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Abstract

We consider the interaction between a liquid drop and a flexible membrane, a fluid–structure problem where

capillarity is the dominant fluid contribution. Recent work has shown that surface tension may be used to bend an

elastic membrane if the typical scale of the membrane is above a critical length. Here, we discuss some more detailed

experimental measurements that demonstrate the switching between different modes of folding as well as a dewetting

transition during the folding of the membrane. A model is then developed, based on an energy approach, and shown to

account for all of the observed phenomena. Contrary to more refined modelling, the minimal model may be extended to

more complex cases with little extra work, making it useful for complex geometries or in order to include further

physical ingredients.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Interactions between elasticity and capillary forces play a dominant role in many biological situations when liquid

drops come in contact with soft tissue. In the human lung for example, the presence of liquid may cause the airway to

collapse under the action of capillary pressure (Halpern and Grotberg, 1992; Heil, 1999). Capillary forces are also used

by some fungi to store elastic energy which then serves to eject the spores (Ingold, 1971). In micro- and nano-

technologies, the increasing role of surface tension as the length scales decrease can lead to unwanted phenomena, such

as the stiction of MEMS structures or nano-tube carpets (Mastrangelo and Hsu, 1993; Lau et al., 2003; Raccurt et al.,

2004).

Alternatively, the folding of two-dimensional mechanical structures by action of surface tension has recently been

suggested as a method to produce three-dimensional micro- and nano-devices (Leong et al., 2006; Py et al., 2007).

Indeed, the fabrication of three-dimensional micro-structures presents major challenges to the MEMS industry since

most micro-fabrication processes rely on surface deposition and etching of a substrate, processes which can only lead to

the stacking up of layers. The fabrication of truly three-dimensional shapes such as hollow tubes or spheres remains a

challenge (Madou, 2002).

One approach which has recently been gaining popularity is to fold a two-dimensional structure into a three-

dimensional object. This technique, referred to as micro-origami, can rely on a variety of approaches to fold the solid
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substrate. One approach is to use multiple solid layers and to actuate surface stresses with optical or chemical

techniques [see for example Smela et al. (1995); Ocampo et al. (2003)], while others have relied on the surface tension of

solder to position independent blocks of metal, and then hold them once solidified (Syms et al., 2003; van Honschoten

et al., 2009).

In the case of elastic 2-D sheets, recent experiments have shown that the competition between surface tension and

elasticity can turn in favour of surface tension at small scales (Py et al., 2007). Indeed, a drop of water that is deposited

on a thin flexible membrane was shown to produce large deformations in the membrane, sometimes leading to complete

encapsulation of the liquid by the solid. Different initial shapes of the flat membrane were shown to produce different

final configurations, providing the ability to design a priori the final shape of the encapsulated liquid by cutting the

membrane accordingly.

The wrapping of the drop by the membrane is only possible, however, if the energy gained from reducing the liquid–

air surface area is larger than the energy cost of bending the elastic membrane. An order-of-magnitude scaling analysis

may be used to demonstrate the existence of an elasto-capillary length LEC ¼ ½Eh3=12ð1�n2Þg�1=2, which depends on the

physical properties (Young’s modulus E, Poisson’s ratio n) and geometry of the membrane (thickness h), as well as on

the surface tension of the liquid that is used ðgÞ. It was observed that the encapsulation could only occur if the typical

dimension of the membrane was a few times LEC .

Going beyond the scaling analysis is no simple matter; while it may be useful to have a coupled fluid–structure model

which accounts for the large deformations, another approach is to develop a highly simplified description which can be

solved by hand, in order to give the general trends without any computations. Indeed, we show below that a minimal

model, which takes into consideration the most basic phenomena, can recover the results of the 2-D numerical

simulations of Py et al. (2007). In addition to this, we show how it can be extended to more complex questions that arise

in the experiments for which the numerical model would need to be greatly complicated.

We begin, in Section 2, by describing some new experimental observations. This is followed, in Section 3, by the

model based on an energy approach which is then compared with the experimental observations of the present work

and of Py et al. (2007).
2. New experimental observations

Two phenomena appear in the experiments that we describe below, in addition to the observations of Py et al. (2007):

mode switching and dewetting.

The experiments were conducted by depositing a water drop on top of a thin membrane, which was made by spin-

coating a layer of poly-dimethylsiloxane (PDMS) on a glass slide and manually cutting it out after curing. The final

membrane was cut into a square, of a few mm in size and ranging in thickness between 40 and 80 mm. The membrane

was placed on a rough, low-energy, surface in order to prevent adhesion with the substrate and to facilitate the drop

manipulation. The water drop was then deposited using a micro-pipette and allowed to evaporate over the course of a

few minutes, while a time lapse image sequence was acquired through a microscope. This yielded a history of the folding

process.

Two simultaneous views were obtained at each image, as shown in Fig. 1, by placing a mirror at 45� next to the

drop–membrane pair. The image of the drop on the bottom of the figure corresponds to the direct view through the

microscope looking vertically down, while the image on the top is the reflection through the mirror. In this way,

quantitative measurements were possible on two projection planes.

2.1. Mode switching

When the drop is first deposited on the membrane, the four corners of the square are lifted and pulled towards the

centre of the drop, corresponding to the image in Fig. 1. In this configuration, the drop shape is closely approximated as

a spherical cap, while the membrane displays an evenly distributed curvature, as seen by the gentle curve of the

membrane edge on the mirror view.

The folding process is shown in Fig. 2. As the liquid begins to evaporate, the four corners are pulled towards the

centre of the drop, keeping the square (mode IV) shape. However, this four-fold symmetry is eventually broken and

the membrane relaxes to a mode II pattern where the corners are drawn together in pairs. The switching step between

the two shapes happens faster than the frame rate that is used and is not resolved in our visualizations. In this mode II

configuration, the system folds along a line parallel to two of the sides, with the curvature remaining well distributed in

all regions of the membrane. The final shape, after the water has largely evaporated, is that of a tube with nearly
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Image in mirror

Direct view

Fig. 1. Experimental image taken through the microscope. The drop–membrane is seen vertically on the bottom image, while a mirror

provides a simultaneous side view. The granular texture below the drop is due to the super-hydrophobic surface. The scale bar

represents 1mm.

Mode IV Mode II

Fig. 2. The folding process of a drop on a square membrane, seen from above (top). Folding starts inmode IV, where the four corners

bend, and ends in mode II (bottom).
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constant cross-section. Note that the switching to a mode II that folds along the diagonal is possible if two diagonally

opposed corners are rounded.

The evolution from a mode IV to II folding pattern can be quantified by following the four corners of the square

during the drying up process. This is shown in Fig. 3(a) where the position of each of the corners is marked during the

initial stages of the folding, until the onset of the mode switching. On this figure, the evolution from a square to a

diamond shape is shown by graphically connecting the corners of the membrane at three successive characteristic times.

The departure of the shape from a square is quantified by calculating the squareness Sq¼ 4A1=2=L, where A is the area

enclosed between the four corners and L the perimeter of the four sided polygon defined by the corners (Fig. 3(b)). This

ratio is equal to unity for a perfect square and should decrease from this value as the shape changes.

The switching away from mode IV can be observed in Fig. 3(b), where we have plotted the evolution of SqðtÞ for two

different experiments involving different membranes. We observe that the switching occurs abruptly after a long period
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Fig. 3. (a) The position of the four corners at successive times and (b) evolution of the squareness ratio of Sq¼ 4A1=2=L as the drop

volume decreases with evaporation.
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during which the ratio remains near 1. The later evolution of Sq cannot be followed since the membrane changes

orientation and some of the corners get masked. However, this mode switching happens for all the square membranes,

as well as with other shapes which begin with a mode IV symmetry, such as a four-petal flower.

2.2. Non-encapsulation through dewetting

When the membrane’s characteristic length is smaller than LEC , the membrane will never fully encapsulate the drop,

as noted in Py et al. (2007). In this case, the evaporation process will generally lead to a thin film of liquid covering the

membrane, which is almost flat, before this film fully evaporates.

A different mode of non-encapsulation may also occur when the liquid initially fails to fully reach the four corners

and the likelihood of this situation increases as the membrane thickness increases. To understand this, recall that the

total curvature on the drop surface, defined as the sum of the two principal curvatures k¼ k1 þ k2, must be uniform for

the Laplace pressures to be balanced in the liquid. This requires that one principal curvature must decrease if the other

principal curvature increases, in order to maintain an invariant total. However, a corner presents a singular point which

requires infinite curvature in the plane of the membrane and this would have to be balanced by infinite negative

curvature in the normal direction. This is achieved, in the case of a flexible membrane, by folding the membrane onto

the drop, thus yielding very high curvature near the contact point. However, stiff membranes will fail to bend

sufficiently and the corners of thick membranes may remain dry.

Fig. 4 shows the evaporation of such a drop. Rather than the standard process described in Py et al. (2007), this

situation leads to progressive dewetting of the membrane which starts at the top left corner (which was imperfectly

wetted) and eventually leaves a curved drop sitting on top of an almost flat membrane.
3. Energy criteria

3.1. Two-dimensional model

We now propose a simple model for estimating the domain of possible capillary wrapping. Three distinct states are

found when evaporating a drop on a flexible membrane: either a wrapped state, denoted by W ; a flat state denoted by F ;

or a dewetted state, denoted by D. These three states are illustrated in Fig. 5 in a simplified two-dimensional framework.

They correspond to the same volume of fluid and we assume that the state that will be observed is that of minimum total

energy. The volume of fluid we consider, S, is such that there is no free liquid–air surface in the wrapped state, as shown in
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Fig. 4. A drop going through a typical dewetting situation during dry-up, from top left to bottom right. Time between images is about

2min. The corners of the membrane are shown with black dots on the lower images, during the dewetting stage.

Membrane

Liquid

Substrate

Fig. 5. Possible 2-D states for a membrane with a liquid: (a) wrapped state, (b) flat state, and (c) dewetted state.
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Fig. 5(a). In that case we have a volume of fluid (actually a surface in this two-dimensional model), S¼L2=4p where L is

the length of the membrane.

The total energy E is given by the sum of the elastic bending energy, EB, the capillary energy, EC , and the gravity

potential energy EG. Note that we do not consider here the elastic energy associated with in-plane tension of the

membrane. This is justified by the length to thickness ratio of the membranes L=h, which is always larger than 10: since

the bending energy scales as ðL=hÞ3 while the in-plane tension energy scales as L=h, the latter may be neglected as long as

the loading of the membrane is not purely in plane.

These energies are approximated using a schematic shape of the membrane and of the fluid surface, both of which we

model as circular. The bending energy can be written as

EB ¼
1

2
L

B

R2
; ð1Þ
Please cite this article as: de Langre, E., et al., Energy criteria for elasto-capillary wrapping. Journal of Fluids and Structures (2010),

doi:10.1016/j.jfluidstructs.2009.10.004

dx.doi.org/10.1016/j.jfluidstructs.2009.10.004


ARTICLE IN PRESS
E. de Langre et al. / Journal of Fluids and Structures ] (]]]]) ]]]–]]]6
where B is the bending stiffness of the membrane and R is the radius of curvature. Let L0 be the length of the free surface

of the fluid. The capillary energy is

EC ¼L0g; ð2Þ

where g is the surface tension. Finally, the gravitational potential energy is

EG ¼ rSgz; ð3Þ

where r is the density of the fluid and z is the vertical position of the centre of mass of the fluid. The mass of the

membrane is neglected as being small compared to that of the fluid.

3.1.1. Wrapped state

In the wrapped state, Fig. 5(a), the area of free liquid surface is zero so that EC ¼ 0. Since the membrane is fully

wrapped its radius of curvature is such that 2pR¼L, so that EB ¼ 2Lp2B=L2. Finally the centre of mass is at z¼R. The

total energy can therefore be expressed as

EW ¼
1

2
L

4p2B

L2

� �
þ rgp

L3

8p2
: ð4Þ

3.1.2. Flat state

In the flat state depicted in Fig. 5(b), the membrane stores no bending energy so EB ¼ 0 and the length of free liquid

surface is such that it covers a volume equal to S over a distance L. Let r be the radius of curvature of the free liquid

surface and 2y the angle of the arc formed by this line. Then L¼ 2rsin y, L0 ¼ 2ry and S¼ r2ðy�sin y cos yÞ. Using the

condition that S¼L2=4p, eliminating r and y from these equations yields L0=L¼ aC1:0368. The position of the centre

of mass is also given by geometric considerations z=L¼ bC0:0474. The total energy in the flat state therefore reads

EF ¼Lagþ Lbrg
L2

4p
: ð5Þ

3.1.3. Dewetted state

Finally, in the dewetted state of Fig. 5(c), the geometry can be obtained from the known value of the receding contact

angle y. In that case the membrane is flat so that EB ¼ 0, while the length of free liquid surface is

L0

L
¼ a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðy�sin y cos yÞ

p
: ð6Þ

The position of the centre mass also depends on y and can be expressed as

z

L
¼ b0 ¼

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y�siny cos y
p

2 sin3 y
ðy�sin y cos yÞ

�cos y
� �

: ð7Þ

The total energy reads

ED ¼La0gþ Lb0rg
L2

4p
: ð8Þ

3.1.4. Dimensionless forms of the energies

These results may be put in dimensionless form by introducing two characteristic length scales: the elasto-capillary

length LEC ¼
ffiffiffiffiffiffiffiffi
B=g

p
and the traditional capillary length scale LC ¼

ffiffiffiffiffiffiffiffiffiffi
g=rg

p
. The total energy of the three states discussed

above is non-dimensionalized as E ¼ EL=B and yields

EW
¼ 2p2 þ

1

8p2
‘4l2; ð9Þ

EF ¼ a‘2 þ
b
4p
‘4l2; ð10Þ

and

ED ¼ a0‘2 þ
b0

4p
‘4l2; ð11Þ

where we have used ‘¼ L=LEC and l¼ LEC=LC ¼
ffiffiffiffiffiffiffiffiffi
Brg
p

=g, the latter being constant for a given membrane and fluid.
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3.1.5. Phase diagram

Fig. 6 displays the lowest energy configuration as a function of the dimensionless length of the membrane, ‘¼L=LEC ,

and of l¼LEC=LC . We observe that the wrapped state only appears for small l and large ‘, i.e. in a finite range of

membrane lengths for which the corresponding energy is less than that of both flat and dewetted states. This requires

that

2p2 þ
1

8p2
‘4l2oa‘2 þ

b
4p
‘4l2 ð12Þ

and

2p2 þ
1

8p2
‘4l2oa0‘2 þ

b0

4p
‘4l2: ð13Þ

In other words, the membrane needs to be long enough so that capillary effects are able to overcome bending rigidity

(‘ large), but short enough so that gravity does not flatten the drop or dominate over these capillary effects (l small).

The same graph also displays the domains of dewetting and flattening, calculated here for a typical value of the

contact angle of y¼ p=2. Dewetting is the only possible state for large and rigid membranes (large ‘ and large l) but it
occurs only in a very limited range of lengths in the case of small and flexible membranes.

Experimental data on the critical size for wrapping of squares may be compared to the present two-dimensional

model. Data for the minimal length for wrapping of squares are extracted from Fig. 3 of Py et al. (2007) and plotted as

the open squares in Fig. 6. This figure also shows the location of the dewetting case of Section 2.2 which corresponds to

that of Fig. 4, L¼ 2:7mm, LEC ¼ 0:8mm. Also shown by the thick dash is the limit between the flat and wrapped states,

as derived by Py et al. (2007) using a 2-D model without gravity effects and a full numerical solution of the

corresponding equilibrium equations.

3.2. Evolution to wrapping or non-wrapping

After having considered the possible final states of the drop–membrane system, we now model its evolution as the

volume of liquid diminishes, as in the experiments. We assume that both the membrane and the liquid free surface have

a constant uniform radius of curvature, consistent with our geometrical approximation of the final state. Let the state of

the system be defined by r1, r2, y1, and y2, as defined in Fig. 7. The radii of curvatures of the membrane and the liquid

free surface have both been scaled by the length LEC , and the angles y1, y2 are half the angles of the corresponding

circular arcs. Here, we assume that no dewetting occurs, so that

r1 sin y1 ¼ r2sin y2: ð14Þ
10-1 100
100

101

WRAPPED

FLAT

DEWETTED

DEWETTED

Fig. 6. Domains of wrapping, flattening and dewetting of a two-dimensional membrane in terms of dimensionless length ‘¼ L=LEC

and the dimensionless elasto-capillary length l¼ LEC=LC . Also shown (bold line) is the prediction of the limit between flat and

wrapped states by Py et al. (2007), neglecting gravity and dewetting effects. The open squares correspond to data from Py et al. (2007).

The filled square is a case of dewetting.
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Fig. 7. Left: Geometry of the bent membrane–drop system. Right: Evolution of distance d between tips as a function of the

dimensionless drop volume. Dashed line: ‘¼ 3, no wrapping. Solid line: ‘¼ 5, wrapping.
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The condition that the membrane length is constant over time implies

2r1y1 ¼ ‘; ð15Þ

and the dimensionless volume of liquid, s¼ S=L2
EC is

s¼ r21ðy1�sin y1cos y1Þ þ r22ðy2�sin y2 cos y2Þ: ð16Þ

Neglecting gravity effects, for the sake of simplicity, the dimensionless total energy reads

E ¼ ‘2

2r21
þ 2r2y2‘: ð17Þ

For a given drop volume s, the total energy of the system may be expressed as a function of only one parameter, for

example y1. Minimizing this energy with respect to y1 yields the equilibrium position. This is done numerically. The

distance that separates the membrane tips, d ¼ 2r1 sin y1, is shown in Fig. 7 for two values of ‘¼L=LEC , first ‘¼ 5

which leads to wrapping and then ‘¼ 3 which leads to a flat state. Note the close similarity with Fig. 4 in Py et al. (2007)

where the evolution is obtained from a solution of the nonlinear elastica equations. The corresponding evolutions of the

geometry is shown in Fig. 8.

3.3. Mode switching during the wrapping process

As described in Section 2.1, the wrapping of a square membrane starts through a mode IV bending of the membrane

and eventually switches to a mode II when the volume of liquid is further reduced (Fig. 2). We now propose a method to

analyse this mode switching.

In the case of mode IV wrapping, only a part of the membrane is deformed, the central region remaining flat as

sketched in Fig. 9(a). In order to keep the technical details simple, we reduce the wrapping of the triangular corners to a

two-dimensional problem, modelled as the bending of a thin sheet along one direction. The simplified system conserves

the amount area that is bent and the area that remains flat as sketched in Fig. 9(b) and (c). It only differs from the 2-D

model of the previous section by: (a) the presence of an undeformed central region of the membrane, making up half of

its width, and (b) deformed parts of width L=
ffiffiffi
2
p

instead of L in mode II bending.

For the sake of clarity in the comparison between the energy of the modes, we now use dimensional variables. For

mode II, the dimensional energy of a square membrane as described above reads

EII ¼
1

2
L2 B

R2
1

þ LL0g ð18Þ
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Fig. 8. Shape of the fluid surface and bent membrane derived by an energy minimization. (a–c) Evolution to a flat state, for ‘¼ 3, with

s¼ 0:4, 0.2, 0.1. (d–e) Evolution to a wrapped state for ‘¼ 5, with s¼ 0:4, 0.2, 0.1.

Fig. 9. (a) The three-dimensional mode IV problem of Fig. 2 is simplified into (b, c) a two-dimensional wrapping problem. The shaded

area shows the undeformed part of the membrane.
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with

L¼ 2R1y1; L0 ¼ 2R2y2; R1sin y1 ¼R2sin y2; ð19Þ

and these variables are related to the volume of the drop by

V ¼ L½R2
1ðy1�sin y1cos y1Þ þ R2

2ðy2�sin y2 cos y2Þ�: ð20Þ

Upon eliminating R1, R2 and L0, this reduces to

EII

B
¼ 2y21 þ ‘

2 y2sin y1
y1sin y2

ð21Þ

with

V

L3
¼

1

4y21
ðy1�sin y1cos y1Þ þ

sin2 y1
sin2 y2

ðy2�sin y2 cos y2Þ
� �

: ð22Þ

For mode IV, let us introduce the width X ¼L=
ffiffiffi
2
p

and the length Y ¼ L
ffiffiffi
2
p

. The dimensional energy reads now

EIV ¼
1

4
XY

B

R2
1

þ XY 0g ð23Þ

with

Y ¼XR1y1; Y 0 ¼ 2R2y2; R1sin y1 ¼R2sin y2; ð24Þ

and these variables are related to the volume of the drop by

V ¼X R2
1ðy1�sin y1 cos y1Þ þ R2

2ðy2�sin y2 cos y2Þ þ
Y

2
R1ð1�cos y1Þ

� �
: ð25Þ
Please cite this article as: de Langre, E., et al., Energy criteria for elasto-capillary wrapping. Journal of Fluids and Structures (2010),

doi:10.1016/j.jfluidstructs.2009.10.004

dx.doi.org/10.1016/j.jfluidstructs.2009.10.004


ARTICLE IN PRESS
E. de Langre et al. / Journal of Fluids and Structures ] (]]]]) ]]]–]]]10
Upon eliminating R1, R2, X, Y and Y 0, this reduces to

EIV

B
¼ 2y21 þ

‘2

2

y2sin y1
y1sin y2

þ
y2

sin y2

� �
ð26Þ

with

V

L3
¼
ðy1�sin y1 cos y1Þ

8
ffiffiffi
2
p

y21
þ
ðy2�sin y2 cos y2Þ

8
ffiffiffi
2
p

sin2 y2

sin y1
y1
þ 1

� �2

þ
ð1�cos y1Þ

4
ffiffiffi
2
p

y1
: ð27Þ

For a given drop volume V and membrane size L the energy of each mode is obtained by minimizing E when y1 and
y2 are varied under the constraint that they satisfy the equation giving the dimensionless drop volume v¼V=L3. The

scaled energy of each mode, E=B is shown in Fig. 10 as a function of the dimensionless drop volume v. For large drop

volumes, mode IV has a lower energy and can be therefore expected only to be replaced by mode II for smaller drop

volumes. This switching between modes is consistent with the experimental observations of Section 2.1. It may be

understood by considering that a mode IV deformation for small volumes would require the corners to bend

significantly or the fluid surface to stretch, and is therefore associated with a larger energy than mode II.

3.4. A wrapping criterion

From the previous sections it appears that a two-dimensional model is relevant, at least to understand the mechanism

of folding, even though the folding is a complex three-dimensional process. We now use the two-dimensional model to

deduce a wrapping criterion for arbitrary shapes.

A few minor approximations are used to produce a simplified two-dimensional model that still captures the essential

physics. First the length of the free liquid surface in the flat state was found to be close to L, so that one may

approximate a¼ 1; second, the role of gravity is small in the flat state, as can be seen by comparing b and the

corresponding factor 1=2p in the energy equation. Using these approximations, the boundary between flat and wrapped

states is given by

‘2 ¼ 2p2 þ
1

8p2
‘4l2: ð28Þ

In the limit of negligible gravity effects, ‘¼LEC=LC51, this criterion becomes

‘¼
ffiffiffi
2
p

pC4:44: ð29Þ

This value compares well with the value obtained by Py et al. (2007), who used nonlinear computations of a 2-D model

of bending of the system in the form of an elastica and also ignored gravity, ‘¼ 3:54. This agreement can be attributed

to the fact that the bending that is observed is well distributed along the elastic membrane, thus justifying the

approximation of deformation with a constant radius of curvature.

Conversely, in the limit of large gravity compared to bending effects, ‘b1, the limit is given by

‘¼
2
ffiffiffi
2
p

p
l

: ð30Þ

These two limits allow us to draw a simplified wrapping diagram, shown in Fig. 11. In dimensional terms, the criteria

for wrapping become

ffiffiffi
2
p

po
L

LEC

o
2
ffiffiffi
2
p

pLC

LEC

; ð31Þ

or equivalently

2p2
B

g
oL2o8p2

g
rg
: ð32Þ

To apply these criteria to complex shapes we need to define a length scale for L. We use the folding length, L, which
we define as the maximum distance between two points of the membrane (see Fig. 12), since this length will determine
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the easiest wrapping mode. Using this length the criteria become, in dimensional variables,

2p2
B

g
oL2o8p2

g
rg
: ð33Þ

All the cases of wrapping given in Py et al. (2007) are shown in Fig. 11, including spherical, cubic and diagonal

wrapping. The corresponding elasto-capillary lengths [not given in Py et al. (2007)] are 1, 0.5 and 0.45mm, respectively.
10-1 100
100

101

WRAPPING

NO WRAPPING

NO WRAPPING 

LEC/LC

L
/L
E
C

Fig. 11. A simplified criterion for wrapping as a function of the folding length L, the capillary length LC ¼
ffiffiffiffiffiffiffiffiffiffi
g=rg

p
, and the elasto-

capillary length LEC ¼
ffiffiffiffiffiffiffiffi
B=g

p
(Eq. (33)). Experimental data from Py et al. (2007) showing cases of wrapping for several membrane

shapes given in Fig. 12. &: squares; D: triangles; J: spherical wrapping; þ: cubic wrapping; and B: diagonal wrapping.
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Fig. 10. Comparison of the total energies of a mode II state (—) and a mode IV state (–) for a given liquid volume v, here for ‘¼ 5. As

the liquid volume is reduced, the wrapping of lowest energy switches from mode IV to II near v¼ 0:3.
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Fig. 12. Shapes of membranes and corresponding wrapped state, from Py et al. (2007). The folding length L is shown in each case.

(a) Square, (b) triangle, (c) spherical wrapping, (d) cubic wrapping, and (e) diagonal wrapping.
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All these experimental points fall in the range of possible wrapping given by Eq. (33), except the case of spherical

wrapping. This may be understood by considering that the membrane ‘‘flower’’ shape, Fig. 12(c), is actually much more

flexible than other more convex shapes.
4. Conclusions

In summary, we have shown that a model based on minimal physical ingredients can account for the experimental

observations in the interactions between a liquid drop and a membrane. The model assumes a constant value for the

radius of curvature of the elastic membrane and of the liquid surface, thus allowing the energy equations to be written

analytically. While it is not expected that this model will capture the details of the behaviour, it allows predictions to be

made based on simple calculations.

In particular, the model explains two elements in the behaviour of the ‘‘capillary origami’’ system which we describe

in detail: Experimental observations show the possibility of dewetting of the water on the membrane for some

experimental conditions. In this situation, the liquid leaves the edges of the membrane which then fails to cover the

liquid–air interface. Moreover, a robust mode-switching is observed from a four-fold symmetry at early times to a two-

fold symmetry at late times.

The model accounts for both of these behaviours through energy minimization arguments, at a time when a detailed

modelling and simulation of these results would require major effort.

The proposed energy approach is based on the comparison between several possible configurations of the system,

assuming that the observed one will be that of minimum total energy. The set of possible configurations has been here

inspired by experiments. In more complex geometries, a systematic exploration of configurations that are consistent

with the constraint of the system would be needed, to avoid missing important ones.
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Further extensions can include dynamical situations in which kinetic energy plays a role, or ‘‘Janus’’ membranes

which are made up of different materials. They can also account for the role of adhesion, which was neglected here. This

approach can provide a useful starting point before more complex analysis is performed.
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