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Abstract

Experiments on two-dimensional and three-dimensional turbulent flows in a rotating annulus are analyzed using linear
and nonlinear time series predictors. The models are used to predict the time series, a timeS ahead and to calculate the
velocity increment�uS = u(sn + S) − u(sn) between the current value of the time seriessn and a point timeS apart. For
two-dimensional flow, the nonlinear model provides superior predictions to the linear model for�uS positive and large.
In contrast, for three-dimensional turbulence the prediction of the nonlinear model is no better than the linear model. For
two-dimensional turbulence, the probability density functions for the predicted�uS from the linear model have an exponential
tail, while for the nonlinear model the tail exhibits power law decay. The scaling exponent of this power law can be explained
using arguments of the Kolmogorov 1941 theory. Our findings contradict the common assumption that two-dimensional
turbulence shares the unpredictability properties of three-dimensional turbulent flows. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The discovery of chaos in dynamical systems raised
the hope for a better understanding of fluid turbulence.
However, turbulence has proved to be too complex to
be described by low-dimensional deterministic mod-
els with a few degrees of freedom. The common pic-
ture instead is of an enormous number of degrees of
freedom interacting in a nonlinear fashion, leading to
unpredictability on a wide range of time scales. This
is an underlying feature of all turbulent flows, includ-
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ing homogeneous-isotropic turbulence and large scale
atmospheric and oceanic flows, such as the ones mod-
eled by our experiment. In principle, describing the
dynamics of a fluid requires solving the Navier–Stokes
equations knowing the fluid velocity field�u(�r, t) and
the pressurep(�r, t) at an initial timet0, supplemented
by appropriate boundary conditions. One approach to
solving the Navier–Stokes equations consists of ex-
panding the fields in a complete set of functions. The
amplitudes of these functions then obey an infinite set
of ordinary differential equations. Near equilibrium,
perhaps only a few modes are excited and all the other
modes are irrelevant and enslaved to the excited ones.
In this case a few coupled nonlinear ordinary differen-
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tial equations are sufficient to describe the dynamics
of the fluid. Further from equilibrium, however, more
and more modes become unstable and the simple des-
cription by a few active variables is lost. Indeed, the
number of degrees of freedom can be estimated as
N = (L/η)3 [1], whereL is the system size andη the
Kolmogorov dissipation length.N can also be related
to the Reynolds numberRe throughL/η = Re3/4

[2]. The number of degrees of freedom is, therefore,
expected to be very large at high Reynolds number
such as in the atmosphere. Similar arguments should
hold for two-dimensional flows withN = (L/η)2.

The possibility of describing the dynamics of turbu-
lent flows such as the atmosphere by low-dimensional
deterministic chaos has led to theweather/climate at-
tractor conjecture. Studies supporting this conjecture
[3–8] used the Grassberger–Procaccia algorithm [9]
and estimated values as low as about five for dynami-
cal dimensions of weather/climate systems. However,
in view of the serious data requirements [10], which
these studies do not fulfill, these dimension estimates
seem unsatisfactory. Recently, Friedrich and Peinke
[11] combined the analysis of velocity increments in
turbulent systems with a novel approach to stochastic
dynamical systems. Their analysis is in terms of spa-
tial scales rather than in the evolution in time and it
is not easy to relate their results to ours.

In this paper, we analyze fluid velocity time series
measured in a laboratory experiment of turbulent
flow in a rapidly rotating annulus, which is designed
to model atmospheric dynamics. We obtain linear
predictions from anmth order autoregressive (AR)
global model. This model can only capture the linear
parts of the dynamics because the predictions do not
account for the dependence on the state of the system.
In contrast, we find that nonlinear predictions using
few-degree-of-freedom low-dimensional models that
are local in phase space are able to capture part of
the dynamics in two-dimensional (2D) turbulence but
not in 3D turbulence. Since the dynamic evolution
rules fit by a locally linear or locally constant model
generally depend on the position in phase space, these
schemes can capture globally nonlinear dynamics;
this is why we call these algorithms nonlinear models.
Although there are no indicators of low-dimensional

attractors in our data, phase space methods developed
for deterministic chaotic systems can be used to ex-
tract nonlinear structure. The goal of our method is to
predict the time series, a time intervalS ahead from
the current valueu(sn) and to calculate the velocity
increment�uS = u(sn + S) − u(sn) between the
current point of the time seriessn and a later timeS.

The goal here isnot to find an optimal model for
turbulence but to obtain data-driven short term predic-
tions. We search for deterministic structure in a time
series which has deterministic as well as stochastic
contributions. The aim of the paper is to infer the deter-
ministic part, not to develop a model that reproduces
the data. The main question of this paper is: do turbu-
lent velocity time series exhibit deterministic structure
which goes beyond linear correlations in the data?

The main result of this paper is that for 2D turbu-
lence but not for 3D turbulence, the positive velocity
fluctuations(�u(s) > 0) predicted by the nonlinear
model are closer to the measured values than those
predicted by the linear model. Thus nonlinear deter-
ministic structure is present for 2D turbulence but not
in the 3D case. Further, in the 2D case the probability
distribution function (pdf) of the nonlinearly predicted
increments suggests a power law behavior that can be
explained using simple scaling arguments.

The rest of the paper is organized as follows.
Section 2 describes the experimental apparatus and
the measurement techniques. Section 3 presents the
algorithms used to predict the experimental data. Sec-
tion 4 gives a simple numerical example in order to
show how the output of the predictors is evaluated.
Section 5 discusses the results regarding pdfs, scaling
and predictability, and Section 6 is a discussion.

2. Experimental methods

Our apparatus is described in [12]. It consists of
a rotating annular tank filled with water; the tank is
covered with a flat rigid lid and the bottom is coni-
cal (to approximate the beta effect, the variation of
Coriolis force with latitude). Water is pumped in a
closed circuit through two concentric rings of holes
in the bottom of the tank (Fig. 1), and this radial flux
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Fig. 1. Cross-section of rotating annulus.r1 = 10.8 cm, r2 = 43.2 cm, δ = 8.1 cm, h = 17.1 cm at r1, and h = 20.3 cm at r2. I is the
inflow, and O is the outflow.

couples with the Coriolis force to generate an azimu-
thal jet. Here we study the highly turbulent counter-
rotating jet generated by strong pumping of the
water radially outward. The measurements were made
for two sets of control parameters: a quasi-2D flow
obtained withΩ = 11.0 rad/s andQ = 150 cm3/s,
and at a rotation rateΩ = 1.57 rad/s and pumping
rateQ = 450 cm3/s, which yields a more 3D flow
(see below).

The pumping fluxQ was made large (450 cm3/s)
to obtain turbulent flow at the lower of the two rota-
tion rates that we studied. The Reynolds number for
this flow was 26,000 based on the peak azimuthal
mean velocityU and a length scaleL equal to the
distance between the forcing rings (16.2 cm). The
pumping rate at the high rotation rate was made
smaller (150 cm3/s) so that the Reynolds number
(35,000) for the resultant 2D flow would be compara-
ble to that for the 3D flow. The Taylor scale Reynolds
number (Rλ = vrmsλ/ν, whereλ is the Taylor mi-
croscale andν the kinematic viscosity) allows us to
better compare with other experiments. Following the
definitions given in Ref. [2], we calculateR2D

λ � 360,
with λ2D � 2.0 cm in the high rotation case. For the
low rotation case,R3D

λ � 360, with λ3D � 1.8 cm,
thus the two states are closely matched.

We measured the flow velocity with hot film probes
sampled at a rate of 150 Hz [13]. For each set of control

parameters we obtained six data sets of 106 points
each. The velocity probes were mounted on the top
lid and extended a distance of 1 cm into the fluid. The
probes were located midway between the inner and
outer channel walls, oriented to measure the azimuthal
velocity (Fig. 2).

The inertial range dynamics of the flow occur at
scales larger than the Kolmogorov dissipation length,
defined asη = (ν3/ε)1/4, whereε is the energy trans-
fer rate. This rate is estimated by assuming isotropy
at small scales; henceε = 15ν〈(∂u/∂x)2〉. Using
these formulas, we estimate the Kolmogorov length
η � 0.07 cm [13]. The sampling ratef = 150 Hz
corresponds to a spatial scale ofU/f � 0.1 cm, close
to our estimate forη. However, our spatial resolution
is limited to 0.3 cm by the length of the probe’s sens-
ing element. The velocity data were interpreted using
Taylor’s hypothesis of frozen turbulence, i.e., tempo-
ral fluctuations recorded by the fixed velocity probe
should reflect the streamwise spatial fluctuations. The
predictions for the velocity increments�uS are given
in terms of distancesS = 〈u〉t , where〈u〉 is the mean
velocity.

The importance of rotation is indicated by the
Rossby number, defined asRo = U/2ΩL. A small
Rossby number indicates a rotation dominated flow,
while large Ro means that inertia is dominant. The
Taylor–Proudman theorem shows that, neglecting
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Fig. 2. Streamfunction contours for a 2D flow (Ω = 11.0 rad/s,Q = 150 cm3/s). The locations of the hot film probes are indicated by	.
A rotation rate of 0.37 rad/s was subtracted from the 11.0 rad/s tank rotation rate to place the observer in the frame rotating at the mean
velocity of the flow. In the reference frame of the tank, the cyclonic (dark center) and anti-cyclonic (light center) vortices are advected
clockwise by the mean clockwise jet, as the tank rotates counter-clockwise. The closely spaced streamlines in the center of the channel
indicate the high velocity jet; the widely spaced streamlines in the vortices correspond to slower velocities.

Fig. 3. Typical velocity time series measured atΩ = 11.0 rad/s andQ = 150 cm3/s. The 10 s data segment shown in the inset illustrates
the fine turbulent structure superposed on the large fluctuations.
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dissipation, in the limit ofRo → 0, the velocity deriva-
tives must vanish in the direction of�Ω. For finite but
small Ro, the flow is two-dimensionalized to O(Ro)
[14]. For our data at a high rotation rate (11.0 rad/s),
the Rossby number was 0.06, sufficiently low so that
the flow was essentially 2D. The flow at the high rota-
tion rate displays self-similar scaling of the structure
functions, as expected for a 2D turbulent flow [13]; we
refer to this as a 2D flow. In contrast, the Rossby num-
ber at 1.57 rad/s was 0.33, large enough so the flow
had considerable three-dimensional character. The
statistics of this flow are found to show corrections
of the structure functions dut to scale-dependence,
as found for 3D turbulent flows [13]; we refer to
this as a 3D flow. Neither flow is isotropic at large
scales.

In contrast to co-rotating jets which are strong
and narrow, the counter-rotating jet is highly un-
stable and becomes turbulent even at low pumping
flux Q [15]. The two-dimensionalization, however,
is conducive to the formation of long-lived coher-
ent vortices, which are advected clockwise by the
mean flow. The velocity at which the vortices travel
varies as they interact with the jet and with other
vortices; same sign vortices merge while those of op-
posite sign repel. Compact intense vortices also form
in the recirculation regions of the large structures,
strongly affecting the motion of the mean flow. As
the meandering jet sweeps past the probes, there is a
switching between regions of high azimuthal velocity
and regions where the flow is primarily in the radial
direction. This switching is measured as a dip in the
azimuthal velocity, as shown in the time series in
Fig. 3.

3. Prediction schemes

3.1. Nonlinear model

A classical approach towards nonlinear modeling
of aperiodic and apparently unpredictable data is that
the scalar time seriessn obtained by physical measure-
ments is a projection of some phase space vectors�x(t)
onto the real numbers,sn = h(�x(t = n/f )), wheref

is the sampling rate. The assumption of nonlinear time
series analysis is that the evolution in this state space
is determined by a deterministic, chaotic dynami-
cal system. A variety of tools have been developed
for this case [16]. Recently, it has been shown that
models originally proposed for deterministic chaotic
systems also apply if the underlying dynamics is gov-
erned by a Markov process [17]. Let us outline first
how phase space models are constructed for deter-
ministic chaotic systems, and then we will show why
these algorithms work for Markovian processes as
well.

The concept of embedding [18] affirms that in the
time delay embedding space of vectors�sn = (sn, sn−d ,

. . . , sn−(m+1)d ) (for m sufficiently large and appropri-
ated), equations of motion of the formsn+1 = g(�sn)
exist. The functiong can be reconstructed from the
observed data under the assumption of its smoothness.
In this paper, we follow Farmer and Sidorowich [19],
who introduced locally constant and locally linear
approximations ofg. First, a neighborhood diameter
ε has to be fixed and neighborhoodsUn of �sn given
by Un = {�sk : ‖�sk − �sn‖ ≤ ε} are formed. The locally
constant predictor (zero-th order) for the unobserved
sn+S is then

ŝzero
n+S = 1

|Un|
∑

�sk∈Un

sk+S, (1)

the mean of the “futures” of the phase space neigh-
bors. This is the maximum likelihood estimator of
ŝzero
n+S under the assumption of Gaussian errors and

a function g(�s), which is constant onUn; hence
the name “locally constant predictor”. This can be
generalized to a locally linear predictor by replac-
ing g(�s) = constant byg(�s) = �a�s + b, an affine
function.

The central idea of local models is that embedding
vectors�sn = (sn, sn−d , . . . , sn−(m+1)d ) that are close
to each other in phase space follow similar trajectories.
The same argument applies if the data are generated
by a Markov process of orderm, where only the last
m measurements determine the transition probability
for the actual time instance. A scalar Markov process
of mth order in discrete time is defined by the fact that



M. Ragwitz et al. / Physica D 162 (2002) 244–255 249

for any sequence of successive timest1, t2, . . . , tn with
n > m, all transition probabilities fulfill

p(sn+1, tn+1|sn, tn; sn−1, tn−1, . . . , s1, t1)

= p(sn+1, tn+1|sn, tn; sn−1, tn−1, . . . ,

sn−m+1, tn−m+1), (2)

i.e., the transition probability depends on the last
m events only. Constructing neighborhoods in delay
embedding spaces corresponds to searching for states
with similar transition probabilities in the state space
of a Markov process. This is the reason why mod-
els originally derived for low-dimensional chaotic
systems serve as a powerful concept for stochastic
Markovian processes as well.

3.2. Linear model

The superiority of the locally constant or the locally
linear fit over a globally linear fit (an autoregressive
model ofmth order AR(m)) of the form

ŝAR
n+S =

m∑

i=1

aisn+(1−i)d (3)

is usually interpreted as an indication of nonlinear
determinism in the data, formalized, e.g., by the
Casdagli test [20].

4. Numerical example

In this section, we will discuss the action of the
models introduced above when performing predic-
tions on data generated by a nonlinear stochastic
process. Before introducing this process we show in
Fig. 4 schematically how the data-based predictions
are obtained and how our analysis is performed. Both
models compute the future value of the time series
on the basis of the time series segment of length
(m − 1)d. Using the predicted valueu(sn + S) the
increment�uS = u(sn + S) − u(sn) between the
actual value of the time series andu(sn + S) is
calculated.

As a numerical example we consider a simple non-
linear stochastic process, a one-dimensional system

Fig. 4. Schematic picture of the data driven prediction algorithms.

described by the following Langevin equation:

dx

dt
= αx(t) − x(t)3 + βΓ (t) (4)

with α = 0.1 andβ = 0.05, andΓ (t) is a Gaussian
distributed, uncorrelated noise function with vanishing
mean. A time series of lengthN = 1,000,000 was
generated by integrating these equations and sampling
every 0.1 units of time. An example of a time series
of this process is shown in Fig. 5, and the pdfs of the
linearly and of the nonlinearly predicted increments
�x̂T = x̂model

n+T − xn are shown in Fig. 6. We used
the model parametersm = 1 (because the system is
one-dimensional) andS = 10. We also show the pdf
of the increments of the actual time series and the

Fig. 5. Time series solution forx(t) for the Langevin process in
Eq. (4) with initial conditionx(0) = −0.2.
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Fig. 6. Pdf of the increments ofx(t) in the system given by Eq.
(4). Also shown are the increments predicted by the linear (solid)
and by the nonlinear (dashed) model, as well as the increments
(∗) predicted knowing the exact deterministic part of the equations
of motion.

pdf of the increments if the predictions are performed
using the exact deterministic part of the equations of
motion (4).

Since the data driven predictors do not know the
stochastic inputsΓ (t), they can in the best case repro-
duce the deterministic part of the equations of motion.
Similarly, one would expect from a good predictor
that the statistics of the predicted fluctuations agrees
with the statistics knowing the deterministic evolution
laws. This is nearly the case here for the pdf of the
increments predicted by the nonlinear model, while
the AR model is unable to capture the statistics of the
deterministic part of the data because the dynamics of
this process is nonlinear. Neither predictor is able to
reproduce the full pdf of the data since the long tails
of that pdf are a combination of nonlinear correlations
and the stochastic forceΓ (t), which is unknown by
definition. However, the difference between the pdfs
obtained from the linear and the nonlinear models
indicates nonlinear determinism in the time series. If
the main goal of the paper was to reproduce the pdf
of the increments of the data one would have to set up
a stochastic model using, e.g., the method suggested
by Siegert et al. [21]. However, including a stochastic
force does not improve predictions on the data, which
is the issue of our paper.

5. Results

We use the models outlined above to predict velocity
increments�uS between the future value of the time
series and the current value. The application of these
models for chaotic deterministic systems requires the
choice of optimal embedding parameters. Rigorously,
the embedding dimensionm should be 2D+1, where
D is the dynamical dimension of the system [18]. For
a Markov process, the embedding dimension should
be the order of the process. For our turbulence data
we consider the lastm measurements to contain the
dominant information on the transition probabili-
ties and the earlier events to be corrections thereof.
Our results are presented first withm = 10, which
is large enough to obtain meaningful predictions
and small enough to keep the computational effort
manageable.

In Section 5.2, we show that varyingm does not
affect the qualitative outcome of the results. For a
chaotic deterministic system the delay should be of the
order of the first minimum of the time delayed mutual
information [22]. For a dynamical system of Langevin
type the delay should be smaller than this, depending
on the noise level [17]. We use the delay that min-
imizes the mean prediction error. We also show that
our results do not depend on a particular choice of the
delayd; we use values corresponding to distances be-
tween 2 and 8 mm. The prediction horizonS is chosen
to be between 20 and 80 mm in order to match its size
with the length of the embedding vectors.

5.1. Pdf’s of the predicted velocity increments

The probability density functions (pdf’s) of the
measured velocity increment, the linearly predicted
increment, and the nonlinearly predicted increment
for 2D turbulent flow are shown in Fig. 7. There is a
clear asymmetry for the nonlinearly predicted incre-
ments: the negative increments predicted by the non-
linear model decay almost as fast as those predicted
by the linear model, but the positive ones decay much
more slowly. Since the large positive increments will
lead us to deterministic structure in 2D turbulence, we
consider only the positive branch of the pdf’s in the
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Fig. 7. Pdf’s of the measured velocity increment�uS , the linearly
predicted increment, and the nonlinearly predicted increment for
2D turbulent flow withm = 10, d = 2 mm, andS = 20 mm.

remainder of this work. A discussion of the observed
asymmetry will be given at the end of Section 5.

The pdf’s for 3D and 2D flows are shown in Fig. 8
for positive velocity increments for the same model
parameters as in Fig. 7. The pdf’s of the increment
of the measured time series depend on the distanceS,
as discussed in [13]. For 3D turbulence the pdf has
exponential tails for small values ofS and becomes
approximately Gaussian for largeS. For 2D flows the
dependence of the pdf onS is weaker; for a wide range
of distancesS it exhibits exponential decay. A log–log
plot (not shown) suggests power law behavior of the
tails of the pdf for large increments in the 2D flow. For
the intermediate value ofS = 20 mm used in Fig. 8,
both pdf’s decay approximately exponentially.

The behavior of the predicted velocity increment is
different in 2D and 3D flow. In the 3D case the pdf’s
obtained from the nonlinear model as well as from
the linear model decay exponentially (see Fig. 8).
Consequently, the time series only contains linear
correlations; all other fluctuations are anticipated as
noise by both models. In the 2D, flow the predictions
of the two models differ. The pdf of the increments
predicted by the linear model still decays exponen-
tially. However, in the nonlinear case the decay is
slower, suggesting a power law behavior for large
increments, as will be discussed in Section 5.3.

Fig. 8. Pdf’s of the positive velocity increment from the experiment,
the linear model, and the nonlinear model for: (a) 3D flow, and
(b) 2D flow with m = 10, d = 2 mm, andS = 20 mm.

The discrepancy between the experimental pdf and
the pdf predicted by the nonlinear model is due to
the stochastic part of the dynamics, which cannot be
captured by any predictor, as discussed for a sim-
ple example in Section 4. To put it differently, this
difference has its origin in the fact that modeling
and predicting are very distinct tasks in stochastic
dynamical systems. Our aim here is prediction. The
difference between the nonlinear model and the linear
one suggests the existence of nonlinear correlations in
the data, which will be discussed in Section 5.4. This
difference will lead us to nonlinear determinism in the
data, because it corresponds to a better performance
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Fig. 9. Pdf’s of the velocity increment for 2D turbulence from the
linear model (solid line), and the nonlinear model (dashed line)
for (a) m = 5,10,15 with d = 4 mm andS = 20,40,60 mm, and
(b) d = 2,3,4,5 mm with m = 10 andS = 20,30,40,50 mm.

of the nonlinear model in situations when a strong
increase of the velocity occurs.

5.2. Dependence on parameters

We now show that the qualitative structure of
the pdf for 2D turbulence does not depend on the
model parametersm and d. First we vary the em-
bedding dimensionm = 5,10,15, and keepd fixed
by also varying the respective prediction horizons,
S = 20,40,60 mm, as shown in Fig. 9(a). Next we
examine different delays,d = 2,3,4,5 mm, keeping
m constant atm = 10 (soS = 20,30,40,50 mm), as

shown in Fig. 9(b). For all parameter values the incre-
ments predicted for 2D turbulence by the nonlinear
model decay more slowly and qualitatively differently
from those predicted by the linear model.

5.3. Scaling

We have shown in Section 4 that, for a stochastic
system, one cannot expect the pdf’s of the predicted
increments and of the increments of the experimental
data to be in close agreement. The same is true for
the turbulence data since in turbulent velocity time
series one always expects a stochastic contribution due
to unresolved degrees of freedom. Because the noise
inputs are unknown they cannot be captured by any
predictor of the type discussed here. The difference
between linearly and nonlinearly predicted increments
is a sign for nonlinear correlations in the data. Is it
possible to understand the functional form of the pdf
of the increments predicted by the nonlinear model?

We have noted that the pdf for the 2D flow for large
velocity increments is suggestive of power law decay
(see Fig. 8(b)). This can be understood when analyzing
the action of the nonlinear predictor. Let us first discuss
when the large positive increments, that correspond
to the power law behavior, are predicted. In Fig. 10,
the average pattern of the velocity signal is shown
for a situation when the nonlinear model predicts an

Fig. 10. Average velocity pattern when positive increments of
1.5 cm/s (upper curve) and 2 cm/s (lower curve) are predicted by
the nonlinear model withm = 10, d = 2 mm andS = 20 mm.
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increase in the velocity of 1.5 or 2 cm/s. It can be seen
that before a large increment is predicted the signal
passes through a pronounced minimum. As we know
from Section 2 these minima correspond to coherent
vortices. Thus a large positive increment is predicted
when a large coherent vortex passes the probe.

Now let us discusshow the increase is predicted.
The nonlinear predictor makes its prediction by
searching for all patterns in the time series that pos-
sess a similar structure, and then averaging over the
“futures” of these patterns. The patterns of the form
shown in Fig. 10 are supposed to represent coherent
vortices of a certain sizer. Therefore, the nonlinear
predictor computes theaverage velocity increase after
a vortex of a particular sizer has passed the detector.
To every vortex of sizer0 the average velocity incre-
ment 〈�ur 〉r=r0for vortices of this size is attached.
The number of vortices of sizer0 is, therefore, di-
rectly translated into the number average velocity
increments of size〈�ur 〉r=r0.

We will see now in the second step that the distri-
bution of the vortices is indeed a power law, which
agrees with the observed behavior. A prediction of
power law behavior can be obtained by assuming
scale invariance and using results of the Kolmogorov
1941 (K41) theory [2]. Scale invariance predicts the
distribution of vortices of sizer in a turbulent fluid
to scale asr−3 in 3D flow and asr−2 in 2D flow, to
assure that eddies of different size fill the same vol-
ume. Since our measurements are performed in only
one spatial dimension, we take the cross-sections of
different vortices into consideration. Then along a
one-dimensional line the number of eddies should
scale asr−1 in 2D as well as in 3D turbulence. The
relation between the size of the vortex and its average
velocity increment is given by the K41 theory. The
theory predicts that the longitudinal velocity structure
functions〈(�ur)

n〉 = 〈(u(x+r)−u(x))n〉 are given by

〈(�ur)
n〉 = Cnε

n/3rn/3,

whereε is the energy dissipation rate per unit mass
andCn a universal constant. The physical content of
the Kolmogorov theory is that the typical velocity
increment within eddies of sizer behaves asε1/3r1/3

[23]. This gives us the desired relation for the pdf of

Fig. 11. Comparison of the pdf of the nonlinearly predicted velocity
increments (dashed lines) with the power law scaling deduced
from the Kolmogorov theory (solid lines). The different curves
correspond to different embedding parameters, from bottom to top:
d = 2,3,4,5,8 mm andS = 20,30,40,50,80 mm.

the number of vortices versus their typical velocity
increment�ur : it should scale as�u−3

r .
The pdf for nonlinearly predicted velocity incre-

ments is compared with the Kolmogorov power law
�u−3

S for large velocity increments and different pre-
diction horizons in Fig. 11. The pdf’s exhibit the pre-
dicted scaling for a range of nearly one decade. The
onset of the scaling region is shifted towards larger
velocity increments for longer prediction horizons
and longer embedding vectors. This is expected since
vortices that are smaller than the sum of the predic-
tion horizon and the length of the embedding vector
can no longer be resolved by the predictor. For the
largest displayed values, this sum reaches a length of
about 16 cm, which corresponds roughly to the largest
coherent structures in our system and consequently a
pronounced scaling region is no longer observed.

5.4. Degree of determinism

In the preceding sections we have seen for the 2D
flow that the nonlinear model predicts more large fluc-
tuations of the velocity signal than the linear model
and that the statistics of the nonlinearly predicted
increments are closer to that of the actual data. How-
ever, this statistics does not tell us whether the large
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Fig. 12. The nonlinearly predicted increment (stars) agrees well
with the measured velocity increment (solid squares), while the lin-
ear model (crosses) systematically underestimates the increments
(2D flow with S = 20 mm).

increments are predicted in situations when large fluc-
tuations actually occur in the data. Are the large incre-
ments, predicted by the nonlinear model, correlated in
time with the increments of the data, and do they lead
to increased predictability of the nonlinear scheme?
Which model gives the better predictions in the region
of the pdf where the two models differ? These are the
questions we want to answer in this section. In Fig. 12,
we show the average of the observed increment�uS

in situations when an increment�ûS is predicted by
the nonlinear model for the 2D flow. We also show the
increments predicted by the linear model for these sit-
uations. While the measured increments coincide on
average with the predictions of the nonlinear model,
the linear model systematically underestimates the
fluctuations. This again is a sign of the presence of
nonlinear structure in the data (see Fig. 10)).

In 3D flow we observe the opposite behavior for
nonlinear versus linear prediction, i.e., the nonlinear
model performs worse on average for large predicted
velocity increments. This is shown in Fig. 13, where
the relative improvement of the nonlinear scheme over
the linear model,I = (Ezero−EAR)/�u, is displayed
for 2D and 3D flow. HereEzero andEAR are the aver-
aged absolute prediction errors of the nonlinear (zeroth
order) and the linear model (AR model), respectively.
While the improvement is positive for large predicted

Fig. 13. The relative improvementI of the nonlinear model versus
the linear scheme for 2D (dashed line) and 3D (solid line) flow
as a function of the size of the nonlinearly predicted increment
(m = 10; d = 2,4 mm; S = 20,40 mm).

velocity increments in 2D, it is negative for 3D turbu-
lence. This shows not only that we do not find nonlin-
ear structure in 3D velocity time series, but also that
the linear model is even superior due to the limited
statistical robustness of the locally constant scheme.

Finally, we emphasize the asymmetry between
positive and negative velocity increments (Fig. 7).
Neither the scaling behavior nor the exponential
decay of the relative prediction error can be detected
for negative velocity increments. This behavior can
be understood in the following way: the large nega-
tive increments are due to the radial flow as a vortex
sweeps the probe, which then produces a large pos-
itive increment. The negative increment cannot be
predicted because one does not know whether the
vortex will pass through the probe or if it will miss it.
Once it has passed through, however, we can predict
the upcoming positive velocity increment.

6. Discussion

We have analyzed the dynamics of two-dimensional
and three-dimensional turbulent flow by linear and
nonlinear modeling of velocity time series. For 2D tur-
bulence we found that nonlinear phase space models
can have predictive power superior to linear models
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when the velocity increments are positive and large.
A similar improvement of the nonlinear model has
been observed earlier for atmospheric surface wind
data [24]. We also found that the pdf of the nonlin-
early predicted increments in the 2D case scales like
�u−3, as expected from the Kolmogorov theory if
one assumes a scale invariant distribution of vortices.
For 3D turbulence we found that the nonlinear model
was no better than the linear model. An intuitive rea-
son for the difference between 2D and 3D flow is the
absence of a vortex stretching term in a 2D fluid. This
stretching allows the dynamics within a 3D vortex to
be much more complicated than those of a 2D vortex.

Acknowledgements

The work at the University of Texas was supported
by a grant from the US Office of Naval Research and
the work at the Max-Planck Institut für Physik kom-
plexer Systeme in Dresden was supported by a grant
from the German Federal Ministry of Economics.

References

[1] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon
Press, Oxford, 1959.

[2] U. Frisch, Turbulence, Cambridge University Press,
Cambridge, 1995.

[3] K. Freadrich, J. Atmos. Sci. 43 (1986) 419.
[4] C.L. Keepenne, C. Nicolis, J. Atmos. Sci. 46 (1989) 2356.
[5] C. Nicolis, G. Nicolis, Nature 326 (1987) 523.
[6] G. Poveda-Jaramillo, C.E. Puente, Boundary-Layer Meteorol.

64 (1993) 175.

[7] A.A. Tsonis, J.B. Elsner, Nature 333 (1988) 545.
[8] M.B. Sharifi, K.P. Georgakakos, I. Rodriguez-Iturbe, J.

Atmos. Sci. 47 (1990) 888.
[9] P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50 (1983) 346.

[10] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D
Sec. 7 16 (1985) 285;
J.P. Eckmann, D. Ruelle, Physica D 56 (1992) 185.

[11] R. Friedrich, J. Peinke, Phys. Rev. Lett. 78 (1997) 863.
[12] T.H. Solomon, W.J. Holloway, H.L. Swinney, Phys. Fluids 5

(1993) 1971.
[13] C.N. Baroud, B.B. Plapp, Z.S. She, H.L. Swinney, Anomalous

self-similarity in two-dimensional turbulence, submitted for
publication, ar Xiv:physics/0104055.

[14] D. Tritton, Physical Fluid Dynamics, Oxford Science
Publications, Oxford, 1993.

[15] J. Sommeria, S.D. Meyers, H.L. Swinney, Nature 337 (1971)
58;
J. Sommeria, S.D. Meyers, H.L. Swinney, Experiments on
Vortices and Rossby Waves in Eastward and Westward Jets,
in: A. Osborne (Ed.), Nonlinear Topics in Ocean Physics,
1988, pp. 227–269.

[16] H.I. Abarbanel, Analysis of Observed Chaotic Data, Springer,
New York, 1996;
H. Kantz, T. Schreiber, Nonlinear Time Series Analysis,
Cambridge University Press, Cambridge, 1997.

[17] M. Ragwitz, H. Kantz, Markov models from data by simple
nonlinear time series predictors in delay embedding spaces,
to appear in Phys. Rev. E (2002).

[18] F. Takens, Lecture Notes in Mathematics, Vol. 898, Springer,
New York, 1981;
T. Sauer, J. Yorke, M. Casdagli, J. Statist. Phys. 65 (1991)
579.

[19] J.D. Farmer, J.J. Sidorowich, Phys. Rev. Lett. 59 (1987) 845;
J.P. Crutchfield, B.S. McNamara, Complex Syst. 1 (1987)
417;
E.J. Kostelich, J.A. Yorke, Phys. Rev. A 38 (1988) 1649.

[20] M. Casdagli, Physica D 35 (1989) 335.
[21] S. Siegert, R. Friedrich, J. Peinke, Phys. Lett. A 243 (1998)

275.
[22] A.M. Fraser, H.L. Swinney, Phys. Rev. A 33 (1986) 1134.
[23] K. Gawedzki, Easy Turbulence. chao-dyn/9907024 v2.
[24] M. Ragwitz, H. Kantz, Europhys. Lett. 51 (2000) 595.


	Nonlinear determinism in time series measurements of two-dimensional turbulence
	Introduction
	Experimental methods
	Prediction schemes
	Nonlinear model
	Linear model

	Numerical example
	Results
	Pdf's of the predicted velocity increments
	Dependence on parameters
	Scaling
	Degree of determinism

	Discussion
	Acknowledgements
	References


