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a b s t r a c t

Microfluidic techniques are employed to investigate air–liquid flows in the lung. A network of microchan-
nels with five generations is made and used as a simplified model of a section of the pulmonary airway
tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurca-
tion until they reach the exits of the network. A resistance, associated with the presence of one plug in a
given generation, is defined to establish a linear relation between the driving pressure and the total flow
rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive
eywords:
wo-phase flow
irway tree
iquid plugs
icrofluidics

plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the
driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long
range interactions between daughters of a dividing plug are observed and discussed, particularly when
the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for dif-
ferent forcing conditions: the flow develops symmetrically when subjected to constant pressure or high

low fl
flow rate forcing, while a

. Introduction

The lung is a dynamic organ where mechanical stresses play
n important biological role. These stresses may arise in particular
rom the presence and transport of liquids within the airway tree.

hile liquid is always present on the inner surfaces of the pul-
onary paths, it can form discrete plugs that occlude the airway in

athological situations [1]. Indeed, many respiratory pathologies,
uch as asthma, pneumonia, or respiratory distress syndrome, may
nvolve the blockage of the airways by liquid plugs which impede
he flow of air. Moreover, flows associated with the movement or
upture of liquid plugs can cause damage to endothelial cells which
ine the lung surface [2,3].

In addition to these pathologies where occlusion by the pul-
onary fluids can occur, the instillation of liquid plugs into the

ulmonary airway is common in medical treatments such as par-
ial liquid ventilation and drug delivery [4]. It is of vital importance,
or instance, in the case of Surfactant Replacement Therapy, where
urfactant is injected as a liquid bolus into the lungs of premature
eonates [5]. In these cases of drug delivery, the only available con-
rol over the plug distribution is at the entrance of the network, at
Please cite this article in press as: Song Y, et al. The air–liquid
doi:10.1016/j.medengphy.2010.10.001

he level of the patient’s trachea. Once the bolus is injected, lit-
le is known about the ultimate distribution of liquid within the
ulmonary tree, although some studies have attempted to predict
urfactant dispersion by numerical or experimental models [6,7].
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ow rate driving yields an asymmetric flow.
© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

Variations in the paths taken by daughters of the initial surfactant
plug may account for the inconsistent responses observed in such
therapies [5].

One of the difficulties that arise is due to the interactions
between the immiscible interfaces and the complex geometry of
the lung. Indeed, the presence of surface tension introduces a
nonlinear relationship between pressure drop and flow rate in a
particular branch, through the addition of Laplace pressure terms
[8,9]. While these nonlinearities already appear in flow through
straight channels [10], they are amplified when plugs pass a bifur-
cation since the interfaces must strongly deform in this case [9].
This can lead to the existence of local blockage if the pressure is
below a threshold value, or to plug rupture if the plug length is too
small.

Microfluidics has already been proposed as a way to model
branching geometry of the lung, at least in the generations where
gravity and inertial effects are negligible [11]. These regions of the
lung are characterized by length scales below the capillary length
and small Reynolds numbers. The capillary length LC, i.e. the scale
below which the effects of gravity become small compared with
surface tension effects, is generally around 2 mm for most liquids.
The Reynolds number compares the effects of fluid inertia with vis-
cous effects through the relation Re = �lUD/�, where �l is the liquid
density, U is a characteristic velocity, D is the airway diameter, and
flow in a microfluidic airway tree. Med Eng Phys (2010),

� is the fluid viscosity. The two criteria D < LC and Re < 1 are met
in the lung for a large range of generations, starting from about
generation 9 to the respiratory bronchioles, around generation 20
[12]. The ability to fabricate complex microfluidic geometries using
photo-lithography techniques therefore opens a wide range of pos-
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Table 1
Experimental conditions.
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ibilities for addressing questions of liquid distribution that are
elevant for pulmonary flows, in the presence of different additional
hysical phenomena.

Below, we study the motion of liquid plugs in a connected tree
f microchannels. We begin with a description of the experimental
etup in Section 2. In Section 3, we derive an empirical relation
or the resistance to flow due to a single plug in the network and
how that this relation generalizes well for the case of a train of two
lugs. Further, different behavior is observed for pressure vs. flow
ate driving as the plug flows further into the network, since the
esistance to flow is modified by the passage through successive
ifurcations.

. Experimental setup

Our experiments are conducted in a network consisting of
ranching microchannels that have rectangular cross-sections,
s shown in Fig. 1. Soft lithography techniques are employed
o make the channels of polydimethylsiloxane (PDMS) [13]. A
hin flat layer of PDMS is spin-coated on a glass microscope
lide and the channels are bonded on this PDMS layer in order
o guarantee identical boundary condition at all four channel
alls.

The network inlet consists of a Y-junction connected to the
rst generation for creating and injecting liquid plugs into the
etwork. One inlet of the Y-junction is connected to a syringe
lled with perfluorodecalin (PFD) and the syringe can be pushed
y a pump. PFD is a fluorocarbon whose viscosity and surface
ension are � = 5 × 10−3 Pa s and � = 20 × 10−3 N/m, respectively. It
resents good wetting properties on PDMS and does not swell
he channels. Through the second inlet of the Y-junction, the air
oes into the network and a constant driving is applied between
he first and the last generations. Either constant pressure or
onstant flow rate can be applied. When pushing at constant pres-
ure, the inlet of the air is connected to a computer-controlled
Please cite this article in press as: Song Y, et al. The air–liquid
doi:10.1016/j.medengphy.2010.10.001

ressure source (FLUIGENT, MFCS-8C). To apply a constant flow
ate, a syringe is filled with water and connected to the air inlet
hrough a flexible tube. Only a small volume of air near the net-
ork entrance is left in the tube in order to reduce the effects

ig. 1. Microscope image of the microfluidic network with five generations. Gen-
rations are numbered with Arabic numerals. The two early plugs (A and B) in
eneration 2 are the daughters of the first plug. A second plug (C) is moving in
he first generation.
1 Pressure: Pdr = 150, 250, 400 Pa
1 Flow rate: Qdr = 2, 5, 20 �L/min
2 Pressure: Pdr = 500 Pa

of air compressibility. A syringe pump ensures a constant flow
rate of the water which then pushes the air into the network.
Driving conditions for the experiments in this paper are given in
Table 1.

The height of all the branches in the network is 50 ± 2 �m and
the width of the branch in the first generation is 720 �m. Chan-
nel widths of successive generations wi decrease at a constant rate
wi+1 = �wi, where � = 0.83 is a constant parameter and the sub-
script denotes the generation number. This value of � preserves the
ratio of mean diameters observed in the pulmonary airway [12]. It
gives a width 342 �m for the last generation. The channel lengths
also decrease linearly with the generation number, with a ratio 0.6.
This value was chosen to preserve the ratio of plug length to branch
length at each generation, thus reducing the number of variables
in the problem, if the plugs divide symmetrically at the bifurca-
tions. PFD plugs (bright regions) surrounded by air (gray regions)
are indicated in Fig. 1. The plugs are injected into the first genera-
tion and pushed through the network, dividing into two daughters
at every bifurcation. At the exits of the last generation, sixteen holes
(black in Fig. 1) are punched to fix the exit condition at atmospheric
pressure.

Experiments are recorded with a high speed camera (Photron
Fastcam, 1024 PCI) through a stereomicroscope at 0.7× magnifi-
cation. The resolution of the camera is 1024 × 1024 pixels, which
yields 1 pixel for 24.8 �m. For the single plug experiments, images
are taken at different rates (varying from 30 to 125 images per sec-
ond) according to the driving conditions, thus ensuring that the
plug positions can be traced with a good resolution. For two succes-
sive plugs under constant pressure driving, 125 images per second
are recorded. From the image sequences thus obtained, the posi-
tions xr of the rear interface of the plug are manually recorded
while the plug is traveling in the network. Based on these measure-
ments, the plug velocity is calculated as U = [xr(t) − xr(t − dt)]/dt,
where dt is the time step between successive images. The fluid
deposition on the walls is neglected in the calculation since
it does not affect the flow significantly in our experimental
conditions.

3. Movement in the straight sections

In this section, we focus on the velocity of a plug pushed at a
constant pressure as it travels in the straight channels between two
successive bifurcations. We first study the case of a single plug and
its daughters in the network, then build a relation reproducing the
results and show that it can be applied to the case of two successive
plugs and their daughters.

3.1. A single plug in the network

A single plug is injected into the network and then pushed at
a constant pressure Pdr. It divides into two at every bifurcation
and velocities of all its daughters, measured in each branch, are
recorded according to their position in the network (generation
flow in a microfluidic airway tree. Med Eng Phys (2010),

numbers i). The daughter plugs are constantly subjected to the
same pressure difference and should therefore all move at the same
speed which, in addition, should be constant during their passage
in their respective branches. Variations from branch to branch and
within a branch, to be attributed to imperfections in the micro-

dx.doi.org/10.1016/j.medengphy.2010.10.001
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Fig. 2. Average plug velocity as a function of the generation number i (driving pres-
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network gives a good approximation in the current conditions.
Notice that although the lengths of the plugs and the driving

pressure are kept the same, the total flow rate displays a clear
dependence on the distance between the two plugs, as shown
in Fig. 4. When the plugs get further apart, a higher flow rate is

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Generation number

T
ot

al
 fl

ow
 r

at
e 

(μ
L/

s)

Two Plugs
P

dr
 = 500Pa

Single Plug 
P

dr
 = 250Pa

Fig. 4. Evolution of the total flow rate in a single plug experiment (�) (driving pres-
ure 250 Pa). Symbols correspond to values recorded in each branch and the solid
ine to their average. The prediction from a previous study [9] is shown as a dashed
ine.

abrication, are observed however. As the channels get narrower,
he flow becomes more sensitive to wall conditions, which brings
igger separations between data points in later generations. For
ach generation number i, values corresponding to the 2i−1 indi-
idual time-averages of the plug velocities are plotted in Fig. 2. The
olid line drawn through these points thus gives the average value
btained over the 2i−1 branches.

At this stage, it is interesting to compare these observations to
he theoretical prediction that could be made from the study of
lug motion in straight channels in microfluidics conditions [9].
he formula in Eq. (11) of Ref. [9] is used to compute the veloc-
ty in all the generations by assuming that plugs divide equally at
ach bifurcation while taking into account the narrowing of the
hannels wi = w1�i−1, hence Li = L1/(2�)i−1. The result is given as
dashed line in Fig. 2, from which it is immediately seen that the
lugs experience a resistance larger than predicted as they progress

n the network. Since the formula is well validated in the case of long
lugs, we attribute the discrepancy to the exponential shortening
f the plugs with the generation number: for the experiment corre-
ponding to the data in Fig. 2, the plug length in the last generation
s L5 = 300 �m while the channel width is w5 = 342 �m. Plugs are
herefore comparatively short and the resistance is underestimated
n the last generations.

The limitations of the theory led us to develop an empirical rela-
ion that we now describe. As for an electrical network, we define
resistance RiLi associated with the presence of a daughter plug of

ength Li in generation i, where the role of the voltage is played by
he driving pressure Pdr and the role of the current intensity by the
olumetric flow rate in each branch of that generation Qi. We can
herefore write Pdr = RiLiQt = RiLiQiNi, where Ni = 2i−1 is the number
f branches in that generation and Qt = QiNi is the total flow rate
n the network. We assume further that each plug divides into two
aughters of essentially equal lengths at every bifurcation, which

s consistent with experimental observations, Li = L1/(2�)i−1. Flow
ate Qi is calculated as Qi = Uihwi, Ui being the plug velocity in that
eneration. The values of Ri can be computed from the measure-
ents since the driving pressure, the initial length of the plug and
Please cite this article in press as: Song Y, et al. The air–liquid
doi:10.1016/j.medengphy.2010.10.001

he flow rate based on velocity measurements are known. They are
ound to decrease with the generation number, as shown in Fig. 3.
his leads to an increase in the total flow rate Qt as the plug reaches
ater generations (symbol � in Fig. 4).
0 1 2 3 4 5 6
Generation number

Fig. 3. Dependence of the resistance on the generation number.

3.2. Two successive plugs

The relation just defined now allows us to analyze the dynam-
ics when two plugs are injected successively. Like for two resistors
mounted in series, the relation between the driving pressure and
the volumetric flow rate can be written as Pdr = R[1]

i
L[1]

i
Q [1]

t +
R[2]

j
L[2]

j
Q [2]

t = (R[1]
i

L[1]
i

+ R[2]
j

L[2]
j

)Qt , where the superscripts ‘[1]’ and
‘[2]’ denote the first and the second plugs and the subscripts ‘i’ and ‘j’
indicate the position of the plugs in the network by the correspond-
ing generation numbers. Using the values of Ri determined above
and the initial lengths of two plugs, RiLi can be computed. Flow rates
for a two-plug train for the driving pressure Pdr = 500 Pa are com-
pared to the experimental findings in Fig. 4. Satisfactory agreement
is obtained, indicating that the linear description of the flow in the
flow in a microfluidic airway tree. Med Eng Phys (2010),

sure Pdr = 250 Pa) and two-plug experiments (Pdr = 500 Pa) when they always flow in
the same generation (�), in two successive generations (�) and with a separation
of one generation (�). Open symbols denote experimental data and closed ones are
values derived from the linear law.

dx.doi.org/10.1016/j.medengphy.2010.10.001
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bserved. This can be understood by noting that the resistance due
o the downstream plug decreases with generation number and
hus the sum (R[1]

i
L[1]

i
+ R[2]

j
L[2]

j
) also decreases.

. Passage through a bifurcation and long range
nteractions

The passage of a plug in a bifurcation leads to highly nonlinear
ffects because of the strong modification of the shape of the inter-
ace. We begin by considering the details of the passage of a plug
hrough a bifurcation before turning to how the behavior of one
lug influences the passage of plugs elsewhere in the network.

.1. One plug in one bifurcation

Consider a plug that just arrives at a bifurcation, as sketched in
ig. 5(a). The curvature of the front interface decreases before the
ear one is affected by the bifurcation, which introduces a capil-
ary pressure difference across the plug. This is a three-dimensional
roblem and the biggest curvature of the interface exists in the
irection perpendicular to the plane of the network. However, we
ssume that the capillary pressure difference is mainly driven by
urvature differences in the plane of the network. The pressure dif-
erence Pcap between the rear and front interfaces can be expressed
s Pcap = Pr − Pa = �/rr − �/ra, where Pr, Pa denote the capillary pres-
ures at the receding and advancing interfaces and rr, ra are the
igned radii of curvature of the interfaces in the plane of the net-
ork. Before the plug touches the opposite wall, we have ra > rr and

a increases as the plug advances. So Pcap acquires increasing pos-
tive values. There exists a threshold pressure necessary to push
plug through a bifurcation, which is estimated as the maximum
alue of Pcap: Pthr = Pcap,max = �/rr − �/ra,max where ra,max is the max-
mum possible value of ra, reached just before the front interface
ouches the corner of the opposite wall. Beyond this point, Pcap

ecomes negative (ra < rr) and pulls the daughter plug (Fig. 5(b)).
hen the plug has fully passed the bifurcation, Pcap cancels (ra ≈ rr).
The threshold pressure Pthr can be computed from the network

eometry:

thr = 2� cos �

wi
− �(cos � − sin ˛)

wi+1
(1)

here � is the contact angle of PFD on PDMS (around 23◦) and the
ifurcation half-angle, ˛, is half the angle between the two branches
f the same generation. Here ˛ = 60◦ yields the threshold pressure
Please cite this article in press as: Song Y, et al. The air–liquid
doi:10.1016/j.medengphy.2010.10.001

thr = 51, 61, 74 and 89 Pa for the first to the fourth bifurcations,
espectively. Although the values of Pthr depend on the value of the
ontact angle �, a difference of 23◦ in the contact angle only changes
he threshold by 2 Pa.

rr

Pr Pa

Pdr

(a)
Pr Pa

Pdr

(b)

ra

rr
ra

ig. 5. Passage through a bifurcation. (a) A plug arrives at the bifurcation. The radius
f curvature ra is bigger than rr and increasing while the plug is advancing. (b) After
he front interface touches the next generation, ra becomes smaller than rr (notice
hat here 2˛ = 90◦ for convenience).
Fig. 6. Experimental measurements of plug velocity during the passage through a
bifurcation. The position of the plug is defined as that of its rear interface.

When the plug is pushed at a constant pressure, the pressure
difference across the plug can be expressed as �P = Pdr − Pcap. The
variation in Pcap will lead to variations of �P and also of the velocity
of the plugs as they advance. In order to push a plug through a bifur-
cation, �P has to remain positive during the passage. This implies
that the driving pressure has to be larger than the threshold pres-
sure. Meanwhile, the velocity variations during the passage should
account for the appearance of Pcap, which modifies the value of the
effective driving pressure as �P.

Measurements of the velocity of a particular plug are shown
in Fig. 6 when it is pushed at Pdr = 250 Pa and passes the second
bifurcation in the network. The plug initially slows down after it
enters the bifurcation (position A), after which its velocity rises
quickly as the front interface reaches the opposite wall (position
C), since Pcap < 0 and �P increases. Accordingly the passage of a
plug through a bifurcation is always associated with a large spike
in the velocity.

When the plug is forced at a constant flow rate, if the passage
can be treated as a quasi-static process, we may write that �P = Pcap

[14]. Variations in Pcap will therefore induce variations in the pres-
sure upstream of the plug position such that �P will increase until
the plug touches the opposite wall, where it rapidly switches to a
negative value which pulls the plug into the daughter channels. The
largest value reached by �P is �P = Pthr.

4.2. Plug interactions

The connectivity of the branching tree implies that local pres-
sure variations will lead to long range effects across different
regions of the network. The fundamental unit to understand these
interactions is shown in Fig. 7, where two daughters (I and II) of the
same plug arrive at two bifurcations nearly simultaneously.

Assume that plug I touches the opposite wall slightly earlier
than plug II. Then, its velocity as well as the flow rate in that branch
increase according to the above analysis. In case of constant pressure
flow in a microfluidic airway tree. Med Eng Phys (2010),

forcing, the driving condition for plug II is not modified; this plug
also slows down and then speeds up as it crosses the bifurcation,
independently of plug I. This is no longer the case if the plugs are
pushed at constant flow rate Q. When plug I passes the bifurcation

dx.doi.org/10.1016/j.medengphy.2010.10.001
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Fig. 7. The fundamental unit of long range interactions between two plugs.

hown in Fig. 7, the flow rate QI increases, forcing QII to decrease in
rder to conserve the value of Q = QI + QII. In fact, QII may become
ero or even negative, which means that plug II may stop or even
ove backwards, depending on the value of Q.

. Results

The flow behavior is studied by tracking the positions and veloc-
ties of daughter plugs along the paths shown in Fig. 8. In these
xperiments, a single plug is injected into the network and forced
o divide into two at every bifurcation.

.1. Constant pressure driving
Please cite this article in press as: Song Y, et al. The air–liquid
doi:10.1016/j.medengphy.2010.10.001

A time sequence showing the successive divisions is shown
n Fig. 9, when the plug is pushed at a constant driving pressure
dr = 250 Pa. Only half of the network is shown for clarity. As seen
n these images, the plug positions may vary slightly across the dif-

ig. 8. Paths along which the plug positions and velocities are measured. The dashed
ox indicates the zone that is displayed in Figs. 9 and 11.
 PRESS
Physics xxx (2010) xxx–xxx 5

ferent generations but they mostly advance in synchrony through
the bifurcations and across generations. These results are typical
of many different experiments. A more quantitative measure of
this synchronous flux is given by measuring the plug velocities as
functions of time along the four paths, as shown in Fig. 10. As the
daughter plugs advance in the network, their number increases and
their velocities vary according to the analysis in Section 3.

The spikes that appear in the velocity time series are the signa-
tures of passages through the bifurcations, as explained above. By
tracking the moment at which the spikes occur along each of the dif-
ferent paths, we see that the plugs reach the bifurcations and divide
at roughly the same time. This is in spite of imperfections in the
network which lead to slight asymmetry in the divisions and thus
yield plugs of variable sizes. Moreover, a careful examination of the
time series reveals small differences in the passage times through
the second bifurcation. However, this difference is not amplified in
later generations and the plugs all continue in a steady fashion. The
flow remains globally symmetric during its evolution.

5.2. Constant flow rate driving

When the experiments are repeated by pushing the plug at a
constant flow rate, the behavior may be strongly modified. In the
experiment shown in Fig. 11, the driving flow rate is Qdr = 2 �L/min
and two daughters are observed as they advance simultaneously
in generation 2 (image (b)) but this synchrony is broken when
they reach the bifurcation. At this stage, only one of the daughters
divides and its daughters continue to flow in generation 3 (image
(c)). However, the upstream plug catches up with its sister which
gets blocked at the next bifurcation due to the higher threshold
pressure.

The velocities of the plugs are displayed in Fig. 12 along the same
paths as above. Due to flow rate conservation in the network, the
plugs adjust their velocities while advancing and the acceleration
in one path leads to a deceleration in the others. Here, an uneven
division, which introduces daughters of different lengths, leads to
significant velocity variations since a shorter daughter is easier to
push forward than a longer one. Velocity differences are visible, for
instance, in the case of the two daughters of the initial plug as they
flow in generation 2: while the one in paths (3, 4) speeds up, the
one in paths (1, 2) must slow down.

After one daughter passes a bifurcation and divides, a flow rate
increase in the corresponding branches results in a slowing down
of other daughters which become stuck at the bifurcations. Once
the early plug that has divided reaches the next bifurcation, the
threshold pressures at two successive bifurcations have to be com-
pared and the plug with the lowest threshold will advance first.
In this network, the threshold increases with generation number,
which implies that the late plugs can catch up with the early ones.
The most downstream plug must therefore wait at the bifurcation
for all other plugs to reach the same bifurcation level before it
can continue its journey. This is shown in the velocity evolution
in Fig. 12, by the segments with zero velocities before the passage
of a bifurcation.

At constant flow rate forcing Qdr = 2 �L/min, the air–liquid
flow therefore remains symmetric but evolves through discrete
steps. Plugs are never more than one generation apart due to the
increasing threshold pressure, but they spend long periods of time
stationary at bifurcations, waiting for plugs in the other branches
to catch up.
flow in a microfluidic airway tree. Med Eng Phys (2010),

5.3. Flow patterns in the network

Results of experiments repeated at different driving condi-
tions are summarized in this section. As shown earlier, the flow
is synchronous at Pdr = 250 Pa, but turns out to be asynchronous at

dx.doi.org/10.1016/j.medengphy.2010.10.001
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Fig. 10. Velocity variations along four paths under a constant pressure driving
Pdr = 250 Pa. The vertical line indicates the time when the plug passes a bifurcation.

Fig. 11. Image sequence for the half network, obtained f
rom the experiment of constant pressure driving.

Qdr = 2 �L/min. However, the flow pattern depends on not only the
type of the driving condition but also the value of driving force.

The behavior described above can be summarized by measuring
the time �ti separating the first and last plug divisions at a particu-
lar depth in the network. We normalize this time difference by the
mean time taken to travel through the following generation (Ti+1)
and write the normalized time �ti. A value of �ti < 1 indicates that
the plugs advance nearly simultaneously through the generation
i + 1, while a value of �ti > 1 implies that some plugs only divide
once the early ones have already reached the next bifurcation. The
results for different experiments are shown in Fig. 13, where each
data point corresponds to an average over several experimental
realizations.

Two distinct behaviors are observed. The division times for
constant flow rate driving are above 1 at the second and third
bifurcations for Q = 2 �L/min and at the third bifurcation for
Q = 5 �L/min. This confirms that plugs pass one by one, waiting for
each other to reach the next bifurcation. The transition to �ti > 1
occurs when the pressure necessary to ensure the constant flow
rate decreases below the local threshold, as described in Ref. [14].
Note that the values of �ti increase with generation number here
because the number of sister plugs increases and since they must
pass separately. In contrast, constant pressure driving yields values
of �ti that are significantly below 1, indicating that plug divisions
are nearly synchronous. This is the case for all of the data recorded
flow in a microfluidic airway tree. Med Eng Phys (2010),

here except for the lowest pressure value, at which �ti∼1.3. This
can be attributed to imperfections in the microfabrication. Indeed,
depth variations of the channel, due to the uncertainty in the photo-
lithography process, can lead to pressure differences between the
front and the rear of a plug. When combined with low values of the

rom the experiment of constant flow rate driving.

dx.doi.org/10.1016/j.medengphy.2010.10.001
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ig. 12. Velocity evolutions along four paths under the constant flow rate
dr = 2 �L/min. The vertical line indicates the time when the plug passes a bifur-
ation.

riving pressure compared with the threshold to pass a bifurcation,
hese can result in small values of �P, which imply that some plugs
dvance very slowly through particular bifurcations.

For large driving flow rate (e.g. Q = 20 �L/min) and pressures
Pdr > 150 Pa), the plug movement is synchronous in both meth-
ds, as seen by the small values of �ti. This can also be observed by
lotting the positions of the plugs as a function of time, as shown

n Fig. 14. In this figure, the position of the rear interface along four
epresentative paths is plotted and all four divide simultaneously
Please cite this article in press as: Song Y, et al. The air–liquid
doi:10.1016/j.medengphy.2010.10.001

oth for constant flow rate and constant pressure. However, the
istance curves display different evolutions, which allows us to dis-
inguish the driving conditions. While the plugs slightly accelerate
s a function of generation number in the case of pressure forcing,
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ig. 13. Time difference of daughters’ passage through bifurcations of the same
evel, data normalized to the average traveling time in the next generation.
Fig. 14. Distance traveled by daughter plugs along four paths in the network. The
shaded and non-shaded areas represent successive generations as labeled on the
right of the y-axis and the line color is used to indicate the corresponding path shown
in Fig. 8. (a) Driving condition Pdr = 250 Pa. (b) Driving condition Qdr = 20 �L/min.

they clearly decelerate in the case of flow rate driving, since the
number of daughters increases and the flow is distributed over a
larger area.

This information can be summarized by measuring the time (Ti)
spent traveling in the straight sections in each generation. This is
shown in Fig. 15, where each data point is the average over all the
plugs in a given generation, averaged over several experimental
realizations. Ti is normalized by the total time for an experiment,
i.e. the time from the initial plug entering the first bifurcation to
the last daughter passing the last bifurcation. For pressure driving,
we observe that the time spent in the straight channel decreases as
the plugs advance. Since the plug velocity decreases more slowly
than the channel length, it takes a shorter time to pass the branch
flow in a microfluidic airway tree. Med Eng Phys (2010),

in the later generations. In the case when the plug is pushed at a
high flow rate, the travel time remains constant with generation
number because the decrease in plug velocity evolves in the same
way as the channel length. This result is true by construction and
holds for any value of �.
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Fig. 15. Comparison of traveling time in each generation for pressure and high flow
rate forcing. Both yield symmetric flow patterns.
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. Summary and discussion

In investigating the flow of liquid plugs in a branching network,
n empirical relation expressing the pressure–flow rate evolution
s derived from the motion of a single plug and found to account for
he resistance of the network to the flow of liquid. Given the initial
ondition of the experiments, e.g. driving pressure and plug lengths,
his relation quantitatively predicts the flow rates in the presence
f a train of two plugs. This empirical relation indeed provides a
etter prediction of the flow of a train of plugs than the physical
odel presented in Ref. [9].
When two successive plugs are separated by a large distance

n the network, the resistance associated with the downstream
lug is small compared to the resistance of the upstream liq-
id. This implies that the flow rate in the network is essentially
xed by the upstream plug and the downstream plug perceives
constant flow rate forcing, even if the actual driving condi-

ion is through pressure. This may modify the flow distribution
n the branching tree through inter-generation effects, which
re expected to feed back on the flow everywhere in the net-
ork.

Furthermore, the passage through a bifurcation induces strong
ariations in the capillary pressure jumps across the air–liquid
nterfaces, which has a major impact on the flow through the
ranching channels. When considering a single bifurcation, this

eads to large variations in the velocity at which the plug advances.
t also leads to the existence of a threshold value of the driving pres-
ure necessary to push the plug. A similar threshold is expected to
xist in the case of the circular tubes forming the pulmonary airway
ree, although its value will strongly depend on the details of the
eometry at the bifurcation. Nevertheless, the presence of thresh-
ld pressures will have a similar effect on the global organization of
ow in the lung as observed in our experiments. Finally, although
he threshold values may be small compared with the driving pres-
ure, a sufficiently deep airway tree will always lead to regions in
hich the local pressure becomes comparable with the value of the

hreshold.
The influence of the driving condition on the plug propagation in

he network has also been explored. The nonlinear pressure–flow
ate relation at a bifurcation induces strong long range interactions
Please cite this article in press as: Song Y, et al. The air–liquid
doi:10.1016/j.medengphy.2010.10.001

etween plugs in different parts of the network. This is particularly
isible in the case of driving the fluids with a low flow rate, in which
ase some plugs can stop at bifurcations and wait for long periods
f time while others continue to advance. Nevertheless, symmetric
lling of the network is observed in both conditions. Finally, syn-

[

[

 PRESS
& Physics xxx (2010) xxx–xxx

chronized filling can be achieved at high pressure and high flow rate
driving although different flow evolutions are observed at two con-
ditions. A better understanding of the filling of a branching tree and
of the long range interactions in it should lead to improved models
of liquid dispersion in the lung, which is an important problem in
view of its application to pathology and drug delivery.
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