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Nonextensivity in turbulence in rotating two-dimensional
and three-dimensional flows
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Abstract

Our experiments on turbulent flow in a rotating annulus yield probability distribution functions (PDFs) for velocity in-
crementsδv(�), where� is the separation between points. We fit these PDFs to a form derived for turbulent flows by Beck,
who used the Tsallis nonextensive statistical mechanics formalism. For slow rotation rates, we find that the fit parameterq

is 1.25 for small�. At large�, q decreases to unity, the value corresponding to the usual Boltzmann–Gibbs statistics. These
results agree with those previously measured in experiments on Couette–Taylor turbulence. However, with rapid rotation
of the annulus, the turbulent flow becomes strongly two-dimensional (2D) rather than three-dimensional (3D), and we find
q = 1.32± 0.04, independent of �. This suggests that the coherent structures (vortices), which are a source of intermittency,
are important at all length scales in the 2D case.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Two-dimensional (2D) turbulence was discussed
by Kraichnan in 1967 with the caveat that it was
nowhere realized in nature [1]. Since then, however,
quasi-2D flows have been produced in laboratory ex-
periments by using magnetic fields[2], stratification
[3], or rotation[4]. These methods produce quasi-2D
regimes that correspond to different limits on the
Navier–Stokes equations; the relationship between
these different limits and the true 2D case is not well
understood.
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For a rotating fluid, the 2D approximation improves
as the rotation rate of the system is increased. We have
studied the transition between three-dimensional (3D)
and quasi-2D turbulence using a rotating annulus with
a variable rotation rate[5,6]. At low rotation rates, the
statistics of 3D turbulence were recovered: the proba-
bility distribution functions (PDFs) of velocity differ-
ences

δv(�) = v(x + �) − v(x) (1)

displayed a strong dependence on the scale�; for small
�, the PDFs had power-law tails, and for large� the
PDFs approached a Gaussian shape. At high rotation
rates, the flow became essentially 2D and the resul-
tant PDFs were self-similar, i.e., the shape was inde-
pendent of� for length scales within the inertial range
[4]. However, in contrast to results obtained in strati-
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fied flow experiments[3], our PDFs for 2D turbulence
exhibited a strong deviation from Gaussianity at all
length scales. Strongly non-Gaussian PDFs are well
established for 3D turbulence on small spatial scales
(e.g., see Fig. 3 of[7]), but on large scales the PDFs
become Gaussian. Extended tails have been found in
numerous other situations (e.g., see[8–14]). Here we
compare the 2D and 3D turbulent regimes by fitting
the observed PDFs for velocity differences to a form
derived by Beck[15] from the Tsallis nonextensive
statistical mechanics formalism[16]. The functional
form for the PDFs derived by Beck has been previ-
ously found to fit data for 3D turbulence for a wide
range of length scales� in flow between concentric ro-
tating cylinders (the Couette–Taylor system)[17] and
flow between counter-rotating disks[18].

Section 2describes our experiment andSection 3
summarizes Beck’s prediction for the velocity PDF for
turbulent flow. Section 4 presents the analysis of our
data in terms of this PDF. These results are discussed
in Section 5.

2. Experimental apparatus and flow description

Our apparatus consists of a rotating annular tank
filled with water[19]. The tank is covered with a flat

Fig. 1. Vorticity and streamfunction maps for the 3D and 2D flows, atΩ = 1.57 and 11.0 rad/s, respectively. The cyclonic (red center) and
anti-cyclonic (blue center) vortices are advected clockwise by the mean anti-cyclonic jet, as the tank rotates counter-clockwise. The spacing
of the streamline contours is 12 cm2/s for the 3D case and 30 cm2/s for the 2D case, and the color bars show the vorticity values (s−1).

rigid lid, and the bottom is conical to approximate the
beta effect, the variation of Coriolis force with latitude.
The water is pumped in a closed circuit through two
concentric rings of holes in the bottom of the tank. In
the present experiments, fluid is pumped into the tank
at a radius of 18.9 cm, and out of the tank at a radius of
35.1 cm. The net outward flux couples with the Cori-
olis force to generate an azimuthal counter-rotating
jet. Measurements were made for two sets of control
parameters: a quasi-2D turbulent flow was obtained
with rotation rateΩ = 11.0 rad/s and pumping rate
Q = 150 cm3/s, and a 3D flow was obtained with
Ω = 1.57 rad/s andQ = 450 cm3/s.

The Reynolds numbers, based on the peak velocity
U measured with hot film probes and a length scaleL

equal to the distance between the forcing rings, were
35,000 and 26,000 for the fast and slow rotation rates,
respectively. A drawing of the apparatus and a discus-
sion of the Reynolds numbers are given in Ref.[6].

The azimuthal component of the velocity was mea-
sured with hot film probes placed midway between
the inner and outer walls of the annulus. The probes
were mounted on the top lid and extended a distance
of 1 cm into the fluid, well outside the thin Ekman
boundary layer. The data sampling rate was 150 Hz
(with a low-pass filter at 75 Hz) for 2 h long runs, giv-
ing a total of 106 points in each time series[5]. The
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Fig. 2. Typical velocity time series measured atΩ = 11.0 rad/s
and Q = 150 cm3/s. The 10 s data segment shown in the inset
illustrates the fine turbulent structure superposed on the large
fluctuations in this 2D flow.

Taylor frozen turbulence hypothesis was used in the
analysis, thus mapping the data from time to space.

In contrast to co-rotating jets which are strong and
narrow, a counter-rotating jet is highly unstable and
becomes turbulent even at low pumping fluxQ [20].
The two-dimensionalization, however, is conducive to
the formation of long-lived coherent vortices, which
are advected clockwise by the mean flow (seeFig. 1)
. The velocity at which the vortices travel varies as
they interact with the jet and with each other; same
sign vortices merge, while those of opposite signs re-
pel. Compact intense vortices also form in the recir-
culation regions of the large structures; these vortices
have a strong effect on the motion of the mean flow.
As the meandering jet sweeps past the probes, there
is a switching between regions of high azimuthal ve-
locity and regions where the flow is primarily in the
radial direction. This switching, observed as a dip in
the azimuthal velocity (Fig. 2) , is an essential factor
in the broadening of the tails of the PDFs (see Section
IV.B of Ref. [5] and Section 2 of Ref.[6]).

3. Nonextensive entropy

The entropy for a nonequilibrium system can be
nonextensive, which means that entropies for sub-

systems cannot be added to obtain the entropy for
the whole system: ifSq(A) and Sq(B) are the en-
tropies of two probabilistically independent systems,
thenSq(A+B) = Sq(A)+Sq(B)+(1−q)Sq(A)Sq(B),
whereq−1 is a measure of the degree of nonextensiv-
ity [21]. There is a very large literature on nonextensiv-
ity (http://www.tsallis.cat.cbpf.br/TEMUCO.pdf). We
consider a particular form for the nonextensive entropy
that has been proposed by Tsallis[16]:

Sq = 1

q − 1

(
1 −

∑
i

p
q
i

)
, (2)

wherepi is the probability of the system being in a
given statei. The Tsallis entropy reduces to the stan-
dard (Boltzmann–Gibbs) entropy,−∑pi ln pi in the
limit q → 1.

In our experiments we determine the probability
p(δv(�)) of a velocity differenceδv(�) at length scale
�, whereδv is the longitudinal velocity difference (i.e.,
the velocity components are taken along the line of
length�). The goal of this work is to determine how
values of the nonextensivity parameterq deduced from
measurements ofp(δv(�)) depend on�, and to com-
pare values ofq obtained for the 3D and quasi-2D
flows. Beck has used the Tsallis entropy(2) to derive
the following form forp(δv), assuming that the prob-
ability is normalized (the probabilitiespi add to unity)
and satisfies a constraint on the total energy[15]:

p(δv) = 1

Zq

[1 + β(q − 1)ε(δv)]−1/(q−1), (3)

β = 2

5 − 3q
, (4)

ε(δv) = 1
2(δv)2 + [δv − 1

3(δv)3]ϕ + HOT. (5)

Here the so-called energyε(δv) depends on the
velocity difference squared plus a correction term
proportional to the parameterϕ, discussed below;β
describes the temperature in the nonequilibrium sense
(whereβ = 1/kbT for an equilibrium system);Zq is
the partition function, which is here simply a scaling
constant[17]. In our data analysis we examine three
possible forms forϕ: (a) no correction,

ϕ = 0, (6)

http://www.tsallis.cat.cbpf.br/TEMUCO.pdf
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(b) a form obtained from physical arguments and used
in an analysis of Couette–Taylor turbulence[17],

ϕ = −0.124(q − 1), (7)

and (c) a correction proportional to the skewnessξ,

ϕ = 1
2ξ(q − 1). (8)

The skewness is given by

ξ = S3

S
3/2
2

, (9)

with Sn(�) the structure functions

Sn(�) = 〈(δv)n〉, (10)

which are important quantities in turbulence[22].
The proportionality ofϕ to ξ/2 in Eq. (8) follows

from calculating the skewness fromEqs. (3)–(5), while
the proportionality toq − 1 is an assumption guided
by the results in Ref.[17]. In the latter reference, yet
another form forε(δv) was used to obtain an improved
fit to Couette–Taylor data forp(δv), but this form in-
troduced another parameter,α, in addition toϕ; for
the present data,Eq. (5)is retained because it provides
fits just as well as the modified version of Ref.[17].

Eqs. (3)–(5)give the probabilityp for a normalized
δv of variance unity, irrespective of the relation be-
tweenδv and the width of the distribution. Therefore,
the measured velocity differences must be normalized
by their standard deviation at each� before the fit
is performed. The energy correction termϕ leads ac-
tually to a variance slightly different from unity, but
we achieve an average precisely zero and a variance
of unity using the renormalized distribution given by
p̃ = σp(σ(δv − 〈δv〉)).

4. Results

4.1. Probability distribution functions

We now fitEqs. (3)–(5)to our data, examining first
the quality of the fits and then the values ofq(�) de-
duced from the data. The form forϕ that Beck et al. fit-
ted to data for turbulent Couette–Taylor flow,Eq. (7),
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Fig. 3. Skewness of the velocity difference PDF,ξ(�) = S3(�)/

(S2(�))
2/3, as a function of separation�. The effects of strong

shear and rotation lead to a change of the sign ofS3 in both the
2D and 3D cases.

assumes that the skewnessξ is constant. In 3D turbu-
lence,ξ is generally small and negative, but for both
our 2D and 3D data, we find thatξ changes sign as a
function of distance�, asFig. 3 illustrates. For homo-
geneous isotropic turbulence, the sign ofS3 indicates
the direction of the energy cascade, which is to large
scales in the 2D case and small scales in the 3D case;
for our data the dependence ofξ on � is not under-
stood and will be the subject of future experiments in
our laboratory. Given the skewness dependence on�,
we examine the fit of the data toEq. (3) using first
Eq. (8) for ϕ.

Data forp(δv) for both 3D and 2D flows are com-
pared withEqs. (3)–(5)in Fig. 4. The upper graphs
showp(δv) on a linear scale, which emphasizes the
fit at the peaks, and the lower graphs showp(δv) on
a log scale, which emphasizes the tails of the distri-
bution functions. The data for 2D turbulence fit the
predictedp(δv) well over the whole range of length
scales. The fits for the 3D flow are also good, even
though the functional form forp(δv) changes from
one with approximately power law tails for small�

to Gaussian for large�. Note that for positiveδv for
the 3D flow, the theory falls systematically below the
data.
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Fig. 4. Comparison of the predicted (smooth curves) and measured velocity difference PDFs for 2D and 3D turbulent flows, plotted on linear
axes (top) and log-linear axes (bottom), for measurement points separated by distances� = 0.3–15 cm. The values of the nonextensivity
parameterq deduced from these fits of experiment to theory are shown inFig. 6.

The goodness of the fit of the measured distribution
functionspexp to theorypth (Eq. (3)) is given by plots
of (pth−pexp)/pth as a function ofδv/δvrms, as shown
in Fig. 5 for all three forms considered forϕ. The rms
deviations for|δv| < 2δvrms are given inTable 1; we
include only two standard deviations inδv because the
data for largerδv are noisy and sparse. Surprisingly,
the fit with no correction at all,ϕ = 0, is as good as
for the cases usingEq. (7)or Eq. (8); in all cases the
difference is typically around 10%.

4.2. Nonextensivity parameter q

The values ofq deduced as a function of� from the
fits for different forms ofϕ are presented inFig. 6.
The principal conclusion is that, whatever the form
of ϕ, the nonextensivity parameterq is approximately
constant for the 2D data, independent of�. This indi-
cates that the flow is nonextensive throughout the spa-
tial range examined. Further, the results forq depend
only weakly on the form of the skewness correctionϕ.
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Fig. 5. The difference between theory and experiment for different forms ofϕ (Eqs. (6)–(8)) for measurement points separated by distances
� = 0.3–15 cm. The rms differences computed for each case for|δv| < 2δvrms are given inTable 1.

Table 1
Average rms relative difference between theory and experiment for|δv| < 2δvrms, for different values of the distance�

3D separation� 2D separation�

0.25 cm 4.01 cm 7.78 cm 11.5 cm 15.3 cm 0.35 cm 3.8 cm 7.26 cm 10.7 cm 14.2 cm

φ = 0 0.233 0.082 0.087 0.092 0.108 0.071 0.077 0.106 0.171 0.154
φ = −0.124(q − 1) 0.332 0.087 0.076 0.082 0.104 0.075 0.091 0.104 0.152 0.152
φ = ξ/2(q − 1) 0.235 0.082 0.083 0.087 0.106 0.071 0.088 0.109 0.164 0.137
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Fig. 6. Nonextensivity parameterq as a function of separation�
for the three forms of the skewness correction:ϕ = 0 (triangles),
ϕ = −0.124(q − 1) (circles), andϕ = ξ(q − 1)/2 (squares). For
2D turbulence the value ofq is nearly constant, while for the 3D
turbulence the value ofq decreases to unity, corresponding to a
Gaussian PDF for large� (seeFig. 4).

Given the robustness of the values ofq deduced as a
function of� and for different forms ofϕ, we conclude
thatq2D = 1.32± 0.04 for our 2D turbulence data.

In contrast to the result forq for the 2D data, for 3D
turbulence we find thatq decreases with increasing�
from about 1.25 to unity; again the dependence ofq on
the form ofϕ is very weak. The� dependence is nearly
the same as that found for turbulent Couette–Taylor
flow [17]: at large�, the flow is extensive (q = 1), as
expected for 3D turbulence on large scales.

5. Discussion

The physical significance of the nonextensivity pa-
rameterq is not well established. A departure from
q = 1 may indicate that a flow is intermittent on the
scale at whichq was determined. Our earlier anal-
ysis of the data for 2D turbulence in terms of the
She–Lév̂eque model[5] yielded a value for the model
parameterβSL that indicated a flow dominated by co-
herent vortices at all scales of the inertial range. The
valueq = 1.32 that we obtain at all� for the 2D tur-
bulent flow may provide a measure of the extent to

which vortices fill space at all scales. Indeed, numeri-
cal simulations[23,24]have shown that coherent vor-
tices cause a strong departure from Gaussian statistics
in a turbulent flow.

For the 3D turbulent flow, the value of the
She–Lév̂eque parameterβSL is similar to that for the
2D turbulence, indicating strong intermittency, but we
find for 3D turbulence that the nonextensivity param-
eter decays to unity for large separations�. This is
consistent with our observation that the intermittent
coherent structures are only present at small scales
in the 3D case. It is common for 3D turbulence to
display coherent vortices (and hence departures from
Gaussianity) at small scales, but these vortices do not
grow since no inverse cascade is present. This behav-
ior is captured by the trend inq, and a large difference
between the value for large and small scales indicates
a flow which is strongly scale-dependent.

We conjecture that the subsystems which are nonad-
ditive are the coherent vortices and the “sea” of back-
ground turbulence in which they exist. In the 3D (slow
rotation) case, these vortices only exist at small scales,
and thereforeq tends to unity at large scales. In the
2D (fast rotation) case, the coherent vortices can reach
large scales, thus creating long range correlations
which drive the system into a nonextensive regime.

Finally, the values ofq may give insight about the
nature of the turbulent transport. It was found in Ref.
[25] that the value ofq, coupled with the dimensional-
ity of the system, can be related to the strength of ma-
terial transport in a physical system. Furthermore, our
2D flow with strong vortices and a counter-rotating
jet may exhibit anomalous (Lévy-type) diffusion, as
found in previous experiments on a co-rotating jet at
lower Reynolds number[26], and also found in a re-
cent analysis of ocean data[27]. In these quasi-2D
flows, particles can become trapped for long times in a
vortex and make occasional long excursions (Lévy fli-
ghts) in a jet, thus enhancing the mixing in the system.
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