving pressure. In § 4, we
showed that dp̂dr/dt = 0, implying that there is no difference between the two cases,
within the framework of a linear stability analysis. However, nonlinear effects are
likely to become important when the deviations in the finger velocities become large.
It is therefore conceivable that changes to the driving mechanism could affect the
behaviour of the asymmetrically branching solution (see e.g. Halpern et al. 2005).

As for microfluidic flows, the results suggest that some limitations exist on the
ability to fill a network of channels evenly or to divide drops. For this reason, it will
be important to explore ways of stabilizing the symmetric branching in lab-on-a-chip
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applications, for example, by introducing an increased resistance to the flow as the
finger advances, through the use of elastic forces.
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