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Abstract
We revisit the physical balance that takes place when an interface between two immiscible
fluids reaches a step change in the height of a microchannel. This situation leads to the
production of droplets in a process known as ‘step emulsification’. However, the mechanism
that is responsible for the drop breakup and that determines its size has not been explained in
simple terms. We propose a geometric model for drop breakup based on a quasi-static balance
between the curvature of the thread inside the inlet channel and the curvature of the "bulb"
downstream of the step. We find that the confinement limits the lowest values of curvature that
can be adopted by the thread. In contrast, the bulb curvature decreases as its size increases,
which leads to a critical bulb radius beyond which the two regions cannot be in static
equilibrium. This leads to a flow which breaks the bulb into a droplet. The critical bulb radius
predicted by the geometric analysis is in good agreement with experimental measurements for
different step and inlet channel geometries. The radius of the drop that detaches is therefore
bounded from below by this value and increases slowly with the flow rate.

(Some figures may appear in colour only in the online journal)

1. Introduction

AQ1

The production of drops and bubbles in microfluidic devices
is a well studied and widely applied problem. In this
context, a few standards have emerged and gained widespread
acceptance, such as T-junctions or flow-focusing junctions
[1–3]. In parallel to these widespread techniques, a few other
methods have also appeared. Of these, step emulsification
stands out for its simplicity and robustness. In this method,
the microfluidic device is initially filled with the fluid that
will form the outer phase. The dispersed phase fluid is then
pushed into a microchannel that leads to a step change in
height. Monodisperse drops are produced at this location and
transported by the flow of the outer fluid.

Such devices were developed as microfabricated
equivalents of membrane emulsification systems in order
to take advantage of the advances in microfabrication
technologies [4]. Since then, a series of papers (e.g. [5])
have shown that this technique is widely applicable and robust
and that it can be used to produce monodisperse drops over
a wide range of sizes, dictated mainly by the microchannel

1 These authors contributed equally to this work.

depth. More recently, different groups have used steps in
their microchannel designs in order to produce drops of a well
calibrated size [6, 7], usually combining them with the classical
T-junction of flow-focusing junction.

Although the step emulsification technique has attracted
widespread interest, there is no simple analytical expression to
predict the size of drops that are produced by this technique.
Instead, some phenomenological models have been suggested
based on experimental measurements [8, 9]. In other cases,
the dynamics of the interface has been modelled but solving
these models generally requires heavy numerical solutions
[5, 10–12]. A simple description for the physical mechanism
that leads to the droplet detachment is still lacking.

Here we approach the problem of step emulsification from
a geometric point of view, by studying the equilibrium shapes
of the interface as it advances over the step in the microchannel.
In a quasi-static situation, the curvature must be equilibrated
everywhere in the system for the Laplace pressure jumps to
be balanced. In particular, the curvature upstream of the step
must adjust to the geometry of the interface downstream of
the step, which is less confined and whose curvature decreases
as its size grows. Yet, the strong confinement upstream of
the step fixes a minimum value of the mean curvature (κ∗) of
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Figure 1. Problem geometry. (a) Top-down view: a bulb of oil
injected into a water-filled reservoir. The width of the injection is
w = 250 µm and increases to W = 5 mm at the step, while the
height increases from h = 125 µm to H = h + �h = 185 µm in this
example. (b) Top view sketch of the model geometry. (c) Side view
of the same situation.

the interface below which equilibrium shapes no longer exist.
We show that the curvature downstream of the step can reachAQ2

values below κ∗ and that the system comes out of equilibrium
at this stage, leading to a drop breaking off over the step.

This droplet formation mechanism is generic to
microchannel geometries with confinement asymmetries. It
is detailed in section 2, where we relate the curvature criterion
for the existence of equilibrium shapes to the volume of fluid
downstream of the step. This yields an expression for the
value of the drop radius R∗ which triggers the collapse of
the interface. This prediction is then tested experimentally,
as explained in sections 3 and 4. Finally, these results are
discussed in the context of microfluidics using confinement
asymmetries in section 5.

2. A quasi-static mechanism for droplet formation

In order to address the droplet formation mechanism
analytically, we consider the simplest microchannel geometry
for droplet production at a step change in the channel height.
It consists of a rectangular inlet channel of width w and height
h (w > h) that leads to a wide reservoir of increased height
H = h+�h filled with a quiescent fluid, as sketched in figure 1.
Hence, the step is located at the junction between the inlet and
the reservoir, in contrast with the original geometry where the
change in channel height occurs some distance downstream of
the inlet channel [4].

During its operation, the device is first filled with the
continuous phase prior to injecting the dispersed phase at a
constant flow rate. The dispersed phase forms a continuous
thread in the inlet channel. At the entrance of the reservoir, the
lateral confinement is suddenly released and the thread expands
into a bulb of in-plane radius R, which grows as more fluid is
injected.

We assume that the dispersed phase does not wet the
channel walls and that a thin film of the continuous phase is
always present. In this case, the interface geometry must be
tangent to the wall at the point of apparent contact. This also
implies that some of the continuous phase always remains in
the inlet channel, in the form of corner gutters [13].

Next, we assume in our model that gravitational effects are
negligible. These effects can be quantified by the Bond number

Bo = �ρgH 2/γ , where �ρ is the difference in density
between the two fluids, g is the acceleration due to gravity,
H is the largest height in the device and γ is the interfacial
tension. For the channel geometries we consider below, the
Bond number remains in the range 10−2–10−1, which implies
that gravitational effects may lead to corrections that are below
10% of our model predictions.

Last, provided that the injection flow rate is low, it is
reasonable to assume that the system evolves in a quasi-static
manner, i.e. that the interface around the thread and the bulb is
at each instant in an equilibrium state. In this case, the shape of
the interface must be such that its mean curvature κ is constant
over the entire interface, apart from the regions where it is
pressed against a channel wall and forced to follow the wall
geometry.

The mean curvature κ is a local quantity defined at every
point on the interface as the sum of the curvatures of the
surface along its two principal directions (see [14] for a detailed
introduction). The Young–Laplace equation locally relates κ

to the difference between the inner and outer pressures pi and
po, respectively, via the interfacial tension γ :

γ κ = pi − po. (1)

Hence, the quasi-static assumption also implies constant
pressures in both phases, or equivalently that flow-induced
pressure variations are negligible compared with the Laplace
pressure jump γ κ . Finally, the quasi-static assumption is
equivalent to requiring a small capillary number Ca =
µQ/γH 2 � 1, where µ is a typical fluid viscosity and Q

is the injection flow rate of the dispersed phase. In practice,
our experiments always verify this condition.

Under these assumptions, it is pertinent to ask whether
there exists an equilibrium shape for a bulb of size R connected
to the thread in the inlet channel. Below, we begin by studying
the equilibrium shapes of the thread upstream of the step and
of the bulb in the reservoir separately. Then, we consider the
equilibrium of the entire system by searching for situations
when the curvature of the thread can match the curvature of
the bulb.

2.1. Shape and curvature of the thread

We model the dispersed phase in the inlet channel as a
semi-infinite fluid thread. A possible equilibrium shape of
the interface is shown in figure 2(a). It is obtained using
Surface Evolver [16] by imposing the Laplace pressure jump
�p = 4γ /h at the interface, or equivalently by imposing
the mean curvature of the thread κth = 4/h. The thread is
a straight cylinder of cross-section flattened against all four
channel walls. The interface only bends in the corners along
circular arcs of radius r = κ−1

th , leaving out corner gutters of
the continuous phase.

Equilibrium shapes of higher curvature are obtained by
reducing the size of the gutters and thereby the radius of
curvature r of the curved interface. However, the curvature
of the straight cylinder geometry cannot decrease below the
critical value κ∗ = 2/h. When κth = κ∗, the top and
bottom gutters meet at mid-height in the channel as shown
on figure 2(b). The side interface is no longer pressed against
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Figure 2. Shape of a confined thread in a rectangular channel (a) For a high curvature κth = 4/h, the thread is a straight cylinder of
cross-section flattened against all four channel walls except near corners where the interface bends to form gutters. (b) When κth = 2/h, the
gutters meet at mid-height in the channel and the lateral interfaces no longer flatten against the side walls. (c) Decreasing the imposed
curvature to 1.8/h leads to the necking of the thread. This shape is not in equilibrium and the necking region grows in time. (d) When the
necking region becomes large enough, the thread becomes unstable locally by the Rayleigh–Plateau instability.

the lateral walls and has the shape of a semicircle of radius r =
h/2. Given that the mean curvature κth of a straight cylinder
is equal to the curvature of its cross-section, decreasing κth

below 2/h implies increasing r above h/2. This is impossible
without violating the non-wetting boundary condition at the
channel walls, which imposes that the interface intersects solid
boundaries tangentially with a contact angle of π .

In fact, there are no equilibrium shapes of the interface if
the imposed curvature is smaller than κ∗ = 2/h. To illustrate
this statement, we artificially impose κth = 1.8/h to a section
of fixed length L of the thread while maintaining a curvature
κth = 2/h over the rest of the interface using Surface Evolver.
To reach the imposed curvature of 1.8/h, the interface of the
thread forms a neck as shown on figure 2(c). In this region,
the thread maintains a transverse curvature of 2/h in order to
intersect the channel walls tangentially while bending inwards
in the plane to feature a negative in-plane curvature of −0.2/h.
However, although the shape of the neck locally reaches a
stable geometry of constant mean curvature κ = 1.8/h, the
thread is not at equilibrium globally since the curvature of the
neck differs from the curvature of the rest of the thread. As
we progressively extend the length L of the necking region,
its width wn decreases until it eventually matches the height
of the channel h. In this configuration shown in figure 2(d),
the centre of the neck detaches from all four channel walls
and resembles an unconfined fluid thread which is prone to the
Rayleigh–Plateau instability [17–19]. Increasing L any further
triggers the collapse of the thread.

Overall, we find that a thread of non-wetting fluid confined
in a rectangular channel is at equilibrium only when its
curvature is higher than κ∗ = 2/h. Otherwise, the thread is
necessarily out of equilibrium, forms a neck, and then breaks
in to two.

2.2. Shape and curvature of the bulb

We now consider the equilibrium shape of the bulb in the
reservoir which we model as a droplet of radius R, confined

between two solid plates separated by a distance H . Two
limiting cases can be solved analytically.

(i) When the radius R of the drop is smaller than H/2, it
takes a spherical shape since it is not confined. Its mean
curvature is then equal to κb = 2/R.

(ii) The limit of a very large drop was studied by Laplace [20]
and more recently by Park and Homsy [21]. The drop then
has a pancake shape and a curvature

κb = 2

H

(
1 +

π

4

1

χ

)
, (2)

where χ = 2R/H � 1 is the aspect ratio of the drop.

In all cases, the equilibrium shape of the interface away
from the plates is an axisymmetric surface of constant mean
curvature whose axis of symmetry is perpendicular to the
plane of the reservoir. In the unbounded case, such surfaces
are called Delaunay surfaces and can be classified into three
subfamilies depending on the nature of their generatrix:
catenoids, unduloids and nodoids [22]. Confinement only adds
boundary conditions that dictate how the interface connects to
the solid plates but it does not modify the generic differential
equation κ = cst that generates the family of Delaunay
surfaces. Consequently, the shape of a droplet confined
between two parallel plates is a slice of a Delaunay surface.

In the case of a non-wetting droplet, the interface must
intersect the plates tangentially with a contact angle π . This
implies that at the walls, the tangent of the generatrix of the
Delaunay surface is perpendicular to its axis of symmetry,
a condition which is only met by nodoids. In a cylindrical
coordinate system (ρ, θ, z) centred at the centre of mass
of droplet, nodoids are described by the set of parametric
equations

ρ(s) =
√

e2 − 1

κb

√
e − cos s

e + cos s
(3a)

z(s) = e2 − 1

κb

∫ s

π

− cos u√
e2 − cos2 u(e + cos u)

du. (3b)
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Here, e is a parameter that gives the nodoid shape and can
vary from 1 to ∞, s is a curvilinear coordinate, and u is an
integration dummy variable.

The generatrix is 2π -periodic in s and its tangent is
perpendicular to the z-axis when dz/dρ = 0, which occurs
for s = π/2 + n ·π , with n an arbitrary integer. Intuitively, the
interface of the squeezed drop must bend outwards and away
from its axis of symmetry. This is the case for s = [π/2, 3π/2].
As a result, we obtain that the shape of a drop squeezed
between two parallel plates is described by the set of parametric
equations above with s varying between π/2 and 3π/2.

In equations (3a) and (3b), the curvature κb of the droplet
is just a scaling factor. Hence, all possible geometries are
scanned by varying e from 1 to ∞. For example, we recover
the spherical shape when e → 1 while e � 1 yields pancake
droplets. In practice, for a given drop geometry or value of e,
κb is fixed by the height of the reservoir

H = e2 − 1

κb

∫ 3π/2

π/2

− cos u√
e2 − cos2 u(e + cos u)

du (4)

and the radius R for the drop is obtained by taking s = π in
equation (3a) for ρ(t):

R = e + 1

κb
. (5)

Combining these expressions for R and H , we can express
the mean curvature κb as a function of e and χ in a compact
equation

κb = 2

H

e + 1

χ
, (6)

knowing that e is directly related to χ via

1

χ
= e − 1

2

∫ 3π/2

π/2

− cos u√
e2 − cos2 u(e + cos u)

du. (7)

When the drop is spherical (e = 1 and χ = 1), we recover
H · κb = 4 as expected. In the asymptotic limit of large
pancake drops (e � 1), e = χ + π/4 + O(1) such that
H · κb = 2[1 + π/4χ + O(1/χ)], in agreement with the
asymptotic limit (2) found by Laplace.

Overall, we can express H · κb from the unconfined
spherical case χ < 1 to the pancake droplet limit χ � 1
in the form H · κb = 2 [1 + f (χ)], with

f (χ) = 2

χ
− 1 when0 < χ < 1

= 1 for χ = 1

≈ π

4

1

χ
whenχ � 1 (8)

and find a lower bound 2/H for the bulb curvature.
These results are shown in figure 3, where the different

shapes are shown along with the value of f (χ).

2.3. Matching curvatures: a scenario for droplet formation

The quasi-static equilibrium hypothesis implies that the mean
curvature of the thread upstream of the step κth has to be equal

1 1.50.50
0

0.5

1

1.5

2

1/c

(a)

(b)

(c)

f(
c)

Figure 3. Plot of f = H · κb/2 − 1 versus the inverse aspect ratio of
the bulb χ . Insets (a)–(c) 3D plots of nodoid droplets obtained from
the parametric equations (3a) and (3b) for (a) e = 3, (b) e = 1.5 and
(c) e = 1.001. The dashed lines represent the two analytical limits.

to the mean curvature of the bulb in the reservoir κb. Yet, we
showed above that the mean curvature of the thread upstream
of the step has a lower bound κ∗ = 2/h below which it is out of
equilibrium. By matching curvatures, this threshold curvature
now also applies to the bulb. Consequently, the interface may
evolve out of equilibrium and collapse to release a droplet in
the reservoir when κb decreases below κ∗ = 2/h.

The proposed scenario is the following: when the bulb
first enters the reservoir, it is spherical. Its mean curvature
is always higher than the critical value κ∗ and the thread is
strongly confined, as shown in figure 2(a). However, as more
fluid is injected into the device, the size of the bulb increases
while its mean curvature κb decreases. In the presence of a
step, the lower bound 2/H for the bulb curvature is lower
than the critical curvature κ∗ = 2/h of the thread. Hence,
for any value of �h > 0, the radius of the bulb eventually
reaches a critical value R∗ for which the curvature of the bulb
is equal to κ∗ = 2/h. The shape of the thread is then tangent
to the channel side walls (figure 2(b)). Beyond this critical size
R∗, the mean curvature of the thread can only match the bulb
curvature by taking a negative value in the plane of the channel,
as shown in figure 2(c). As discussed above, this situation is
out of equilibrium. The pressure in the gutters around the
thread is lower than the pressure in the reservoir. This drives
a backflow of the continuous fluid, which in turn increases the
size of the necking region. Eventually, the thread breaks when
wn = h and a drop of radius R∞ detaches into the reservoir.

The critical radius R∗ is defined by the equation κb = 2/h,
which translates to

f (χ∗) = �h

h
(9)

for the critical aspect ratio χ∗ of the bulb. Recalling
expression (8) and figure 3 for f (χ), we can solve this
equation analytically for large step heights �h/h > 1 and
numerically otherwise. When �h/h > 1, we obtain that the
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dispersed phase is out of equilibrium before the bulb becomes
confined by the walls of the reservoir and the critical bulb size
R∗ = h is independent of the step height. As the step height
�h/h decreases, R∗ increases, diverging along the asymptote
R∗ = πhH/8�h when �h/h → 0. The full results are
shown in section 4, figure 5.

3. Experimental methods

3.1. Microchannel fabrication

The experiments were performed in PDMS microchannels
(Dow Corning Sylgard 184). The microchannel fabrication
was performed using dry film soft-lithography techniques [23],
which allowed us to obtain different step heights by a
successive lamination of different film types (Etertec, Eternal
Laminar, thicknesses 15, 35, and 50 µm)

The process began by (1) laminating the photoresist film
layers onto a glass slide using an office laminator (PEAK
PS320), at a constant temperature T = 100 ◦C, to get the base
shape with the desired height. (2) The film was then exposed to
UV light (Hamamatsu Lightningcure LC8) through a printed
photomask corresponding to the inlet channel and wide region.
(3) After exposing this channel, additional layers of film were
added to obtain the desired height of the step. (4) The stack of
photoresist films was exposed again to the UV light through a
mask corresponding only to the reservoir region. (5) Finally
the whole device was developed by immersing it in a solution
of water at 1% (w/w) of carbonate potassium, to produce the
master on which the PDMS could be moulded.

Once the moulds were fabricated, they were measured
using an optical profilometer (Zygo). The measured values
of the deconfinement parameter were in the range 0.064 �
�h/h � 1.516, in addition to the condition of zero step height
as a control. The height and width of the inlet channel were
kept constant at h = 125 µm and w = 250 µm, except for
the condition �h/h = 0.064 for which h = 250 µm and
w = 500 µm. Once the moulds were measured, they were
replicated into PDMS microchannels using the standard PDMS
moulding techniques.

3.2. Fluids and experimental protocol

The experiments were performed using a fluorinated oil (FC-
40, viscosity µ = 4 cP) as the dispersed phase. The continuous
phase was a mixture of water and sodium dodecyl sulfate (SDS)
at 3% concentration by weight. The interfacial tension γ was
18 mN m−1. Good wetting of the water phase on the PDMS
was ensured using the channels within a few minutes after
plasma bonding.

The channel was initially manually filled with the aqueous
solution through specifically fabricated side holes, while
ensuring that no gas bubbles were trapped. The oil was
then injected using a programmable high precision syringe
pump (Cetoni NeMESYS), at flow rates ranging from Q =
0.1 to 20 µl min−1 and each experiment was repeated three
times. Images of the fluid exit through the channels were
captured using a high-speed camera (Photron Fastcam 1024),
mounted on a Nikon TE2000-U inverted microscope, filming
at 250 frames s−1.

Figure 4. (a) The location of the neck formation is found from the
late-time images of the drop detachment. (b) A space–time diagram
is then constructed to determine the initial moments of the neck
destabilization.

3.3. Image analysis

Two radii were of interest in the movies that we captured: the
final radius R∞ was measured once the drop had detached.
More importantly, we identified the radius R∗ at which a neck
began to form upstream of the step as shown in figure 4. This
was done by first locating the position (xp) where the neck
formed (figure 4(a)) and building space–time diagram of the
grey values at this position (figure 4(b)). This allowed us to
determine the time t∗ at which the liquid interface began to
separate from the walls; the bulb radius at this time was taken
as the measure of R∗.

Note that the values of R∗ that are reported here
correspond to the smallest value of Q. Therefore, even though
the criterion for stability depends on visually identifying the
fluid detachment from the wall, the error on R∗ is small since
the drop volume changes very slowly.

4. Results

4.1. Equilibrium loss

Using this experimental protocol, we first determined the value
of the bulb radius at which the drop began to detach. The values
of this critical radius R∗ as a function of the step height �h are
shown in figure 5, where the physical values are normalized
by the height h of the inlet channel. The experimental data
(solid squares) were obtained for the minimum flow rate
Q = 0.10 µl min−1 and the black solid line corresponds to
the radius predicted by equation 9. This line is not a fit to the
data as it does not contain any free parameters.

Both the model and the experiments show that the critical
radius decreases with increasing deconfinement �h/h. In fact,
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Figure 5. The evolution of R∗ as a function of the step height. The
points correspond to experimental measurements at a flow rate of
Q = 0.01 µl min−1. The solid line indicates the prediction from
balancing the curvatures inside the inlet channel and in the deep
section. The dashed line corresponds to the prediction for infinitely
deep step.

the model predicts that the critical radius should diverge R∗ →
∞ as �h/h → 0, which is in agreement with the experimental
observations that yield R∗ = 5h for �h = 0.064h. Moreover,
the control experiment with no step does not produce any
drops, with the bulb remaining attached to the inlet channel.
For �h/h � 1, the model predicts that the critical radius
should reach a plateau R∗ = h. This plateau is observed in the
experiments, although the measured critical radius is slightly
superior to h.

The quantitative differences between the model and the
measurements can be attributed to three main sources: first,
gravitational effects can play a role, since FC-40 is about
85% denser than water. Second, the edge at which the inlet
channel meets the reservoir may impose some corrections
in order to account for the complex shape near the channel
exit. Finally, slight variations in the photo-resist thickness
can lead to a sloping top wall of the reservoir, which have been
shown to significantly influence confined two-phase flows [24].
Nevertheless, the model and the experiments are in semi-
quantitative agreement with no free adjustable parameters.

4.2. Drop radius

In practical situations, the quantity of interest is the size of the
final drop that detaches from the inlet channel. This drop radius
(R∞) corresponds to the critical value of the radius, augmented
by the fluid in the thread downstream of the necking, which
is small compared with the drop volume in our conditions.
This must also be corrected for the further inflation of the
drop by the fluid that has been injected during the necking
time. If the necking time is independent of the flow rate, we
would therefore expect the projected drop area to increase
linearly with the flow rate to leading order, which would
lead to the scaling (R∞ − R∗) ∼ Q1/2. We expect that the
necking time should decrease with increasing step height, since
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Figure 6. Final drop size (R∞) as a function of the input flow rate
(Q) ranging between 0.01 and 20 µl min−1, for three representative
step heights.

 

 

Figure 7. Position of the neck formation distance from the step as a
function of the flow rate, for the same steps as figure 6.

the pressure imbalance that drives the necking of the thread
increases with �h.

We measured the drop radii (R∞) as a function of the
flow rate at which the dispersed phase is injected. As shown
in figure 6, we observe that the drop size indeed increases
with the flow rate, in agreement with the ‘inflationary’ theory.
Nonetheless, the change in drop radius is small, since at most a
three-fold difference in radius (9 times in volume) is observed
for a two-thousand fold increase in flow rate (Q from 0.01 to
20 µl min−1). A fit of R∞−R∗ yields a power law of exponent
larger than 0.5, between 0.6 and 0.7. This indicates that the
necking time depends on the flow rate. Moreover, we find that
the drop size decreases with increasing step height regardless
of the oil flow rate. This implies that the variations in the
necking time are not sufficient to modify the hierarchy of sizes
dictated by the dependence of R∗ on �h.

4.3. Breakup distance

Finally, it is worth noting the location of the necking which
leads to the drop breakup xp. This position depends on the
flow rate of the inner phase, as shown in figure 7. In fact, the
geometric mechanism presented here provides a prediction for
the critical bulb radius but it cannot predict where the neck
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will form. Predicting xp would require a dynamic model
that accounts for the back flow into the inlet channel and its
interactions with the fluid thread. Such a model would need
to take into account the fluid properties, as well as geometric
details about the inlet channel.

5. Summary and discussions

In this paper, we present a theory for step emulsification based
on quasi-static geometric arguments. We argue that the growth
of the bulb in the reservoir leads to a thinning of the thread in
the inlet channel in order to maintain a curvature equilibrium
between the two regions. We also identify a minimum value
of curvature, imposed by the confinement of the thread in the
inlet channel, below which equilibrium shapes of the interface
cannot exist. A geometric calculation then shows that the
bulb curvature always decreases below this critical value if the
reservoir has a larger height than the inlet channel. This forces
the system out of equilibrium: a backflow of the continuous
phase is generated upstream of the step, which leads to the
drop breakup.

The curvature balance model does not depend on the fluid
properties. In particular, it is insensitive to the value of the
interfacial tension even though the physics that we describe is
dominated by surface effects. This is because the interfacial
tension is acting in both regions of the microchannels and its
value drops out of the balance.

However, our model does not directly predict the actual
size of the drops that are formed. Instead, we provide
a lower bound for the drop size, which must then be
corrected for dynamical effects. Those effects do depend
on the fluid properties: the back flow that is driven into
the inlet channel is accelerated by the capillary pressure
imbalance (which depends on γ ) and slowed down by viscous
effects (which depend on µ) and by the overpressure due to
the driving (which depends on the flow rate Q). In order to
reduce the impact of the dynamics on the drop size, one may
imagine designing the inlet channel with local modulations in
width or depth in order to facilitate the breakup.

Finally, note that the curvature imbalance can also be
produced by a more gradual change in the channel height.
We have recently shown [24] that droplets with well calibrated
sizes can be produced by a sloping channel, through a similar
mechanism. In the case of a sloping roof, the drop size
depends on the inlet channel geometry, as in the present case,
but also on the slope angle. Moreover, the slope provides a
mechanism to move the droplet after its formation, since the
drops feel a force that drives them towards the regions of lowest
confinement [25]. When combined with local modulations of
the channel height [26, 27], such an approach can lead to a new
generation of droplet microfluidics that does not require any
flow of the continuous phase.
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