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Abstract

A plug of wetting liquid is driven at constant pressure through a bifurcation in a microchannel. For a plug advancing in a straight channel,
we find that the viscous dissipation in the bulk may be estimated using Poiseuille’s law while Bretherton and Tanner’s laws model the additional
dissipation occurring at the rear and front interfaces. At a second stage, we focus on the behavior of the plug flowing through a T-junction.
Experiments show the existence of a threshold pressure, below which the plug remains blocked at the entrance of the junction. Above this required
pressure, the plug enters the bifurcation and either ruptures or splits into two daughter plugs, depending on the applied pressure and on the initial
length of the plug. By means of geometrical arguments and the previously cited laws, we propose a global model to predict the transitions between
the three observed behaviors.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Microfluidic bifurcation; Plug rupture; Threshold pressure; Splitting
1. Introduction

Microfluidic fabrication techniques provide new ways to
handle fluids in complex geometries at sub-millimeter scale.
While the transport of a single fluid is well understood in the
laminar “Stokes” regime, two-phase flows present important
challenges due to the nonlinear effects at the moving interfaces.
Indeed, even the transport of liquid plugs in a straight channel
involves a nonlinear pressure–velocity relationship that results
from the balance between viscous and capillary effects [1]. This
balance operates near the triple lines at which the liquid and
gas phases meet the solid substrate; the details of this balance
depend strongly on the wetting properties of the solid and the
liquid [2].

The transport of plugs in a complex geometry, such as a
network of channels, is of interest for microfluidics but also
in geological and biological situations. For instance, an under-
standing of the transport of plugs through bifurcations is neces-
sary for applications in drug delivery in the pulmonary airway
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tree [3], or in the extraction of oil from porous rocks [4], where
one is interested in the transport of a volume of a liquid (mu-
cus or petroleum) bounded by two liquid–gas interfaces. Since
the liquid usually wets the solid in these situations, this will
be represented at rest by a zero contact angle between the two
phases.

The aim of the present work is to study the transport of such
plugs in rectangular microchannels, when both inertia and grav-
ity are negligible. This is done by driving plugs at constant
pressure through straight and bifurcating microchannels and
by developing corresponding theoretical models. A combined
theoretical and experimental study of the straight and bifurcat-
ing cases will therefore provide the essential building block for
understanding the dynamics of a two-phase flow in a channel
network, which in turn will allow the modeling of concrete sit-
uations.

The paper is structured as follows: Section 2 presents the
experimental setup and protocol. It is followed in Section 3 by
the development of a theoretical model for a plug in a straight
channel which is validated experimentally. Finally, Sections 4
and 5 provide the experimental and theoretical study of the flow
of a plug through a T-junction, respectively.
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2. Experimental setup

A schematic of the experimental setup used in our study is
shown in Fig. 1. The experiments were conducted in rectangular
cross section microfluidic channels made of polydimethylsilox-
ane (PDMS) by using soft lithography techniques [5]. These
channels are integrated in a microfluidic chip, composed of two
parts. To obtain the upper part in which the channel is etched,
a thin layer of photosensitive resin (Microchem, SU8-2035) is
first spin-coated on a silicon wafer and patterned by standard
photolithography. The speed of spin-coating sets the thickness b

of the future channels, while the widths and the shapes are con-
trolled by the design of the patterned masks which are used
during the UV exposure. The photoresist is then developed
yielding the mold on which a thick layer of PDMS (Dow Corm-
ing, Sylgard 184) is poured and allowed to partially cure. The
resulting cast is finally removed from the mold and inlet/outlet
holes are punched for later connections. In parallel, the lower
part of the microchannel is obtained by spin-coating and par-
tially curing a flat layer of PDMS on a glass microscope slide.
At a final stage, the two PDMS parts are brought into contact
and the whole is cured completely, thus forming a microflu-
idic chip. As seen in Fig. 1, the microchannel consists of an
entrance region (Y-junction) used to form the liquid plugs, an
initial straight channel and a final T-junction. We note that wi
and wo are the widths of the inlet and outlet branches of the
T-junction. Typical values for the thickness and the width of
the straight channel were b � 25–50 µm and wi � 200–300 µm.
The different dimensions were measured on the resin mold with
a profilometer (Dektak).

A constant driving pressure Pdr was applied using a water
column connected to a sealed air bottle as shown in Fig. 1;
the air flowing out of the bottle was then driven to one in-
let of the Y-junction while the other inlet was used for liq-
uid introduction. Outlets of the T-junction were at atmospheric
pressure P0. Different values of the driving pressure Pdr were
obtained by varying the height of water in the column and cal-

Fig. 1. Experimental setup. A constant pressure Pdr is applied at the upper
left inlet branch of the Y-junction. The lower left branch is used to introduce
the wetting liquid from a syringe pump. The motion of the plug is recorded
with a camera through a microscope. Note the enlargement of the inlet channel
downstream of the Y-junction.
Fig. 2. A liquid plug after its formation within the Y-junction. The plug moves
from left to right. The upper branch is connected to the constant pressure source
(air) and the lower branch contains the wetting liquid which is injected using
a syringe pump. Length and speed are calculated from the measured positions
of the menisci at the advancing (front) and receding (rear) interfaces, detected
along the centerline of the channel.

culating the corresponding hydrostatic pressure, ranging from
100 Pa (�1 cm of water) up to 600 Pa (�60 cm of water). The
precision on the water height pressure was 2 mm, giving a max-
imum error of 20% for the lowest pressure value. All pressure
losses in the external tubing were neglected.

The plugs were formed with perfluorodecalin (PFD), a flu-
orinated liquid with dynamic viscosity η = 5 cP and surface
tension γ = 15 mN/m [6]. In addition to wetting the solid
substrate, the PFD also has the advantage of not swelling the
PDMS [7]. To obtain the typical plug shown in Fig. 2, the liq-
uid was forced into one inlet of the Y-junction by actuating
a syringe pump for a given interval of time while a manual
valve cut off the air entrance from the pressure source. Once
the plug was formed, the syringe pump was switched off, and
the pressure was applied. By controlling the duration of the
syringe pump actuation, plugs of different lengths were ob-
tained. However, since the minimal length of the plugs was
fixed by the characteristic size of the Y-junction, the channel
was enlarged downstream of the Y-junction to allow the study
of shorter plugs, resulting in lengths as small as the width wi of
the inlet channel. There was no upper limit for the size of the
plugs.

Experiments were recorded with a high speed camera (res-
olution 1024 × 256 pixels, 1 pixel for 10 µm, sampled at 10–
100 fps) through a microscope (Leica, MZ 16). For each image
of the sequences thus obtained, the positions (xf and xr) of the
menisci at the advancing (front) and receding (rear) interfaces
of the traveling plug were manually located along the center-
line of the channel. These measurements yielded the length
and the speed of the plug during its transport as, respectively,
Lplug = xf − xr and Uplug = dxc/dt with xc = (xf + xr)/2. Note
that before starting data acquisition, several plugs of PFD were
introduced in order to prewet the channel walls.

A sketch of a plug moving in a rectangular microchannel is
shown in Fig. 3. In this schematic, plane A (“in-plane” section)
represents the projected view as seen through the microscope,
e.g., Fig. 2. We will also refer later to plane B as the “in-
thickness” section.
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Fig. 3. Schematic of a plug in a rectangular channel. Planes A and B correspond
respectively to “in-plane” and “in-thickness” sections.

3. Visco-capillary regime in straight channels

We first consider the transport of a liquid plug of length L0
moving with a steady velocity U0 in the straight microchannel
upstream of the T-junction. By taking a characteristic length
scale D ∼ 50 µm and typical velocities U0 ∼ 5 mm/s, one ob-
tains a Bond number Bo = ρgD2/γ ∼ 5×10−3 and a Reynolds
number Re = ρU0D/η ∼ 2 × 10−2, where ρ ∼ 1000 kg/m3

and g = 9.81 m/s2 are, respectively, the density of the liquid
and the acceleration of gravity. Therefore, one may neglect
gravity and inertial effects, expecting the plug dynamics to be
governed by a visco-capillary regime as mentioned in [8]. Here,
we use an approach similar to the one developed by Bico and
Quéré [1]. Given a constant driving pressure Pdr, the steady-
state pressure balance across the plug is

(1)Pdr = �P r
cap + Pvisc + �P a

cap,

where �P r
cap and �P a

cap express the capillary pressure drops at
the receding and advancing interfaces of the plug, respectively,
while Pvisc represents the viscous dissipation occurring in the
bulk. Using Poiseuille’s law, the latter is expressed as

(2)Pvisc = αηL0U0,

with α, a dimensional coefficient, corresponding to the geom-
etry of the channel. For a rectangular geometry [9], α may be
approximated as

(3)α � 12

b2

[
1 − 6

25b

π5wi

]−1

.

When the plug is at rest, static values of �P r
cap and �P a

cap
are given by Laplace’s law as �P r

cap = −�P a
cap = γ κ , where

κ � 2(b−1 + w−1
i ) is the mean curvature of each interface at

rest. Here, we neglect the flow of liquid along the corners of the
channel that slightly deforms the shape of the interfaces [10].
When the plug is moving, the front and rear curvatures are
modified as shown in Fig. 4. At the front interface, the balance
between friction and wetting forces at the vicinity of the contact
line leads to the existence of a non-zero dynamic contact angle
and this flattening of the advancing interface increases the re-
sistance to the motion. By assuming that θa has the same value
in the two sections, the dynamic capillary pressure drop for the
front interface becomes

(4)�P a
cap = −γ κ cos θa.
Fig. 4. Sketch of the plug (sections A and B). Here, θa is the dynamic contact
angle at the front interface and eb (ewi ) is the thickness of the deposited film at
the rear of the plug in the thickness (width).

The relation between the contact angle and the velocity of the
contact line is known through Tanner’s law [1,11] which states
that

(5)θa = (6Γ Ca)1/3,

where Ca = ηU0/γ is the capillary number and Γ is a loga-
rithmic prefactor that accounts for the singularity occurring at
the contact line, where the usual no-slip boundary condition at
the solid surface leads to a logarithmic divergence in the shear
stress [12].

Using Eq. (5) and taking the first-order term in the Taylor
expansion of cos θa in Eq. (4), the front pressure drop becomes

(6)�P a
cap � γ κ

(
−1 + (6Γ Ca)2/3

2

)
.

At the rear interface, a thin film is deposited at the channel
walls [13], which reduces the rear meniscus radius and thus,
also increases the resistance to the motion. We note that eb and
ewi are the thicknesses of the deposited film at the rear of the
plug in the in-thickness and in-plane sections, respectively. The
dynamic capillary pressure drop at the rear interface may then
be written as

(7)�P r
cap = γ

(
1

b/2 − eb
+ 1

wi/2 − ewi

)
.

Bretherton’s law expresses the thickness e of the deposited film
at the rear of a plug as a function of the capillary number Ca
and the radius R of a circular capillary tube [1]:

(8)e/R = 3.88Ca2/3.

Assuming Bretherton’s law to be valid in both directions of the
rectangular cross section, i.e., 2eb/b = 2ewi/wi = 3.88Ca2/3,
the rear capillary jump is obtained from Eq. (7) as

(9)�P r
cap = γ κ

(
1 + 3.88Ca2/3).

Finally, by using Eqs. (2), (6) and (9), one derives

(10)Pdr � αηL0U0 + γ κβCa2/3,

where β = 3.88 + (6Γ )2/3/2 is a nondimensional coefficient
obtained from Bretherton’s and Tanner’s laws.

Equation (10) governs the dynamics of a plug of length L0
moving steadily at speed U0 in a straight rectangular channel
for a constant driving pressure. Equation (10) can be nondimen-
sionalized by comparing it with the capillary pressure jump γ κ ,
and we obtain

(11)Pdr � αCa + βCa2/3,
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Fig. 5. Capillary number of a liquid plug as a function of its inverse nondi-
mensional length 1/α for a pressure Pdr = 250 Pa (Pdr = 0.2). The dashed line
corresponds to Poiseuille’s law, Ca ∝ 1/α. The full line corresponds to Eq. (11)
with β = 16.

with Pdr = Pdr/(γ κ) is the nondimensional driving pressure
and α = αL0/κ is the nondimensional length.

Experiments were conducted in a microchannel to verify
the applicability of Eq. (11) to our rectangular geometry. The
cross section of the microchannels used here was wi × b =
210 × 25 µm. Single plugs of various lengths were introduced
and forced at constant pressure following the protocol of Sec-
tion 2. For all driving pressures, we observed that the measured
lengths and speeds of the plugs remained constant within 5%
throughout the channel and average length L0 and speed U0

were determined.
A sample of experimental results is plotted in Fig. 5. Data

corresponding to long plugs asymptote to Poiseuille’s law
(dashed line, Pdr = αCa from Eq. (2)). For shorter plugs, the
data exhibit a nonlinear Ca vs (α)−1 relationship due to an ad-
ditional dissipation occurring at the interfaces. The theoretical
curve (full line) obtained from Eq. (11) is plotted with β = 16
and is in good agreement with the experimental data. The cor-
responding value of Γ = 20 is higher than experimental values
reported in millimetric circular tubes [1]. However, the coeffi-
cient (6Γ )1/3 = 4.9 appearing in Tanner’s law (Eq. (5)) is in
close agreement with Hoffman’s data [11] for which the previ-
ous coefficient is of order 4–5 for a dry tube. A more precise es-
timate of the Tanner’s constant would require a specific study by
keeping track of both the microscopic and macroscopic physics
involved in our configuration, as described in [12].

Thus, although Bretherton’s and Tanner’s laws are not
strictly applicable to the rectangular geometry, our results show
the possibility of using the previous laws to model the dynamics
of plugs in our channels.

4. Blocking, rupture or splitting at the T-junction

We now consider a plug flowing through the T-junction for
different driving pressures and initial plug lengths, L0, mea-
sured in the straight channel upstream of the bifurcation. Exper-
Fig. 6. Blocking of the plug at the entrance of the T-junction for two distinct
pressures with Pdr < Pthresh. The front interface is pinned at the corners of the
bifurcation and adapts its curvature to the applied pressure. The shape of the
rear interface is independent of Pdr.

iments were conducted with channel dimensions wi ×wo ×b =
260 × 260 × 46 µm. Three different behaviors were observed
depending on the driving pressure and on the initial length of
the plug as described below.

4.1. Blocking

The first feature extracted from the observations of a plug
getting to the T-junction is the existence of a threshold pres-
sure Pthresh (between 200 and 300 Pa for our experiments)
which does not depend on the initial length of the plug. For
Pdr < Pthresh, the plug remains blocked at the entrance of the
bifurcation as presented in Fig. 6, which shows the equilib-
rium positions of plugs for two distinct pressures (Pdr = 100,
200 Pa). While the rear interface has the same shape in both
cases, the front interface adapts its curvature to balance the ap-
plied pressure keeping its extremities pinned at the corners of
the bifurcation.

4.2. Rupture

When the pressure exceeds the threshold pressure Pthresh, the
plug continues its propagation through the bifurcation. If the
plug is short, its rear interface catches up with its front interface
before the latter reaches the wall opposite to the entrance chan-
nel. The plug then ruptures, opening the outlet branches of the
T-junction to air. A typical sequence of plug rupture is shown in
Fig. 7. Eventually, the liquid that remains on the channel walls
drains slowly through the action of capillary forces and air drag.

4.3. Splitting into two daughter plugs

When the plugs are sufficiently long that the front interface
reaches the opposite wall, two daughter plugs of equal length
are formed through a splitting of the initial one, as shown in
Fig. 8. As soon as the liquid reaches the wall, the transport



C.P. Ody et al. / Journal of Colloid and Interface Science 308 (2007) 231–238 235
Fig. 7. Sequence of plug rupture. The plug ruptures in the T-junction, leaving liquid on one side of the outlet channel, where air can flow freely from the pressure
source.

Fig. 8. Sequence of plug splitting at the T-junction. Splitting leads to symmetric formation of two daughter plugs in the outlet branches of the T-junction.
dynamics becomes dominated by the wetting forces acting be-
tween the two phases. These forces act to draw the liquid very
rapidly into contact with the wall, as observed between the
images (b) and (c) of Fig. 8. In part (c), we see that the cur-
vature is not constant along the liquid surface, implying local
pressure gradients in the fluid which pull it into the daughter
branches. These wetting forces are dominant compared to the
driving pressure, as seen by the rapidity of the advance once
the plug has touched the wall.

Note that before rupture or splitting, the evolution of the plug
in the bifurcation is similar in both cases: the front interface
advances without constraints while the extremities of the rear
interface remain pinned by the corners of the bifurcation until
process of rupture or splitting is achieved (Fig. 7c).

4.4. Phase diagram

We summarize the three cases discussed above (blocking,
rupture and splitting) in the experimental phase diagram shown
in Fig. 9. As stated above, we observed the blocking (�) of the
plug below a threshold pressure, Pthresh, whose value is seen to
be independent on the length of the plug. Above Pthresh, exper-
imental data show that the transition between rupture (�) and
splitting (!) depends on the applied pressure and on the length
of the plug: as the pressure increases, the length of liquid re-
quired to create two daughter plugs becomes smaller.

5. Theoretical model

In this section, the two transitions appearing in the phase di-
agram of Fig. 9 are explained theoretically. We first establish a
Fig. 9. Phase diagram for plug behavior at the T-junction.

2D pressure balance to derive the value of the blocking pres-
sure after which we develop a model to predict the transition
between rupture and splitting.

5.1. Threshold pressure

Since the plug is at rest in the blocking case, the viscous term
in Eq. (1) is zero and the new pressure balance may be written
as

(12)Pdr = �P r
cap + �P a

cap.

Here, the terms �P r
cap and �P a

cap express static pressure drops
and Eq. (12) may be simplified by distinguishing in-plane and
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Fig. 10. The shapes of the rear and front interfaces at the threshold pressure
(in-plane section).

in-thickness contributions of the capillary pressure jumps which
are related via Laplace’s law to the corresponding principal cur-
vatures of the interfaces. Since the channel thickness does not
vary at the bifurcation, we assume that the in-thickness com-
ponents of the pressure drops at the rear and front interfaces
cancel each other, the radii of curvature in the thickness being
b/2 in absolute value. Therefore, the problem is reduced to a
2D pressure balance of in-plane components of pressure drops,
leading to

(13)Pdr = γ

(
1

Rr + 1

Ra

)
,

where Rr and Ra are the radii of curvature of the rear and front
interfaces in plane A, respectively.

The experimental observations shown in Fig. 6 provide the
information to derive the value of the threshold pressure. For
Pdr < Pthresh, the receding interface is seen to keep a constant
in-plane radius of curvature Rr = wi/2 while the advancing
interface adapts its in-plane curvature to the applied pressure
and its radius Ra varies such that |Ra| � wi/2. The situation
in which Ra = +wi/2 is illustrated in Fig. 10 and leads to the
threshold pressure, which is the highest pressure that can be
sustained across the plug, reading finally

(14)Pthresh = 4γ

wi
.

For our experimental conditions (wi = 260 µm and γ =
15 mN/m), we obtain Pthresh � 230 Pa, in agreement with the
measured value (200 Pa < Pthresh < 300 Pa).

5.2. Rupture or splitting

We now propose to explain the critical plug length, Lcrit,
for getting rupture or splitting when the pressure exceeds the
threshold pressure. Our aim here is not to model the complete
dynamics of the plug but to derive a global model which clar-
ifies the dependence of Lcrit on the driving pressure Pdr by
taking into account the fundamental mechanisms involved in
the plug evolution. We first consider a plug of length Lcrit theo-
retically situated on the transition curve. A geometric condition
is then obtained from the shape of such a plug in the T-junction.
Finally, a dynamic argument is used to map this geometric con-
dition onto the experimental L0–Pdr diagram.
(a) (b) (c)

Fig. 11. Shape of the plugs before (a) rupture and (c) splitting. (b) Schematic
of a plug of volume Vcrit situated on the theoretical boundary between rupture
and splitting where front and rear interfaces of a plug meet at the wall.

5.2.1. Geometric condition
The diagram of Fig. 9 exhibits a L0–Pdr dependent boundary

between the rupture or splitting cases. We consider the shape of
the plugs just before rupture or splitting, as shown in Figs. 11a
and 11c. In Fig. 11a, the rear interface catches up with the front
interface before the latter reaches the wall, leading to rupture
of the plug. Conversely, in Fig. 11c, the front interface is about
to touch the wall before the rear interface catches up with it,
resulting in the splitting of the plug and the formation of two
daughter plugs. In the limiting case, a plug of length Lcrit sees
its front and rear interfaces meeting at the wall. Approximating
the shape of both interfaces with circular sections leads to the
sketch of Fig. 11b. Here, the critical volume of the plug is noted
Vcrit and is completely defined by θa, θ r, wo and the thickness b

of the microchannel. At point C, the rear contact angle θ r is de-
fined geometrically as θ r = 2 arctan(wi/2wo). In contrast, the
contact angle θa at point E may take different values depend-
ing on the velocity of the advancing interface. As a result, the
critical volume decreases as θa increases for a given T-junction,
down to a zero volume when θa = π − θ r.

The volume of liquid contained between the two interfaces in
the critical configuration corresponding to Fig. 11b is obtained
as

(15)Vcrit = bw2
o

[
f

(
θa) − g

(
θ r)],

where

(16)f
(
θa) = (

θa − cos θa sin θa)(1 − cos θa)−2

and

(17)g
(
θ r) = (

π − θ r + cos θ r sin θ r)(1 + cos θ r)−2
.

This volume corresponds to a plug of length Lcrit in the entrance
channel such that

(18)Vcrit = b
[
Lcritwi + (1 − π/4)w2

i

]
,

with the correction term b(1 − π/4)w2
i taking into account the

volume contained in the circular menisci. Therefore, the critical
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length is such that

(19)
Lcrit

wi
=

(
wo

wi

)2[
f

(
θa) − g

(
θ r)] −

(
1 − π

4

)
.

For a given contact angle θa, a plug of initial length L0 < Lcrit
will rupture in the bifurcation while a plug such that L0 > Lcrit
will produce two daughter plugs.

Since θ r is a function of the ratio wo/wi, the value of Lcrit
depends on θa and wo/wi. Therefore, Eq. (19) will provide dif-
ferent values of Lcrit as θa varies, the other quantities being
constant for a given geometry. The problem is now to under-
stand the mechanisms involved in the determination of θa.

5.2.2. Dynamic condition
Although the propagation in the bifurcation is unsteady, the

dynamics is still governed by a visco-capillary regime. There-
fore, at a given time, we may use Eq. (1) on a specific fluid
streamline. For simplicity, we choose the streamline linking
points C and E.

Close to point C, the speed of the rear interface is nil since it
is pinned at the corners of the junction. Thus, the capillary drop
at the receding interface is approximated as

(20)�P r
cap = γ

(
1

Rr + 2

b

)
,

where Rr is the in-plane radius of the receding interface (see
Fig. 11b) and is expressed as

(21)Rr = wo

1 + cos θ r .

For the front interface, we assume that the speed of the contact
line at point E establishes the contact angle θa and that θa is the
same in the thickness and in the plane. Therefore, the capillary
drop at the advancing interface reads

(22)�P a
cap = γ

(
1

Ra − 2 cos θa

b

)
,

where Ra is the in-plane radius of the advancing interface, cal-
culated from geometry as

(23)Ra = wo

1 − cos θa .

The viscous term in Eq. (1) is approximated as a dissipation
term in a Hele–Shaw geometry (since b/wo � 0.18), leading to

(24)Pvisc = 12η

b2
LmVm,

where Lm is the length of the streamline C–E and Vm the mean
speed of the fluid particles between points C and E. As stated
above, the speed at point C is nil and the speed at point E is
related to the contact angle by Tanner’s law (Eq. (5)) as

(25)VE = γ

η
CaE = γ (θa)3

6ηΓ
.

We estimate the quantities Vm and Lm to first order as Vm =
(VE + VC)/2 and Lm = yE − wi/2, where yE = wo/ tan(θa/2)

is the distance from point E to the centerline of the inlet channel
(see Fig. 11b).
Fig. 12. Experimental Pdr–L0/wi diagram and theoretical transitions. (1) Rup-
ture-splitting transition corresponding to Eq. (27) with θa varying from π/6
to π/3 and (6Γ )1/3 = 4.9. (2) Threshold pressure (Eq. (14)).

Finally, combining the terms above leads to the pressure bal-
ance across the plug

(26)

Pdr � γ

[
2
yE − wi/2

Γ b2

(
θa)3 + 1

Ra + 1

Rr + 2

b

(
1 − cos θa)],

which accounts for the dynamic relation between θa and Pdr.
Using a reference pressure γ /wi and expressing the different

quantities as functions of θa, wi/wo, wo/b and wi/b, Eq. (26)
reads in a nondimensional form

Pdr �
[

2
wo

b

wi

b

(
tan

θa

2

)−1

−
(

wi

b

)2]
(θa)3

Γ

+
[

1 + cos

(
2 arctan

wi

2wo

)]
wi

wo

(27)+
[

2wi

b
+ wi

wo

](
1 − cos θa).

5.2.3. Summary of the model
The geometrical condition provides a relation between Lcrit

and θa (Eq. (19)) while θa may be related to Pdr using the
pressure balance of Eq. (26). For a given value of θa, we are
now able to estimate the value of Pdr corresponding to Lcrit. By
varying θa from π/6 to π/3, we obtained the results plotted in
their dimensionless form in Fig. 12, using Γ = 20 which is the
value obtained from straight channel experiments. The quanti-
tative and qualitative behaviors of the theoretical transition are
in good agreement with the experimental data.

6. Conclusion

Our experiments on plug propagation in straight microchan-
nels of rectangular cross section showed good agreement with
previous studies in capillaries with circular sections [1], in spite
of the large aspect ratio of our channels. In particular, the two
principal radii of curvature could be used to account for the
capillary effects at the advancing and receding interfaces and



238 C.P. Ody et al. / Journal of Colloid and Interface Science 308 (2007) 231–238
effects of draining in the corners could be ignored for suffi-
ciently fast propagation of the plugs.

Experiments through bifurcations show three distinct behav-
ior regimes: blocking of the plugs at the bifurcation for small
driving pressures, rupture and channel reopening, or splitting
into two daughter plugs. The transitions between these three
behaviors may be explained by invoking geometric constraints
combined with capillary effects for the case of blocking, or a
visco-capillary balance for the rupture vs splitting transition.

These results reproduce some of the known phenomenolo-
gies in pulmonary airway flows and geological flows, such as
the existence of threshold pressures [10,14,15] or the different
mechanisms of transport of a liquid bolus [16,17]. However,
they benefit from having a well described geometry and direct
access to the complete plug dynamics at all times. Combined
with the advantages of microfluidic fabrication techniques, this
study will lead to new experimental models of network dynam-
ics, with implications in biofluid or porous media flows.
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