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A small hole etched in the top of a wide microchannel creates a well of surface energy for a confined

drop. This produces an attractive force F� equal to the energy gradient, which is estimated from geometric

arguments. We use the drag Fd from an outer flow to probe the trapping mechanism. When Fd < F�, the

drop deforms but remains anchored to the hole. Its shape provides information about the pressure field. At

higher flow velocities, the drop detaches, defining a critical capillary number for which Fd ¼ F�. The

measured anchoring force agrees with the geometric model.
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When a spherical drop enters a channel whose height is
smaller than the sphere diameter, the drop must squeeze
and depart from its relaxed shape. The resulting deforma-
tion leads to an increase in its interfacial area A and a
corresponding increase in free energy E� ¼ �A, with � the

interfacial tension. By this mechanism, the drop can store
and transport this extra energy as it travels down the
channel. Given the chance, it will tend to decrease its
surface area in order to reduce its free energy. Variations
in the level of confinement can therefore be used to apply a
force on the drop by inducing gradients of the surface
energy. The migration of droplets in such gradients has
been known since Hauksbee [1] and exploited in several
geometries [2–5], both for wetting and nonwetting drops.

A novel use of surface energy gradients was recently
demonstrated in the context of microfluidics [6]. It consists
of creating localized areas of reduced confinement by
etching grooves into the top surface of a microchannel,
in order to attract drops to particular locations. It was
shown that the induced energy gradients are able to guide
or anchor drops against a mean flow if the outer flow
velocity is below a critical value, much as oranges are
trapped at the bottom of a bowl by the gradient of gravi-
tational potential energy.

We now turn to the physics behind such anchoring,
namely, the balance between the force due to surface

energy gradient ( ~F�) and the hydrodynamic drag force

( ~Fd) due to the outer flow of oil. First, we estimate F�

from the geometric study of a static drop. Then, we con-
sider the conditions for which a drop remains anchored to
the hole, namely Fd < F�

� with F�
� the maximum force due

to surface energy gradient. We analyze the shape of the
elongated drops and extract a scaling law for the drag Fd.
Last, we measure the threshold velocity above which the
drop cannot be anchored, for which Fd ¼ F�

�. This yields a

direct measure of the maximum strength of the anchoring
mechanism.

The experiments were conducted in polydimethylsilox-
ane (PDMS) microchannels (Dow Corning Sylgard 184),

fabricated using dry film photoresist soft lithography tech-
niques [6,7]. The microchannel consists of a flow-focusing
junction to generate droplets, connected to a test section
(width ¼ 3 mm) containing a single anchor of diameter
between d ¼ 50 and 82 �m and of depth between e ¼ 28
and 45 �m, as sketched in Fig. 1(a). The channel height
is constant everywhere else and ranges from h ¼ 28 to
60 �m.
The oil is injected with two syringe pumps, at flow rates

Qf in the flow-focusing junction and Qo through the en-

trainment channel [see Fig. 1(a)]. By injecting water at a
flow rate Qw, water droplets are formed and transported
into the test section. Once a drop is trapped by the single
anchor, the water flow is set to zero and Qo is gradually
increased until the droplet detaches at a critical flow rate
Q�. The experiment is repeated for different drop and
channel parameters.

FIG. 1 (color online). (a) Schematic of a microchannel that
consists of a flow focuser to generate water drops in oil and of a
test section with a single anchor. (b) A top-down image of a
pancake droplet held in place by an anchor against a mean
external flow U. (c) Surface Evolver rendering of an anchored
droplet of outer radius R inside the microchannel of height h
over an anchor of diameter d and of depth e.
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The continuous phase consists of a fluorinated oil (3M
Fluorinert FC-40 or FC-70 of viscosities � � 4:1 cP and
� � 24 cP at 25 �C, respectively). Contrary to alkanes or
silicone oils, these oils do not swell the PDMS and the
surfaces of the channel remain parallel even for large
aspect ratios [8]. One of two different fluorosurfactants,
based on the molecules described in Ref. [9], is added to
the oil phase at a concentration of 2%: the first is a PFPE-
PEG molecule while the second has a simpler ammonium
salt head group [9]. The water-oil interfacial tension �e

is measured via the pendant drop method. Independently
of the oil type, the equilibrium value is found to be
�e ¼ 20 mN=m and �e ¼ 10 mN=m for the PFPE-PEG
and ammonium salt surfactants, respectively. The time to
reach these equilibrium values ranges from 30 minutes for
the first surfactant, up to several hours for the second.

As illustrated in Fig. 1(b), even small anchors are able to
hold relatively large droplets. This implies that a droplet
reduces its overall surface area, despite locally creating
excess surface as it partially enters into the anchor. This
can be verified by comparing the surface area of a circular
pancake drop, in the absence of an anchor, to the modified
area when the drop is above the anchor. The area of
the unperturbed drop is estimated by modeling it as a
circular cylinder of radius Ri, surrounded by the outer
half of a torus of small radius h=2. This is strictly valid
in the limit of " � h=2Ri � 1 and yields the area of the
drop: Ai ¼ 2�R2

i ½1þ �"�.
When a static droplet feels the presence of an anchor, it

penetrates into it and forms a spherical cap whose local
curvature equilibrates with the interface curvature far
away. The parameter b � d=h determines the behavior of
the drop: If b > 2, curvature equilibrium is reached only
when the drop enters fully into the hole and the spherical
cap flattens against the top, rendering the hole depth e an
important parameter. Here, we will limit ourselves to the
case of b � 2, in which the drop only partially enters into
the hole. This situation is depicted in Fig. 1(c), which
features a Surface Evolver simulation of the drop shape
in the absence of flow [10]. By matching the curvature of
the spherical cap in the hole with the curvature of the
interface far away C � 2=hþ �=ð4RÞ [11] and imposing
the volume conservation of the droplet, a new value of R
can be obtained. This yields a new value of the surface area
of the drop A in the presence of the anchor. The change in
surface area �A ¼ A� Ai then corresponds to

�A ¼ �
�
�

2
bSðbÞ þOð"Þ

�
h2; (1)

where

SðbÞ � b

2
� 4

3b

�
1�

�
1� b2

4

�
3=2

�
: (2)

The dimensionless function SðbÞ is positive for
0< b � 2, resulting in a negative �A and a decrease in

E�. Therefore, even an asymptotically small anchor re-

duces the droplet surface energy, yielding�E�¼��A<0.

For b > 2, the energy change remains negative but its value
will depend on the hole depth; SðbÞ does not fully capture
the energy change in this case.
The magnitude of the force due to this change in surface

area is equal to the gradient of surface energy. Estimating it
therefore requires an estimate of the distance over which
the energy changes. Figure 1(b) shows that even a weak
external flow aligns the edge of the drop with the anchor.
This indicates that the gradients of surface energy appear
only as the edge of the drop passes over the hole.
Therefore, the characteristic length over which the energy
changes is given by the hole diameter d and the force can
be estimated as

F�
� / j�E�j

d
� �

�

2
hSðbÞ: (3)

Having determined the anchoring force based on the
static droplet geometry, we now consider the drag force
~Fd, exerted by the outer flow, which tends to push the drop
out of the anchor. Given the scale separation between the
vertical (z) and in-plane (x, y) dimensions, the test section
of the channel is modeled as a Hele-Shaw cell [12]. Hence,

the height averaged velocity field ~U is potential and veri-
fies Darcy’s law

~rp ¼ � 12�

h2
~U; (4)

where the pressure p is invariant in the vertical direction.

The drag force ~Fd acting on the droplet has two compo-

nents: the pressure drag ~Fp ¼ �R
po

~ds, defined as the

outer pressure po at the interface applied on the surface

elements ~ds, and the viscous drag ~F� ¼ R
� ~r ~U 	 ~ds.

Darcy’s law (4) provides an estimate for the pressure as

p / �UR=h2, while viscous shear stresses � ~r ~U scale as
�U=h to the leading order. Since both the pressure and
shear stresses act on the lateral drop surface (/ hR), the
pressure drag Fp / �UR2=h is greater than the viscous

drag F� / �UR by an order R=h 
 1. One may therefore

ignore the viscous drag and focus on the pressure drag.
This scaling argument has been validated by asymptotic

analyses of the Hele-Shaw flow around a stationary invis-
cid bubble [13] and around a solid cylinder [14]. Those
studies confirm the dominant role of pressure drag and

provide expressions for po and ~Fd as

po ¼ �24
�U

h2
xþ Cst; (5a)

~Fd ¼ 24�
�UR2

h
: (5b)

In order to verify this expression for po, we analyze the
shape of anchored droplets. Indeed, the Laplace equation
gives a local relationship between the mean curvature of

PRL 107, 124501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 SEPTEMBER 2011

124501-2



the drop C and the pressure jump, pi � po, across the
interface. This provides an optical readout of the pressure
variations through the drop shape. By defining �rð�Þ as the
local deviation from the radius R in the absence of flow
(see Fig. 2), the Laplace equation reduces to

�

�
2

h
þ �

4

1

R

�
1� 1

R

�
�rð�Þ þ d2�r

d�2

���
¼ pi � po; (6)

in the limit of �r=R � 1 [11].
Although Eq. (6) involves the pressure field within the

droplet pi, this field does not affect the deformations. In
fact, the internal flow must satisfy potential flow theory to
leading order and, given the static drop interface as the
boundary, the only possible velocity field is the trivial
~U ¼ ~0 with a constant pi. Consequently, the shape defor-
mations �rð�Þ are mainly determined by the outer pressure
po. Then, inserting the expression for po from Eq. (5a) in
Eq. (6) yields

�rð�Þ
R

¼ 15:3Ca
R2

h2
ð1� � sin�Þ: (7)

Equation (7) provides a scaling law for the drop elonga-
tion L � �rð0Þ=R / CaR2=h2. This scaling is verified in
Fig. 2 where Lh2=R2 is plotted vs Ca for various channel
geometries, liquid viscosities, surfactant types, and oil flow

rates Qo [or equivalently flow velocities Uo ¼ Qo=ðWhÞ].
The data collapse onto two distinct lines which both verify
the linear scaling, although with different prefactors. The
value of the prefactor is only a function of the surfactant
type and is independent of the other parameters.
Since the two surfactants exhibit different adsorption

kinetics in a pendant drop experiment, they may also reach
different spatial distributions on the drop interface in the
presence of an external flow [15]. Indeed, complex recir-
culation patterns are observed on the surface of our drop-
lets, indicating that Marangoni stresses are present on the
interfaces. The dependence of these stresses on the surfac-
tant kinetics could explain the different prefactors that are
observed in the elongation experiments.
Nevertheless, the drop shape is well described by Eq. (7),

once the prefactor 15.3 is replaced by the slope of the linear
fit from Fig. 2. The predicted deformations display a good
agreement with the drop shape at different flow rates, as
illustrated in Fig. 3. Given that the pressure deforming the
drop is linear in x, the drop shape obtained in this flow is
akin to a 2D pendant drop, where the hydrostatic pressure
also decreases linearly with height.
The elongation and shape measurements of Figs. 2 and 3

verify the amplitude of the pressure variations along the
drop and, thereby, the scaling for the pressure drag in
Eq. (5b): Fd / �UR2=h. We can now obtain the anchor
strength by finding the maximum oil velocity U� that
the anchored droplet can resist and by using the force

FIG. 2 (color online). Inset: Sketch of the polar coordinates for
the deformations �rð�Þ from the static radius R. Main panel:
Elongation L ¼ �rð0Þ=R of anchored droplets, rescaled by
h2=R2, as a function of the oil capillary number Ca for various
channels, liquids, and surfactants. The solid lines are a linear fits
of the two data groups, with slopes 9� 2 (PFPE-PEG surfactant)
and 17� 1 (ammonium head group). The dashed line is the
theoretical prediction of Eq. (7), with slope 15.3.

FIG. 3 (color online). Left: Images of anchored droplets de-
formed by the flow of oil. The dashed lines show the prediction
from Eq. (7), while the solid line shows the equivalent circle of
radius R. Scale bars represent 200 �m. Right: Comparison
between the deformations �rð�Þ=R extracted from the micro-
scope images on the left (solid line) and the theoretical curve
(dashed line) obtained from Eq. (7), using 9 as a prefactor.

PRL 107, 124501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 SEPTEMBER 2011

124501-3



equilibrium F�
� ¼ FdðU�Þ. This yields the scaling

Ca � / SðbÞ h
2

R2
; (8)

where Ca� � �U�=�.
The experimental results agree with this theoretical

prediction, as seen in Fig. 4 which displays the value of
Ca� for all channels, liquids, and surfactants. The data all
collapse on a single linear law, thus confirming the scaling
law (3) for the anchoring force F�

�, which is derived from

purely geometric arguments. In particular, it supports the
use of d as the characteristic length scale in F�

�. The actual

value of the anchoring force can be estimated by reintro-
ducing the numerical prefactor of Eq. (5b). It yields values
of F�

� in the range of 100–1000 nN, depending on the

geometric parameters h and d.
These results verify that the gradient of surface energy and

the hydrodynamic drag due to the external fluid are indeed
the dominant competing physical mechanisms that deter-
mine the ability to anchor a droplet. In this respect, anchor-
ing droplets in wells of surface energy resembles other
methods of trapping in energy wells, such as electrostatic
cups [16] or optical tweezers [17], where the maximum
restoring force is given by the maximum energy gradient.
Below this limit, deviations from the equilibrium shape or
position provide information about the magnitude of the
opposing forces at play in all three examples. In the present
case, the drop shape depends on the surfactant type, in
addition to the global force balance, which may yield infor-
mation about the physical chemistry at the free interface.

An important distinction between the anchors and other
trapping mechanisms resides in the source of energy: while
most systems rely on an external field, the energy here is
contained in the droplet itself. The typical values of surface
energy therefore increase the range of attainable forces up
to several hundred nN. This value can be further increased
by etching larger and deeper holes, thus exploring the
regime b > 2. In this case, the drop extends fully into the
hole into a spherical or cigar shape and the gain in surface

energy is maximized. Although this limit is not studied
here, such devices would exert very large anchoring forces.
In terms of applications, anchors are simple and efficient

passive devices to hold drops stationary, even in the presence
of an outer flow. Parallelization is straightforward and en-
ables easy production of droplet arrays for chemical or
biomedical studies. The array format has gained in popular-
ity recently since it provides a direct microfluidic equivalent
to classicmultiwell plateswhich are ubiquitous in biological
applications. A key benefit over existing methods is the
continuous flow of outer liquid, which can be used to control
the chemical environment of the trapped droplets and their
content, both in space and time. A wide range of chemical
and biomedical applications follows, from protein crystal-
lization to the study of sickle cell anemia [6]. Finally, more
controlled droplet placing can be achieved by combining the
passive ‘‘rails and anchors’’ approach with active forcing of
individual droplets, for example, using a focused laser [18].
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FIG. 4 (color online). Critical capillary number Ca� plotted
against SðbÞh2=R2 for the channel geometries, liquids, and
surfactants as listed in the legend of Fig. 2. The solid line is a
linear fit of the data.
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