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Wave drag on asymmetric bodies
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An asymmetric body with a sharp leading edge and a rounded trailing edge produces
a smaller wave disturbance moving forwards than backwards, and this is reflected in
the wave drag coefficient. This experimental fact is not captured by Michell’s theory
for wave drag (Michell Lond. Edinb. Dubl. Phil. Mag. J. Sci., vol. 45 (272), 1898,
pp. 106–123). In this study, we use a tow-tank experiment to investigate the effects of
asymmetry on wave drag, and show that these effects can be replicated by modifying
Michell’s theory to include the growth of a symmetry-breaking boundary layer. We
show that asymmetry can have either a positive or a negative effect on drag, depending
on the depth of motion and the Froude number.

Key words: surface gravity waves, turbulent boundary layers

1. Introduction
Many existing studies use the inviscid theories of Michell (1898) and Havelock

(1919, 1932) to investigate the optimum design of ship hulls (Zakerdoost, Ghassemi
& Ghiasi 2013; Zhao, Zong & Zou 2015; Dambrine, Pierre & Rousseaux 2016;
Boucher et al. 2018). However, asymmetric hull shapes are not addressed, since
there is no well-accepted predictive theory for the effect of asymmetry on wave
resistance. Some studies have shown that viscosity plays an important role in the
wave resistance of ship hulls (Gotman 2002; Lazauskas 2009). In particular, it is
argued that the development of the turbulent boundary layer and its detachment point,
where applicable, is crucial. It is well known that the development of a boundary
layer on an asymmetric body is different depending on the direction of motion, due
to the dependence of the boundary layer growth rate on the streamwise pressure
gradients. This indicates that a viscous description of the flow is a possible way of
studying asymmetric effects, although this is not addressed explicitly in any of the
above studies.

More than a century ago, Michell derived the integral formula for the wave
resistance on a body, using the approximation of a slender body in an irrotational,
inviscid fluid (Michell 1898). The major shortcoming of this formula is that, due to
the reversibility of the steady potential-flow formulation, it does not distinguish the
difference in wave drag when an asymmetric object moves forwards or backwards.
However, it is clear that a large number of boats are designed with an asymmetric
shape that is more pointed at the front than at the rear, precisely to reduce the wave
disturbance. Hence, this theory cannot be used to reliably test design spaces.

† Email address for correspondence: graham.benham@ladhyx.polytechnique.fr
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Another commonly used method for estimating the wave drag on a body is the
formula derived by Havelock (1919, 1932). This approach, which also makes the
assumption of an irrotational and inviscid fluid, requires knowledge of the pressure
disturbance along the walls of the body. Hence, for an asymmetric body, if the
difference in the pressure disturbance between forward and backward motion is
known, then this formulation can capture the effects of asymmetry on wave drag.
However, in practice it is very difficult to have a priori knowledge of the pressure
distribution for a given body shape (Boucher 2018), which is why, despite the failure
to capture asymmetric effects, the Michell formula is much the more popular.

In the present study, we first show the effects of asymmetry experimentally and then
discuss how such effects can be predicted theoretically using either computational fluid
dynamics, or our new proposed modification to Michell’s theory which includes the
development of a turbulent boundary layer.

2. The asymmetry parameter ε

To quantify the asymmetry of a body shape, it is useful to introduce an asymmetry
parameter. Throughout this study, for the sake of simplicity, we restrict our attention
to shapes which do not vary in the vertical direction. Furthermore, we only consider
front–back asymmetry and not asymmetry in the transverse direction. That is to say,
if we take a Cartesian coordinate system with the x direction aligned with the positive
direction of motion, and the origin centred at where the object mid-length meets the
resting water surface level, then the shape is given by

y=

{
±f (x), for − L/2 6 x 6 L/2, −D 6 z 6−D+H,
0, otherwise,

(2.1)

where L and H are the body length and height, and D is a typical distance between
the air–water interface and the deepest part of the body (as illustrated in figure 1). To
define a non-dimensional asymmetry parameter, it is useful to create non-dimensional
variables x̂ = x/L and f̂ = f /(2 max{ f (x)}) (see figure 1a). In terms of these new
dimensionless variables, we define the asymmetry parameter as the L2 norm of the
odd function

ε = κ

(∫ 1/2

−1/2
( f̂ (x̂)− f̂ (−x̂))2 dx̂

)1/2

, (2.2)

where κ = sgn(
∫ 1/2
−1/2 x̂ f̂ (x̂) dx̂) distinguishes the difference between forward and

backward motion.
In figure 1(a) we compare the value of ε for a variety of natural and artificial bodies

that move near the air–water interface. In each case we approximate f̂ (x̂) as the outline
of the plan view of the body (ignoring fins in the case of aquatic creatures), and we
ignore variations of the shape with depth. For each object we also compare values of
the Froude number Fr = U/

√
gL and the non-dimensional depth d = D/H, where U

is a typical velocity scale and g is the gravitational constant.
For aquatic creatures with d� 1, such as the humpback whale or the bottlenose

dolphin, we observe positive values of ε. We expect that this is because, at large
depths wave drag is less important than form drag and, hence, for a given body
volume, drag is minimised with a streamlined shape with a trailing edge more
pointed than its leading edge (Videler 2012). By contrast, for canoes and other boats
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Direction of motion

(A)

(B)

(C)

(E)

(F)

(D)

(G)

(H)

(I)

(J)

(K)

Bluff family

Slender family 5 54 43 32 21

5 54 43 32 21

(a)

z x

H
D d = D/H

(b) (c)
(F) (D)

(A)

(E) (G,H,I,K)
(J)

Key object

(A) Koi carp
(B) Laminar optimum Re = 20 000
      (Huan & Modi 1996)
(C) NACA 0020 airfoil
      (Stack & Von Doenhoff 1934)
(D) Bottlenose dolphin
(E) Mallard duck
(F) Humpback whale
(G) Canoe C1 Six
(H) Canoe C1 Vanquish III
(I) Canoe C1 Cinco XL
(J) Speedboat
(K) Kayak FFCK (2 pers.)

1/2

ŷ = ±f̂(x̂)
x̂

-1/2

1/2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

1

2

D
ep

th
 d

d ≫ 1

0.5 1.0 1.5 2.0 2.5

Boats
Animals

FIGURE 1. (Colour online) (a) Examples of different artificial and natural bodies that
move near the water surface. All bodies have been scaled to have the same aspect ratio.
(b) Non-dimensional average depth of motion d=D/H and Froude number Fr=U/

√
gL

for each of these bodies. (c) Table of the different bodies.

with d ≈ 0.5, we observe negative values of ε. We expect that this is because at
smaller depths, wave drag is more important than form drag and, hence, a pointed
leading edge is preferable.

Except for the case of the speedboat (Fr= 2.0), all of the other bodies in figure 1
have Froude numbers in the range 0.2 6 Fr 6 1.2. It is well known that this is the
regime where wave drag is typically most significant (Michell 1898; Havelock 1932;
Tuck 1989). Hence, in this study we restrict our attention to Froude numbers in this
range and investigate the effect of body asymmetry on drag. Furthermore, we do not
investigate the effects of planing (Darmon, Benzaquen & Raphaël 2014; Rabaud &
Moisy 2014).

To investigate the effect of asymmetry, we introduce two families of shapes which
have ε values in the same range as the existing body shapes, and we number the
shapes from 1 to 5, as displayed in figure 1. One set of shapes is slender, whilst
the other is more bluff. The slender family, which we use for the majority of this
study, is useful for comparison with Michell’s theory for slender bodies. Except for
the speedboat (J) and the two-person kayak (K), all of the objects in figure 1(a) are
well approximated by the slender family. However, clearly these two boat shapes (J, K)
are more similar to the bluff family. Indeed, a shape with a completely flat trailing
edge, as in the bluff family, has massive boundary layer separation and large form
drag. Therefore, we use the bluff family to explore such shapes, but we keep the
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0.
25

 m

5 m

L = 0.18 m

Sensor

Rail(a)

(b)
Hull H = 0.05 m

U

FIGURE 2. (Colour online) (a) Schematic diagram showing the body hull being pulled
through the water at constant velocity by a linear motor and connected via supporting
bars to a force sensor. (b) Photograph showing the towed body and its wake pattern.

experimental measurements in appendix B. Furthermore, there is a larger difference
in performance between each of the shapes in the bluff family, since they have more
of an extreme profile, and this granularity makes them useful for finding optimal
asymmetry, which we discuss later in § 5.

The shapes from both families have the same vertical and horizontal aspect ratios
L/H = 3.6 and L/W = 6, where W is the body width. The non-dimensional volume
V̂ = 1/(HLW)

∫∫
f dx dz is given by V̂ = 0.31 for the slender family and V̂ = 0.38 for

the bluff family. Each family of shapes is defined by an analytical function which is
given in appendix A.

In the next section we use the slender family of shapes to experimentally investigate
the effect of asymmetry on drag at varying depths and Froude numbers. In the
subsequent section we replicate the experimental results using a k–ω shear stress
transport (SST) turbulence model, as well as a simple modification of Michell’s
theory where we account for the development of the turbulent boundary layer. Then
we close with a discussion on the effect of the depth of motion, and a summary of
all the results.

3. Experimental investigation
In figure 2 we display a schematic diagram and a photograph of our experimental

set-up. We use a three-dimensional (3-D) printer to manufacture the two families of
asymmetric bodies. These are pulled through the water in a large basin (5 m× 2 m×
0.25 m) by a linear motor at constant velocity (in the range 0.4–1.4 m s−1). The hull
is connected to the motor by two supporting bars and a force/displacement sensor.
Different body depths are achieved using a vertical winch. The pitch angle is always
fixed at zero degrees to the horizontal, such that planing is never achieved. However,
we note that in realistic situations, some planing is expected for boats which travel at
Fr> 0.6 (Maynord 2005). Experiments are repeated at least three times for accuracy.
The dimensions of the hull and water basin are given in the diagram (except for the
width of the hull, which is W = 0.03 m).

Using this set-up we measure the drag force on the two families of shapes at
non-dimensional depths d = D/H between 0.5 and 2.0, and at Froude numbers
Fr = U/

√
gL between 0.3 and 1.0. We do not study Froude numbers smaller than

Fr = 0.3 because the signal-to-noise ratio of the force measurements is too large.
We convert the measured force R into a non-dimensional drag coefficient Cd via the
relationship

Cd =
R

ρU2Ω2/3
, (3.1)
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0.2 0.4 0.6
Fr

0.8 1.0

0.16

H

Depth d = D/H = 0.5(a) (b)

D

0.14

0.12

0.10

0.08

0.06

Cd

0.04

0.02

0
0.2 0.4 0.6

Fr
0.8 1.0

0.16

H

Depth d = D/H = 2.0

D

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

´ < 0 ´ > 0

FIGURE 3. (Colour online) Experimentally measured drag coefficient (3.1) for hull 5
from the slender family at different Froude numbers and at depths (a) d= 0.5 and
(b) d= 2.0. The difference between positive and negative asymmetry ε is indicated. Error
bars correspond to one standard deviation of the time signal given by the force sensor.

where ρ is the water density and Ω = LWHw is a typical volume scale, where Hw is
the wetted depth, which is equal to H when the hull is fully immersed and dH when
partly immersed.

In figure 3 we display drag coefficients measured for hull 5 from the slender family
at depth d= 0.5 (a) and d= 2.0 (b) at Froude numbers between 0.3 and 1.0. For the
shallow case d=0.5, the drag coefficient for ε <0 is lower than ε >0 for all measured
Froude numbers. This is because when the body moves at the water surface, the total
drag is dominated by its wave drag component, and for ε > 0, where the leading edge
is less pointed than the trailing edge, there is a larger wave disturbance than for ε < 0.
For the deep case d = 2.0 (figure 3b), the total drag is dominated by its form drag
component. Hence, for all Froude numbers there is lower drag when the body moves
in its more streamlined direction, with its more pointed end at the trailing edge (ε >0).

In the intermediate depths between d= 0.5 and 2.0, as we will discuss later, neither
ε < 0 nor ε > 0 is optimal for all Froude numbers. Instead, there is a range of Froude
numbers for which wave drag is more important than form drag (and ε < 0 optimal)
and the complimentary range where form drag is more important (and ε > 0 optimal).

Next we investigate the other hull shapes from the same slender family. In figure
4(a) we show measured values of Cd for d = 0.5, for each of the five different
hull shapes, and in both directions of motion. We can see that the drag increases
with increasing ε > 0 (i.e. for hull numbers from 1 to 5), whereas drag decreases
with decreasing ε < 0. This is consistent with figure 3, and indicates that bodies
with pointed leading edges are optimal at shallow depths. The drag curves exhibit
characteristic maxima near Fr = 0.5, as is often seen in the literature (Tuck 1989;
Videler 2012).

There are three major contributions to the measured drag: wave drag, form drag and
skin drag (Newman 2018). We have already described wave and form drag, and skin
drag is the force associated with viscous friction on the wetted surface of the hull.
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-0.8 -0.4
sgn(´)Fr

0 0.4 0.8

0.12
Wind tunnel measurements(b)

0.10
0.08
0.06
0.04C f

 +
 C

s

0.02
0

-0.8 -0.4
sgn(´)Fr

0 0.4 0.8

0.12
Michell’s theory(c)

0.10
0.08

Cw 0.06
0.04
0.02

0

Tow-tank measurements

sgn(´)Fr

0.12
(a)

0.10

0.08

Cd 0.06

0.04

0.02

0
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

Colour scheme Colour scheme

FIGURE 4. (Colour online) (a) Drag coefficient (3.1) measured using a tow-tank
experiment for each of the five hulls from the slender family with both positive and
negative ε at fixed depth d = 0.5 and at different Froude numbers. (b) Form and skin
drag coefficient Cf + Cs (3.3) measured in a wind tunnel, in absence of the air–water
interface. (c) Theoretical symmetric prediction of the wave drag coefficient Cw using
Michell’s formula (3.4).

We write the total drag coefficient in terms of this decomposition

Cd =Cw +Cf +Cs. (3.2)

Note that the skin and form drag, Cs and Cf , are classically normalised by a factor
1/2ρU2S, where S is the wetted surface area. Here, they form part of the total drag
coefficient Cd, and so are normalised by ρU2Ω2/3, as in (3.1). It is difficult to isolate
and measure any one of these components. However, by measuring the drag on the
hull shapes when placed in a wind tunnel, it is possible to isolate the skin and form
contributions from the wave contribution. In doing this, we make the key assumption
that the air–water interface does not affect the skin and form drag. For the small
amplitude waves we consider, we expect this assumption to be valid since the problem
is sufficiently linear that the coupling is weak.

To compare the wind tunnel and the tow-tank measurements, we use equivalent
values of the Reynolds number in both air and water. For the tow-tank experiment the
Reynolds number is given in terms of the Froude number by Rewater =FrL

√
gL/νwater,

where ν denotes the kinematic viscosity. The Reynolds number of the air in the wind
tunnel is given by Reair = UairL/νair. By equating these, we obtain the required air
velocity, which is given in terms of the Froude number as Uair = Fr

√
gL(νair/νwater).

In figure 4(b) we display measurements of the combined skin and form drag from
the wind tunnel experiments, where the measured force Rair is converted into the sum
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of the drag coefficients by the relationship

Cf +Cs =
Rair

ρairU2
airΩ

2/3
. (3.3)

The measured coefficients in the plot are given in terms of the Froude number for the
purpose of comparison with (a). In contrast to the tow-tank experiments, here we see
an increase in drag for decreasing ε < 0, and a decrease in drag for increasing ε > 0.
This is expected since hull shapes with ε > 0 are more streamlined for hull numbers
increasing from one to five, whereas hull shapes with ε < 0 are less streamlined.
Hence, it is clear that the effect of asymmetry on skin and form drag is completely
the opposite to that on wave drag.

We also observe that the contribution of form and skin drag in this case is
relatively small compared to the total drag. Therefore, it is expected that the wave
drag component is responsible for the dominant behaviour seen in (a). In particular,
the characteristic shape of the drag curves in (a), with peaks near Fr= 0.5 are typical
of wave drag measurements (Tuck 1989; Videler 2012).

Now let us consider Michell’s theoretical prediction of the wave drag Cw (Michell
1898; Tuck 1989), which is given by the formula

Cw =
4β2/3

πα4/3Fr4

∫
∞

1

λ2

√
λ2 − 1

|G(λ)|2 dλ, (3.4)

where α = L/W and β = L/Hw are the horizontal and vertical aspect ratios of the
wetted hull, and G is an integral expression defined in terms of non-dimensional
variables as

G(λ)=
∫ (−D+Hw)/L

−D/L

∫ 1/2

−1/2
[ f̂ ′(x̂)]e(λ

2 ẑ+iλx̂)/Fr2
dx̂ d ẑ, (3.5)

where λ is a non-dimensional wavenumber. The central term in (3.5), f̂ ′(x̂),
corresponds to a distribution of sources located along the x̂ axis, with strength
equivalent to forcing the impermeability condition along the body walls ŷ = ±f̂ (x̂).
Clearly, if f̂ (x̂) is an asymmetric function, it makes no difference to (3.5) whether
the body moves forwards or backwards (consider the transformation x̂→−x̂).

We use (3.4) and (3.5) to compute the theoretical prediction of Cw, which we
display in figure 4(c). We can see that Michell’s formula captures the general
behaviour of the wave drag, exhibiting the characteristic peaks near Fr= 0.5, as seen
in (a). However, it fails to distinguish between forward and backward motion. Indeed,
if we sum Michell’s wave drag prediction Cw and the wind tunnel measurements
of form and skin drag Cf + Cs, the only asymmetry effect observed comes from
the form and skin components, which display the opposite trend to the tow-tank
experiments in (a). Furthermore, apart from at small Froude numbers, there is no
significant difference in the drag between the five hull shapes. Hence, such a model
cannot be used to replicate the observed experimental results, and cannot be used to
accurately search design spaces, or to find optimum asymmetry, for example.

We have also performed experimental measurements for each of the five slender and
bluff bodies at depths between d = 0.5 and 2.0 and at Froude numbers between 0.3
and 1.5, and these are presented in appendix B.

There are two further effects that we have not yet discussed but which deserve
mentioning: capillary waves and nonlinear waves. As discussed by Fourdrinoy et al.
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(2019), capillary waves can have an impact on the wave resistance for small scale
experiments. However, as shown by Benzaquen, Chevy & Raphaël (2011, figure 7),
there is little difference between the pure gravity wave resistance and the gravity–
capillary wave resistance provided the typical size of the object exceeds five capillary
lengths, or approximately 1.5 cm. The smallest dimension of our hulls is the width
W = 3 cm. Hence, whilst capillary waves may be present, and have wavelength 2π

times the capillary length (1.88 cm), which is comparable to the width of the hull,
their contribution to the wave drag is a minor correction.

Secondly, it should be noted that the steepness of the generated waves in our
experiments increases slightly with Fr, and hence it is important to discuss the
possible effect of nonlinearities (Pethiyagoda, McCue & Moroney 2017). By
photographing the wave patterns from above and from the side it is possible to
estimate the maximum value of the wave steepness kA, where A is the amplitude and
k is the wavenumber, measured normal to the wave crest. Using this approach, the
maximum value we find for the hulls in the slender family is kA ≈ 0.5 (at Fr = 1).
For the majority of cases in the slender family kA is well below 0.5 (particularly for
ε < 0 and small Fr) indicating that the effect of nonlinear waves is small and linear
theory is appropriate. However, for the bluff family of shapes with ε > 0 we observe
values of kA closer to 1, and hence nonlinearities undoubtedly play a more important
role (for example, see the very large drag coefficients calculated in figure 10a).

4. Breaking the symmetry

In this section we use a combination of theoretical and numerical approaches
to interpret the asymmetry effects observed in our experimental results. We start
by proving that the wave resistance problem, as formulated by Michell using the
steady Euler equations, has an inherent symmetry, rendering it incapable of predicting
asymmetry effects. By adding dissipation the symmetry is broken. Hence, by using
a k–ω SST model (which is dissipative) we show that our experimentally observed
asymmetry effects can be replicated. Finally, as a simpler alternative approach, we
show that these asymmetry effects can also be captured by modifying Michell’s
theory to account for the growth of a turbulent boundary layer.

4.1. A note on reversibility

Firstly, we describe the original formulation of the problem described by Michell
(1898). We revert back to dimensional coordinates (x, y, z) for convenience. In this
framework, the velocity and pressure are denoted u = (u, v, w) and p. Assuming
incompressible, inviscid flow, the governing equations are the steady Euler equations

∇ · u= 0, (4.1)

ρ(u · ∇)u=−∇p− ρgk̂, (4.2)

where k̂ is the unit vector in the vertical z direction. The boundary conditions consist
of the impermeability conditions on the hull walls, which are

v =±u f ′(x), on y=±f (x), (4.3)
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the kinematic and dynamic conditions at the air–water interface z= ζ (x, y), which are

w= uζx + vζy, on z= ζ (x, y), (4.4)
p= patm, on z= ζ (x, y), (4.5)

as well as appropriate conditions at infinity

u→ (−U, 0, 0), x, y, z→±∞, (4.6a,b)

where we have chosen the frame of the moving body. Following this, Michell then
assumes an irrotational flow so that the above formulation can be written in terms
of a velocity potential, and then applies slender body theory to linearise the boundary
conditions. However, it is clear that, even before making these final assumptions, there
is already an inherent symmetry in the problem formulation.

To illustrate this, first consider that u∗, p∗ and ζ ∗ are solutions to the free
boundary problem (4.1)–(4.6). Then consider switching the direction of the free
stream U→−U. It is straightforward to show that the reversed flow problem has a
solution −u∗, p∗ and ζ ∗, regardless of whether f̂ (x̂) is an asymmetric function. Hence,
the problem is invariant under a change in the direction of motion. Consequently,
such a formulation cannot predict the effects of asymmetry, such as those we have
observed experimentally.

There are several possible explanations for the failure of the above formulation to
capture asymmetry effects. Firstly, we observe that by including a viscous term µ∇2u
on the right-hand side of (4.2), the variables −u∗, p∗ and ζ ∗ no longer satisfy the
reversed flow problem. This indicates that neglecting viscosity in the Euler equations
may be responsible for the failure. One could similarly argue that the failure is caused
by choosing the steady equations, which neglect the acceleration term ρ∂u/∂t term on
the left-hand side of (4.2).

Here, we show that it is sufficient to account for viscosity to capture the effect of
body asymmetry on drag. We illustrate this in two ways. Firstly, with a steady k–ω
SST turbulence model. Then, by modifying Michell’s theory to include the growth of
a turbulent boundary layer.

4.2. Results from a k–ω SST model

Since we consider situations where the Reynolds number is between Re = 105 and
Re= 108, the flow near the hull is expected to be turbulent. Hence, we model the flow
with a steady three-dimensional k–ω SST model (Menter 1994), where the air–water
interface is treated with the volume of fluid method (Ubbink 1997; Berberovi et al.
2009). The momentum equation of the k–ω SST model contains a term on the right-
hand side of the form (∇ : (µ+µt)(∇u+∇uT)), where µt =µt(k, ω) is a nonlinear
eddy viscosity. As explained above, this term breaks the symmetry of the problem,
allowing us to distinguish between forward and backward motion.

Since it is not possible to perform computations on an infinite domain, instead we
use a finite domain with boundaries more than 20 hull lengths away from the centre of
the hull. We find this is sufficient to avoid significant effects due to wave reflections
from the edges. In addition, since the problem is symmetric about the plane y = 0,
we only solve for y > 0. We use a cuboid mesh with (40, 20, 120) elements in the
(x, y, z) directions, spaced non-uniformly such that the resolution near the hull walls
and at the air–water interface is much higher than in the far field. We have also tried
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FIGURE 5. (Colour online) Computational results from a k–ω SST model at depth d= 0.5.
(a,b) Surface plots of the air–water interface for hull 5 from the slender family at Froude
number Fr= 0.5 with positive and negative ε. (c) Numerically computed drag coefficient
for comparison with figure 4.

finer mesh resolutions, and we find that this mesh resolution is sufficient to resolve
all the details of the flow.

In addition to the boundary conditions (4.3)–(4.6), we also impose no-slip
conditions on the hull walls, and appropriate conditions for the turbulence variables
k and ω, which we do not describe here, but which are given by Menter (1994). We
use standard values for all the turbulence parameters, which are also given by Menter
(1994).

In figure 5(a,b) we display surface plots of the air–water interface solution for the
case of hull 5 (from the slender family) with both positive and negative ε. In each case
the Froude number is Fr = 0.5. We can see the classic Kelvin wake pattern behind
the hulls, although the waves for ε > 0 are larger in amplitude and persist further
downstream, illustrating just one asymmetry effect.

In figure 5(c) we display drag coefficients calculated for all five hull shapes from
the slender family, with both positive and negative ε, and for Froude numbers Fr =
0.3–1.0. The depth is fixed at d = 0.5 for the sake of comparison with figure 4. In
each case the drag coefficients are calculated by integrating the stress around the hull
surface and normalising by a factor ρU2Ω2/3, as in (3.1).

Overall, there is relatively good agreement between the experimental and numerical
results. The k–ω SST model captures the correct magnitude of the drag coefficient,
as well as the appropriate increase in Cd for increasing ε > 0 and the decrease for
decreasing ε < 0. However, the difference in Cd between the different hull shapes is
not as large as measured in the experiments. This discrepancy is most likely due to
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inaccurate treatment of the water surface using the volume of fluid method, which is
known to over-diffuse sharp interfaces (Theodorakakos & Bergeles 2004). Accuracy
could possibly be improved using other techniques, such as the level set method, or
mesh deforming. Nevertheless, the k-ω SST model with the volume of fluid method
is clearly capable of capturing asymmetry effects, at least qualitatively.

We have also performed computations for the bluff family of shapes at various
depths, and these are presented in appendix B. In particular, the bluff family of shapes
exhibits more of an extreme difference in drag between ε > 0 and ε < 0, and this is
detected more clearly with the k–ω SST simulations (e.g. figure 10e).

4.3. Modification of Michell’s theory
Next we show that a simple modification to Michell’s theory can account for the
effects of body asymmetry, capturing the distinction between forward and backward
motions. A possible theoretical underpinning for such distinction is the effect of
viscosity. Since, with a viscous description of the flow, there is a boundary layer
near the hull walls, our approach here is to modify Michell’s theory to account for
the growth of this boundary layer. We find that this effective approach captures the
trends observed experimentally.

With a viscous description of the flow, the impermeability condition (4.3) is
replaced by a no-slip condition on the body walls. The flow is then decomposed into
an inner boundary layer region, where the effect of viscosity is important, and an
outer inviscid potential-flow region. In our current approach, we treat the edge of the
boundary layer as an impermeable surface to the potential flow region (or equivalently
a streamline which passes around the hull). Then, we advance in the same manner
as Michell (1898), as described in § 4.1, except that we impose the impermeability
condition (4.3) on the combined shape of the hull plus its boundary layer. By doing
so, we replace the hull with a new larger shape which has non-zero width at the
trailing edge. We expect the boundary layer to have approximately the same aspect
ratio as the hull shape, so that slender body theory still applies. Furthermore, the
wave drag force due to pressure variations along the hull wall are transmitted to
the edge of the boundary layer, since pressure is expected to be uniform across the
boundary layer width (Schlichting et al. 1960).

For the purposes of this study, we take the boundary layer thickness as the
99 % definition δ0.99(x): for a given (x, y) plane, this is defined as the y value
that corresponds to where the streamwise velocity is at 99 % of its maximum
u(x, y = δ0.99(x)) = 0.99 max{u(x, y)}. Inserting the combined shape of the hull
plus its boundary layer into Michell’s non-dimensional formula for the wave drag
(3.5), we get

G(λ)=
∫ (−D+Hw)/L

−D/L

∫ 1/2

−1/2
[ f̂ ′(x̂)+ δ̂′0.99(x̂)]e

(λ2 ẑ+iλx̂)/Fr2
dx̂ d ẑ. (4.7)

Here, we have made the assumption that δ̂′0.99(x̂)= 0 for |x̂|> 1/2. This is equivalent
to a boundary layer which begins growing at the leading edge and at the trailing edge,
it turns into a wake region which remains at constant width downstream.

To estimate the boundary layer thickness, we make use of our k-ω SST simulations.
To reduce noise, we extract the boundary layer thickness from simulations where the
hull is deeply submerged beneath the water surface (d = 2.0). We assume that the
boundary layer profile does not change much with depth, and it is therefore acceptable
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FIGURE 6. (Colour online) (a) Turbulent boundary layers for the five hulls from the
slender family, with ε > 0 and ε < 0. For the k–ω SST model we take the boundary
layer as the 99 % thickness. For the numerically fitted boundary layer, we use (4.7) and
a numerical optimisation routine to find the boundary layer profile that best matches the
theoretical and experimental drag coefficients. (b) Corresponding average boundary layer
thickness. (c,d) Theoretical drag coefficients for d = 0.5 calculated using (4.7) with the
corresponding boundary layer profiles, in conjunction with wind tunnel measurements for
Cf +Cs (to be compared with figures 4 and 5).

to use the profile measured at d = 2.0 for all depths. The boundary layer thickness
for each hull shape is displayed in figure 6(a) with black dashed lines. For ε < 0 the
boundary layer grows slowly for the majority of the hull shape, and then very rapidly
at the trailing edge. By contrast, for ε > 0 the boundary layer only grows slowly near
the leading edge, and then rapidly thereafter. A useful measure for the size of the
boundary layer is the average width 〈δ̂0.99〉 =

∫ 1/2
−1/2 δ̂0.99 dx̂. We plot 〈δ̂0.99〉 calculated

for each of the hull shapes in (b). Clearly, we see that the average boundary layer
thickness is larger for ε > 0 than for ε < 0 (e.g. 24 % larger for hull 5).

Using the modification to Michell’s theory (4.7) with the boundary layer thicknesses
extracted from the k–ω simulations, in conjunction with the wind tunnel measurements
of the skin and form drag, we calculate the total drag (3.2) for each of the five slender
hulls with both ε < 0 and ε > 0. The results are plotted in figure 6(c). We see that
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the trend observed in the experimental results from figure 4 is replicated very well,
even better than the numerical calculations in figure 5. The hulls with positive ε have
increased drag, whilst those with negative ε have decreased drag. However, there is
clearly still some discrepancy for the shapes with large ε > 0 (e.g. the drag on hull 5
at Fr= 0.5 is too small).

It is interesting to note that, whilst the modified Michell theory uses a boundary
layer extracted from the k–ω SST model, the drag coefficients show better comparison
with experimental data than those calculated directly by the k–ω SST model. As
described earlier, the discrepancy between the numerically calculated drag coefficients
and the experimentally measured ones is most likely explained by an over-diffusion
of the interface that is associated with the volume of fluid method. Hence, it seems
that Michell’s theory, modified to account for the boundary layer, has a better
reconstruction of the interface than the volume of fluid method.

We also note that even though the combined shape of the hull plus its boundary
layer is bigger than the original hull f̂ + δ̂0.99 > f̂ , the modification (4.7) can produce
either an increase or a decrease in wave drag, depending on the sign of ε. Therefore,
the average width 〈δ̂0.99〉 does not provide enough information alone to indicate
whether the asymmetry is advantageous or disadvantageous. Instead, we require full
knowledge of the boundary layer profile δ̂0.99(x̂), inserted into (4.7).

We have also tried fitting the shape of the boundary layer δ̂0.99(x̂) to match the
theoretical wave drag coefficient (4.7) and the experimental data in figure 4(a), using
a numerical least-squares optimisation method. We give the details of this optimisation
to appendix C, but we display the results in figure 6(d). The corresponding boundary
layer thicknesses are displayed in (a) with blue dotted curves, and the mean thickness
in (b). The numerical optimisation matches the theoretical data with the experimental
data extremely well. The average relative error is approximately 5 %, compared to
18 % using the k–ω SST boundary layer in (c), and 26 % using no boundary layer
at all.

The numerical optimisation finds a slightly larger boundary layer thickness than
that extracted from the k–ω SST model. There are several possible reasons for this
discrepancy. For example, the k–ω SST model may under-predict the growth of the
turbulent boundary layer. Or, perhaps the fitted boundary layer naturally corresponds to
a larger thickness than the 99 % definition. In any case, it is evident from the boundary
layer profiles in figure 6(a) that the fitted boundary layer and the k–ω SST boundary
layer are similar in shape. This suggests that our modification to Michell’s theory is
appropriate, and provided good knowledge of the boundary layer profile, the wave
drag on an asymmetric body can be predicted much more reliably than the original
formulation (3.5). However, we acknowledge that this is an effective approach, and
does not manifest a complete description of the flow in the boundary layer.

5. Influence of the depth of motion
In figure 3 we showed that asymmetry can be advantageous or disadvantageous,

depending on whether the body is near or far away from the air–water interface. This
is explained by the relative importance of wave and form drag. For large depths,
form drag dominates over wave drag, such that positive asymmetry is favourable. On
the other hand, at shallower depths wave drag dominates over form drag, such that
negative asymmetry is better. Whilst we have shown that, using a wind tunnel, it is
possible to measure wave drag independently from the combined total of skin and
form drag, it is quite challenging to treat form and skin components independently,
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at least from an experimental point of view. However, with numerical simulations,
such as the k-ω SST model, this is relatively straightforward. Being able to decompose
the drag into these three components is very useful when comparing their relative
magnitudes.

From the results of our k–ω SST model, it is possible to extract the time-averaged
pressure and viscous stresses integrated over the hull surface. Since form and wave
drag result from a pressure force, these are lumped together to form a pressure
coefficient, which we denote Cp. This is given in dimensional terms as

Cp :=Cf +Cw =
1

ρU2Ω2/3

∫
S
(p I · n̂) · ı̂ dS, (5.1)

where ı̂ is the unit vector in the x direction, n̂ is the unit outward-pointing normal
to the hull surface S, and I is the identity matrix. Similarly, the skin drag can be
calculated from the viscous stress component

Cs =
1

ρU2Ω2/3

∫
S
µ((∇u+∇uT) · n̂) · ı̂ dS. (5.2)

It is not immediately obvious how to split Cf and Cw in (5.1). However, this can
be achieved by noting two particular properties of Cf and Cw. Firstly, in the limit
Fr→ 0 or Fr→∞, we expect Cw → 0 (Michell 1898; Tuck 1989). Secondly, we
do not expect Cf to depend strongly on the Reynolds number, and hence the Froude
number (see figure 4b). Hence, the form drag can be extracted as

Cf = lim
Fr→0

Cp(Fr), (5.3)

and, consequently, the wave drag can be approximated as

Cw(Fr)=Cp(Fr)−Cf . (5.4)

We are unable to compute Cd in the limit Fr→ 0 since the k–ω SST model is only
valid for turbulent flows. Hence, we approximate (5.3) by averaging Cd over a few
small values of Fr. We think this is an acceptable approach, since from figure 4(c)
we can see that Michell’s theory predicts rapid decay of Cw for Fr< 0.2.

Using the above method, in figure 7 we plot the wave, skin and form drag
coefficients for hull 5 from the slender family with both positive and negative
asymmetry for Fr ∈ [0.1, 1.0] and two different depths d = 0.5, 2.0. When the
hull moves close to the interface (d = 0.5) the wave drag coefficient is larger than
the skin and form drag coefficients for Froude numbers in the approximate range
Fr ∈ [0.4, 0.9], for both ε > 0 and ε < 0. For Froude numbers outside that range the
wave drag coefficient decays and is comparable to the other drag components. Hence,
for Fr ∈ [0.4, 0.9] we expect a negative ε to be advantageous, whereas for large or
small Fr, we expect a positive ε to be advantageous.

When the body moves at the larger depth d = 2.0 we can see that the wave drag
component is never the largest component, regardless of Froude number. For ε < 0
form and skin drag are both of the same order of magnitude, but considerably larger
than wave drag. This is because, for a body with a bluff trailing edge, boundary layer
separation results in significant form drag. However, for ε > 0, since the body is more
streamlined, form drag is smaller than skin drag. Hence, in this case, the form drag
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FIGURE 7. (Colour online) Results from the k–ω SST model, where the numerically
computed drag coefficient is decomposed into wave, form and skin components Cw,Cf ,Cs.
(a,b) Hull 5 from the slender family at depth d= 0.5 with ε < 0 (a) and ε > 0 (b). (c,d)
Hull 5 from the slender family at depth d= 2.0 with ε < 0 (c) and ε > 0 (d).

coefficient is smaller than the skin drag coefficient for all Froude numbers. Therefore,
at large depths positive ε is advantageous.

The most obvious next question is the following: for a given depth and Froude
number, which asymmetry is optimal? To answer this question we turn our attention
to the bluff family of shapes. This family is more suitable than the slender family
since there is a greater difference in drag coefficient between each hull shape within
the family, giving us more granularity.

In figure 8 we plot the optimum asymmetry, which we denote ε∗, as a function
of Froude number and depth, as measured in our experiments. Using five hull shapes
from the bluff family, for each of ε > 0 and ε < 0, there are a total of nine possible
values of the asymmetry parameter in the range ε ∈ [−0.21, 0.21]. We see that for
d = 0.5 the optimum asymmetry is negative for all Froude numbers, whereas for
d= 2.0 the optimum asymmetry is positive. However, for intermediate depths d= 1.0
and d= 1.25, the optimum asymmetry is sometimes positive and sometimes negative,
depending on the Froude number range. In the case of d= 1.0, ε < 0 is optimum for
Fr ∈ [0.35, 0.95], and ε > 0 is optimum for other Fr numbers. For d = 1.25 there is
a similar pattern, but the range of Froude numbers is smaller Fr ∈ [0.6, 0.8]. These
results are qualitatively consistent with those in figure 7, where Cw dominates for a
range of Froude numbers, but only at smaller depths (note, however, that we use a
different family of shapes between figures 7 and 8).
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FIGURE 8. (Colour online) (a–d) Optimal asymmetry ε∗ as a function of Froude number
for depths d= 0.5, 1.0, 1.25, 2.0, using experimental measurements of the bluff family of
shapes. At large depths and very small or very large Froude numbers, form drag dominates
over wave and skin drag, so that ε > 0 is optimal. For shallow depths and intermediate
Froude numbers, wave drag dominates over form and skin drag, so that ε < 0 is optimal.

6. Conclusions
We have addressed the effect of front–back asymmetry on wave, form and skin

drag for bodies moving at or near an interface. We have proposed two sets of body
shapes, parameterised by a single quantity ε, which measures the degree of the
body asymmetry, and whose sign indicates whether the object has its pointed end
at the leading or trailing edge. Using a combination of experimental, numerical and
analytical approaches, we have illustrated how asymmetry can be advantageous or
disadvantageous, depending on the submerged depth of the body and the Froude
number. We have also proposed a simple modification of Michell’s theory which
enables the prediction of asymmetry effects using the turbulent boundary layer profile.
The boundary layer is symmetry breaking since, for an asymmetric body, it grows
differently depending on the direction of motion.

The present work sheds insight on the form of different natural and artificial objects,
such as those listed in figure 1. For example, the carp, dolphin and whale all have
positive asymmetry because they spend the majority of their time deep beneath the
water surface, where wave drag is less important than form drag, and hence require
a streamlined shape. The same is true for the NACA airfoil, which does not interact
with any interfacial waves. However, kayaks, canoes and sailing boats have negative
asymmetry because they move at the interface, where wave drag dominates over form
drag, and hence require a shape with a more pointed leading edge that reduces wave
disturbance. Waterfowl, such as the duck, move at shallow depths and so appear to
have a contradictory value of ε > 0. However, this can be explained by the fact that
ducks prefer to fly if they desire to move fast.

At much smaller scales, there are some swimming insects that have an asymmetric
shape. For example, whirligig beetles, which are known for swimming rapidly in
circles at the water surface, are reported to have ε in the range [−0.097, −0.036]
(Boucher 2018). Since they move at the interface, a negative value of ε is consistent
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with our findings. However, to study the motion of objects at such small scales, it
would be necessary to take capillary effects into account. We leave this for future
work, as well as studying the variation of the objects in the vertical dimension.

As another possible direction of future work, particle image velocimetry could
be applied to experimentally measure the boundary layer thickness that we use in
our modification to Michell’s theory. This would potentially enable more accurate
measurement of the turbulent boundary layer thickness than the k–ω SST model.
As a further step, a formal shape optimisation could be performed, where instead
of considering shapes that are defined by a single asymmetry parameter, we would
consider all continuous smooth shapes f̂ (x̂)∈C∞[−1/2, 1/2]. The optimisation would
require a model which has good capabilities in predicting each of the three drag
coefficients, Cw, Cf and Cs, especially when it comes to asymmetry effects. Here,
we have presented a simple modification to Michell’s theory for the wave drag Cw
that captures such effects, given knowledge of the boundary layer thickness. This
simple modification is computationally inexpensive, which would make it ideal for
optimisation. Therefore, a reliable and computationally inexpensive model for the
boundary layer (and hence Cf , Cs) would complement our modification, and allow
for such an optimisation of the hull shape.

In addition, we note that throughout this study we have assumed that there is no
influence on the wave resistance from the velocity distribution in the boundary layer
and in the wake. In fact, the effect of shear stress in these regions could alter the
dispersion relation of the waves, and hence the wave drag (as is shown by Benzaquen
& Raphael (2012) in the case of vertical shear). Furthermore, our modification to
Michell’s theory could be extended to include the wake region as part of the effective
hull shape, as we have done here for the boundary layer.
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Appendix A. Mathematical expressions for the hull shapes
For the sake of reproducibility, in this section we give the expressions for the

functions f̂ (x̂) that we used for the slender and bluff families of shapes throughout
the main text. In non-dimensional form, the slender family of shapes is given by

f̂ (x̂)= c1 log
(

1+ c2

ec3(x̂−1/2) + c2e−c3c4(x̂−1/2)

)
, (A 1)

where the coefficients c1, c2, c3, c4, for the five different shapes are listed in table 1.
The bluff family of shapes is given by

f̂ (x̂)= c1(c3(1/2+ x̂)(1− e−c4(1/2−x̂))+ (1− c3)(1/4− x̂2)(x̂2
+ c2

2)), (A 2)

and the corresponding coefficient values are listed in table 1. The coefficients are
chosen so that each of the shapes f̂ (x̂) within the family have the following properties:
f̂ (±1/2) = 0; max{ f̂ (x̂)} = 1/2, and

∫ 1/2
−1/2 f̂ (x̂) dx̂ = V̂ , where the non-dimensional

volume is V̂ = 0.31 for the slender family and V̂ = 0.38 for the bluff family. The
corresponding values of the asymmetry parameter ε are also listed in table 1 for each
shape.
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Slender family Bluff family
Shape c1 c2 c3 c4 ε Shape c1 c2 c3 c4 ε

1 0.460 0.030 3.500 1 0 1 5.600 0.598 0 500 0
2 0.488 0.066 4.182 0.660 0.057 2 4.060 0.674 0.023 500 0.053
3 0.592 0.163 4.864 0.402 0.113 3 2.810 0.778 0.067 500 0.108
4 0.937 0.500 5.500 0.199 0.161 4 1.953 0.901 0.144 500 0.161
5 9.007 9.195 6.091 0.017 0.203 5 0.376 54.972 0.999 500 0.215

TABLE 1. List of the coefficients for the slender and bluff families of shapes (A 1) and
(A 2). The coefficients listed here correspond to ε > 0. The shapes with ε < 0 are achieved
under the transformation x̂→−x̂.

Appendix B. Additional drag calculations

In this section we display additional drag coefficients measured either using the tow-
tank experiment, or the k–ω SST model, as described in the main text.

Earlier, in figure 4(a), we displayed experimental drag coefficient measurements for
depth d = 0.5 for the hulls from the slender family. Similarly, here in figure 9 we
display measurements for depths d = 0.25, 0.75, 1.0 and for Froude numbers in the
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FIGURE 9. (Colour online) Additional tow-tank measurements of the drag coefficient Cd
for the slender family of shapes at various different depths.
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FIGURE 10. (Colour online) (a–d) Additional tow-tank measurements of the drag
coefficient Cd for the bluff family of shapes at various different depths. (e–h)
Corresponding calculations of Cd using the k–ω SST model.
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range Fr ∈ [−1.5, 1.5]. In figure 10(a–d) we also display experimental measurements
for the bluff family of shapes at depths d = 0.5, 1.0, 1.25, 2.0, and for Froude
numbers in the range Fr ∈ [−1, 1]. The corresponding k–ω SST calculations of the
drag coefficient for the bluff family of shapes are in figure 10(e–h).

Appendix C. Numerical fitting of the turbulent boundary layer
In this section we briefly describe the optimisation procedure followed to generate

the fitted boundary layer profiles in figure 6(a), and the corresponding drag curves
in (d). As explained in § 3, drag measurements have been taken, both using a tow-tank
experiment, and in a wind tunnel. In this way, it is possible to isolate the measured
wave drag coefficient for a given hull shape f̂ (x̂), at a given value of the Froude
number Fr, and the depth of motion d. Let us denote the wave drag coefficient derived
from this procedure as C∗w( f̂ (x̂), Fr, d).

Now, consider the wave drag coefficient calculated using our modification to
Michell’s theory (4.7). This theoretical prediction is calculated for a given boundary
layer profile δ̂0.99(x̂) and a given hull shape f̂ (x̂). Hence, we denote the theoretical
prediction from (4.7) as C̃w(δ̂0.99(x̂), f̂ (x̂), Fr, d). In the following numerical fitting
procedure, we seek to find the boundary layer profile δ̂0.99(x̂) that, when inserted
into (4.7), gives the closest fit possible to the experimentally derived values
C∗w( f̂ (x̂), Fr, d).

To perform the fit, we use a least-squares minimisation approach. We run the
optimisation for each hull shape f̂ (x̂) separately. Therefore, for each f̂ (x̂) we set the
objective function as

J(δ̂0.99(x̂)) :=
∑
d∈Xd

∑
Fr∈XFr

(C̃w(δ̂0.99(x̂), f̂ (x̂), Fr, d)−C∗w( f̂ (x̂), Fr, d))2, (C 1)

where XFr={Fr1,Fr2, . . . ,Frn} and Xd={d1,d2, . . . ,dn} denote the set of experimental
measurements.

To be physically realistic, we place some constraints on the control function
δ̂0.99(x̂) ∈ C∞[−1/2, 1/2]. Firstly, we require that the boundary layer begins growing
at the leading edge of the body, such that

δ̂0.99(−1/2)= 0. (C 2)

Secondly, we require a non-shrinking boundary layer, such that

δ̂′0.99(x̂)> 0. (C 3)

Finally, to regularise the optimisation and ensure that the boundary layer profile
remains sufficiently smooth, we add a term to the objective function (C 1) that
penalises large boundary layer growth rates. Hence, we replace (C 1) with

J (δ̂0.99(x̂)) := J(δ̂0.99(x̂))+µ
∫ 1/2

−1/2
δ̂′0.99(x̂)

2 dx̂. (C 4)

The penalty parameter µ is chosen to be sufficiently large that regularity is achieved,
whilst not being too large that the solution is dramatically affected. For all of the hulls
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in this study, we have performed a sensitivity analysis on µ to confirm the stability
of the fitted boundary layer profile.

To summarise, the optimisation problem consists of minimising the penalised
least-squares residual (C 4), subject to the constraints (C 2) and (C 3). We solve this
numerically, following the same procedure as Benham et al. (2018). This involves
discretising the boundary layer shape δ̂0.99(x̂) and treating each of the discretised
values as a decision variable. We use the interior point method, with the IpOpt
implementation (Nocedal & Wright 2006; Wächter & Biegler 2006). Gradients are
calculated using automatic differentiation in the JuMP package (Dunning, Huchette &
Lubin 2017) of the Julia programming language (Bezanson et al. 2017).

The resulting fitted boundary layer profiles are plotted in figure 6(a) for each hull
shape. Then, we insert the boundary layer profiles into (4.7) for Froude numbers in
the range Fr ∈ [0.3, 1.0] and at depth d = 0.5 to calculate the wave drag coefficient
C̃w. These calculations are then added to the wind tunnel measurements Cf +Cs from
figure 4(b), to produce the total drag coefficient curves Cd in figure 6(d).
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