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During motion from deep to shallow water, multiple equilibria may emerge, each with
identical drag. In this study, we show experimentally that the same drag force may be
experienced at several different speeds of body motion in shallow water, and that this can
be explained by a localised amplification of the wave drag near the shallow wave speed.
Whilst wave drag in shallow water has been predicted with varying degrees of accuracy by
several inviscid models, the bifurcation properties have not yet been discussed. Here, we
address the nonlinear dynamics by considering the quasi-steady motion of a body between
deep and shallow water, where the depth is slowly varying. In particular, we illustrate
possible hysteresis routes between coexisting equilibrium states that have significantly
different velocities, presenting interesting implications for naval and racing applications.

1. Introduction

The effect of bathymetry, or water depth, on the drag of an object moving through
a body of water has numerous important applications, ranging from naval and coastal
engineering to boat sports and swimming (Boucher et al. 2018; Fourdrinoy et al. 2019).
It is well known that there is significant difference between the waves generated by
a body moving in deep water and shallow water, and this is reflected in the drag
properties. For example, as first discussed by Havelock (1922), wave drag may be either
exacerbated or diminished in shallow water, depending on the speed regime. However, the
catastrophic emergence of multiple equilibrium states in shallow water has not yet been
discussed. In this study, we illustrate the existence of such states, both experimentally
and theoretically, and use the example of quasi-steady motion in a body of water with
slowly varying depth to explore the resulting nonlinear dynamics.

To distinguish between deep and shallow water regimes, a commonly used parameter
is the non-dimensional ratio between the water depth h and the typical wave length λ.
The dispersive properties of deep water (h/λ � 1) mean that the wave drag behaviour
is largely dominated by a resonance between the boat speed u and the wave speed c
(Havelock 1922). The boat speed is usually characterised by the length-based Froude
number FrL = u/

√
gL, where L is the boat length. Wave drag is typically largest within

a vicinity of FrL ≈ 0.5, and its importance decays as FrL → 0,∞ (Michell 1898; Videler
2012). By contrast, the non-dispersive properties of shallow water (h/λ� 1) mean that
no such resonance exists. Instead, since all waves travel at the same speed

√
gh, the only

resonance is isolated to the vicinity where the depth-based Froude number is near unity
Frh = u/

√
gh ∼ 1. The collapse of this resonance has been compared to shock behaviour

in hydraulic jumps, and supersonic transition in aeronautics (Tuck 1989).
The consequence is that when a boat moves from deep water to shallow water, and

vice versa, there is an interesting and unintuitive change of behaviour, as first discussed
by Havelock (1922) and later by various other authors (Tuck 1989; Hofman & Kozarski
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2000). There are three definitive regimes of interest: subcritical, critical and super-critical.
The sub-critical region Frh � 1 corresponds to situations where the depth is sufficiently
large that it makes little impact on the drag. The critical regime Frh ∼ 1 exhibits
resonance with the shallow wave speed, causing a drastic accentuation of the wave drag.
By contrast, in the very shallow super-critical regime Frh � 1, the wave drag is less
than it would be in infinitely deep water. Hence, as a body is pushed at constant force
between deep and shallow water, it may undergo either an acceleration or a deceleration,
depending on its speed.

There have been numerous studies of the effects of the bathymetry on the wave drag.
One of the most notable is the linear theory of Havelock (1922), in which the wave
resistance was calculated for a moving pressure disturbance at the surface of a body
of water with finite depth. Another linear approach, derived by Sretensky (1937) and
later summarised in English by Weinblum (1950), adjusted the infinite depth theory of
Michell (1898) to account for both finite depth and width. Other studies have included
nonlinear effects (Doctors & Dagan 1980), the effects of unsteadiness (Doctors 1975),
shear currents (Li & Ellingsen 2016) and capillary waves (Wedo lowski & Napiórkowski
2013). However, as mentioned above, what has not yet been discussed in the above
literature is the existence of multiple equilibrium states and the nonlinear dynamics
during motion between deep and shallow water. In particular, the associated bifurcation
pattern has important consequences on boat racing applications, where different solution
branches correspond to different speeds, and hence different race times.

In this study we consider the nonlinear dynamics of a boat pushed at constant force
at the surface of a body of water with varying depth. We restrict our attention to the
case where the length scale associated with depth changes is much larger than the length
scale associated with acceleration/deceleration, similarly to Gourlay (2003). Such an
approximation is realistic in a large number of practical cases. In this way, it is acceptable
to consider the wave field steady at each instantaneous depth, and we focus on the
quasi-steady dynamics of the boat (where the only important time-dependence is that
associated with depth change). Using a tow-tank experiment, we measure the steady drag
at various different speeds and depths, and we illustrate that multiple solutions emerge in
the shallow water regime. This sort of bifurcation is reminiscent of the stick-slip problem
studied by Baumberger & Caroli (2006).

We compare our tow-tank results to the experimental data from the European Devel-
opment Centre for Inland and Coastal Navigation, Duisburg (also known as the VBD
reports), as detailed by Hofman (2006), as well as surveying the existing theoretical
descriptions of the wave drag. These include the linear theories of Sretensky (1937),
Havelock (1922), and our recent boundary layer description of Benham et al. (2019),
adjusted to account for finite depth. We employ the validated theory to explore the
bifurcation patterns of the system, using the two relevant bifurcation parameters: the
forcing and the depth. Then, we describe the quasi-steady motion of a boat in a lake
with a sinusoidal depth profile as a case study, revealing interesting speed dynamics and
possible hysteresis routes.

2. Motion in deep and shallow water

We consider the motion of a body of mass m moving in a large body of water with finite
depth. Written in terms of the Cartesian coordinate system (x, y, z), the body motion is
purely in the x-direction. The z-axis is defined such that the resting water surface is given
by z = 0, and the water subsurface only varies in the direction of motion z = −h(x). The
body is driven forwards with a constant force F , and the position and speed x(t), u(t)
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Figure 1: Labelled photograph of our experimental setup: a hull is pulled through the
water at constant velocity by a linear motor and connected via supporting bars to a force
sensor. The water depth for each experiment is uniform.

are governed by the dynamics

ẋ = u, (2.1)

(m+ma)u̇ = F −Rd(x, u), (2.2)

where Rd is the drag force, which depends on both space (via the water depth) and the
boat speed, and ma is the added mass (Newman 2018). We make the key assumption
that the depth is sufficiently slowly varying that any acceleration/deceleration due to
depth change is small, or equivalently u̇/g � 1. In this way, the drag term in (2.2) is
approximated as its steady value at each instantaneous depth and speed (i.e. ignoring
any dependence on acceleration).

As is often done, we decompose the drag into three different components: the wave
drag, form drag and skin drag, such that

Rd = Rw +Rf +Rs. (2.3)

The wave drag Rw is the force associated with the sustained generation of waves due to
body motion, and depends greatly on both the speed and the draft (Benham et al. 2019),
as well as the depth of the water (Havelock 1922). Typical speed values for different types
of boats and aquatic animals are given by Boucher et al. (2018), and depth ratios can
often be as small as h/L = 0.2. The form drag Rf is the force due to the surrounding
pressure field and is effectively a measure of how streamlined an object is. Finally, the
the skin drag Rs relates to the viscous friction between the wetted body surface and the
surrounding fluid. As we will discuss later, the form and skin drag have a relatively weak
dependence on depth and speed compared to the wave drag. Therefore, we make the
simplifying assumption that Rf and Rs are constants for the range of depths and speeds
we consider, whereas Rw depends on both u(t) and h(x(t)).

We measure the total drag force Rd on a 3D-printed hull experimentally by pulling it
through a large basin of water at constant velocity using a linear motor (see Figure 1).
We use a symmetric hull, taken from the family of shapes proposed by Benham et al.
(2019). The shape varies only in the direction of motion x, not in the vertical z, and
is hence represented by a function y = f(x), where the exact closed form expression
can be found in (Benham et al. 2019). The dimensions of the submerged† hull in the
(x, y, z) directions are (L,W,H) = (18, 3, 2.5) cm, giving aspect ratios in the horizontal
and vertical directions as α = L/W = 6 and β = L/H = 7.2, respectively.

† Note that the total hull height is 5 cm, but only half of it is submerged beneath the water.
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h/L = 1.11(a) h/L = 0.33

Frh = 1

(b) h/L = 0.24

Frh = 1

(c)

(d)

Figure 2: (a,b,c) Comparison between experimental measurements and theoretical
predictions of the drag force for different depths and Froude numbers, and an illustration
of each depth case above. The critical depth-based Froude number Frh = u/

√
gh = 1 is

indicated in each plot. An illustration of the calculated boundary layer profile for our
hull shape, which we use in our modification to Sretensky’s theory, is given in (d).

The hull is connected to the motor by two supporting bars and a force/displacement
sensor. The experiments are repeated at least 3 times for accuracy. We do not
allow the pitch of the boat to change, and we do not study the effects of planing
(Rabaud & Moisy 2014). We study several different values of the water depth,
h/L = {1.11, 0.81, 0.5, 0.33, 0.24}, and FrL values between 0.2 and 1, and in each
case the water depth is uniform throughout the basin. These measurements for uniform
depth will be used later to approximate the instantaneous drag in a medium with slowly
varying depth (under the quasi-steady assumption).

In Figure 2 we plot the drag force Rd for various different values of the water depth
h/L and the length-based Froude number FrL (though we omit the cases h/L = 0.5, 0.81
since they have effectively no depth effects, and are very similar to h/L = 1.11). In each
case, we plot the drag in terms of the typical weight needed to balance the Archimedes
buoyancy force of a boat of such volume mg = ρgL3/αβ. Error bars correspond to one
standard deviation of the time signal given by the force sensor. In addition to our drag
measurements, we also plot the drag measurements taken from the VBD reports, as
detailed by Hofman (2006), for which a Taylor Standard series ship hull shape is used
(given in terms of a fifth order polynomial (Gertler 1954)). For the latter case, we only
display the data in the cases where the same depth ratio was available. There are also
several theoretical results overlaid on the same plot, which will be discussed shortly.

For depths larger than h/L ≈ 0.4, the drag behaves similarly to the case of infinite
depth, with a monotone increasing curve. However, for depths smaller than this, reso-
nance with the shallow water wave speed accentuates the drag in an isolated region near
Frh = 1, causing a pinching of the curve. This results in the emergence of a stationary
point (maximum) near Frh = 1, and another stationary point (minimum) for a slightly
larger FrL. Indeed, there are multiple values of the length-based Froude number that
result in the same drag force. This implies that by pushing a boat with constant force in
the critical regime, as many as three different velocities could be achieved.

The next step is to compare these results to available theoretical predictions. A full
derivation of the theories used here can be found in the original references, though for our
purposes we simply state the formulae. Two commonly used formulae for the wave drag
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are the linear theories of Sretensky (1937) and Havelock (1922). Sretensky’s formula,
which is an extension of Michell’s formula for the wave drag at infinite depth (Michell
1898), assumes an inviscid, irrotational, steady flow past a slender body. The wave drag
is given in non-dimensional terms by the formula

Rw
mg

=
2βFrL
πα

ˆ ∞
k0(k)

|I(k)|2 (sinh kh− sinh k(h− 1/β))
2

k cosh2 kh
√

Fr2Lk
2 − k tanh kh

dk, (2.4)

where the function I(k) is given by

I(k) =

ˆ 1/2

−1/2
f ′(x̂)eix̂

√
k/Fr2L tanh kh dx̂, (2.5)

and x̂ = x/L. The minimum non-dimensional wave number in the integral (2.4), k0(k),
is given by the formula

Fr2Lk0(k)− tanh kh = 0. (2.6)

Note that Sretensky’s formula is not capable of predicting skin and form drag since it
neglects viscosity. However, we can measure these using a simple wind tunnel experiment
and add them (as in (2.3)) to the theoretical prediction of the wave drag. As discussed by
Benham et al. (2019), this allows us to compare with our tow-tank results. In addition,
we note that the skin and form drag do not vary much between the different values of
h/L that we study, and so it is acceptable to assume the same values for all depths.

Unlike Sretensky’s formula which is written in terms of the hull shape f(x̂), the theory
of Havelock (1922) relies on knowledge of the pressure disturbance caused by the hull
instead. Since it is difficult to know the pressure disturbance exactly, it is often assumed
to be a Gaussian distribution with the appropriate aspect ratio values. Hence, we take
the surface pressure distribution to be

p(x̂, ŷ)/P0 = e−(x̂2/2+α2ŷ2/2), (2.7)

where the magnitude of the pressure distribution P0 is unknown, but should be of the
same order of magnitude as the pressure needed to support a surface disturbance of
height comparable to the draft. This can be confirmed by our observation of typical wave
amplitudes compared to the total draft. Hence, we take P0 = κρgH, where the choice
of κ is discussed later. Given this pressure field, Havelock’s formula (after simplification)
gives the drag as

Rw
mg

=
κ2

4Fr2Lαβ

ˆ ∞
0

a(k∗(ky), ky)

∂b/∂kx(k∗(ky), ky)
dky, (2.8)

where the functions a and b are given by

a(kx, ky) = e−
1

2π2 (k2x+k
2
y/α

2)k tanh kh, (2.9)

b(kx, ky) = (k tanh kh)/(kxFr2L)− kx, (2.10)

and the wavenumber magnitude is k =
√
k2x + k2y. Finally, the critical wavenumber k∗(ky)

is given by

b(k∗(ky), ky) = 0. (2.11)

A recent study by Benham et al. (2019) showed that the wave drag at infinite depth can
be well-approximated by a modification to the theory of Michell (1898) (the precursor to
that of Sretensky), where the shape f(x̂) is replaced by the combined shape of the hull
and its surrounding boundary layer profile f(x̂) + δ(x̂). In particular, the presence of the
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boundary layer distinguishes the difference between forward and backward motion for
an asymmetric hull, which Michell’s formula alone is incapable of predicting. Though we
focus on symmetric hulls here, we nevertheless make the same modification to Sretensky’s
formula (2.4) by including the boundary layer profile, which we extract from a steady k-ω
Shear Stress Transport (Menter 1994) numerical simulation (see (Benham et al. 2019)
for more details). Our calculated boundary layer profile is illustrated in Figure 2(d).
This modification appears to give better comparison with experimental results than the
original.

Theoretical predictions for the wave drag are compared to the experimental results in
Figure 2 (a,b,c). Qualitatively, all the theoretical approaches capture the drag behaviour,
though with varying degrees of accuracy. We find that the best comparison is with
Havelock’s formula, where the magnitude of the pressure disturbance (2.7) is fitted to give
κ = 0.4, with mean relative error 8%. The next best comparison is our modified version
of Sretensky’s formula (with mean relative error 9%), and finally Sretensky’s original
formula (with mean relative error 13%). However, we note that the best accuracy near
the critical regime Frh ∼ 1 is exhibited by our modified version of Sretensky’s formula,
since Havelock’s formula under-predicts drag here.

We note that linear theory can only be expected to perform well when the wave
magnitude is small, and indeed considerably smaller than the water depth A/h � 1.
Otherwise, nonlinear effects are expected to have an important role, such as wave
steepening, cresting, breaking, and even wetting the subsurface. However, we restrict
our experimental study to the range h/L > 0.24, and the maximum observed wave
amplitude we observe has A/h ≈ 0.25. Therefore, we conclude that nonlinear effects bear
little importance here. Furthermore, we ignore capillary effects since they do not present
a significant contribution to the drag (Benham et al. 2019).

Each of the theoretical predictions confirm that multiple solutions exist near the
vicinity of Frh ∼ 1, though the precise shape of the drag curve differs. Since our modified
version of Sretensky’s formula shows the best comparison with experimental data near
the critical regime, we choose this theory to provide a means of predicting the drag in
between our experimentally measured points. In this way, we can accurately describe the
motion of a boat with constant forcing using the quasi-steady system (2.1)-(2.2).

3. Bifurcation diagrams and stability criteria

There are two bifurcation parameters which govern the nonlinear dynamics of the
system (2.1)-(2.2): the depth h/L and the forcing F/mg. We display the bifurcation
diagrams for each of these parameters in Figure 3, illustrating the different available
equilibrium speeds (represented by FrL). To explore the bifurcation parameter F/mg,
we fix the depth at h/L = 0.25. In this case, three solutions exists in the range F/mg ∈
(0.07, 0.095). To explore the bifurcation parameter h/L, we fix the forcing at F/mg =
0.08. In this case, three solutions exist in the range h/L ∈ (1/β, 0.4) (No solution exists
when the depth is shallower than the boat itself h/L 6 1/β).

The different solution branches may correspond to significantly different Froude num-
bers, and hence equilibrium speeds. For example, at forcing F/mg = 0.08, the available
Froude numbers are between 0.4 and 0.7. That is to say, a boat which is pushed at this
forcing could be going at three possible speeds, where the fastest speed is almost double
the slowest. Evidently, this has significant implications for rowing and sailing races in
waters with depth varying between deep and shallow regions, since jumping from one
branch to another could result in hugely improved race times, and possibly even new
world records.
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Frh � 1

Super-critical

Frh ∼ 1

Critical

Frh � 1

Sub-critical

(a)
h/L = 0.25

(b)

h/L 6 1/β (no solution)

F/mg = 0.08

Figure 3: Bifurcation diagrams, showing all of the existing branches of the quasi-steady
equilibrium solutions to (2.1)-(2.2), for the two bifurcation parameters F/mg and h/L.
We also illustrate the different sub-critical, critical and super-critical regimes, as well as
possible hysteresis routes.

To assess the stability of these different branches, we now perform a linear analysis.
Consider an equilibrium solution (x0, u0), such that the right hand side of (2.1)-(2.2) is
zero. Then consider a small perturbation away from this solution

x = x0 + ε(t), u = u0 + ε̇(t). (3.1)

For the simplicity of the stability analysis, we restrict our attention to the case where the
depth is constant (such that ∂Rd/∂x = 0). Then, inserting (3.1) into the system (2.1)-
(2.2), expanding in terms of the small variable ε(t)/L � 1, and keeping only leading
order terms, we find that

(m+ma)ε̈+
∂Rd
∂u

(x0, u0)ε̇ = 0. (3.2)

In this case, the stability is purely determined by the sign of ∂Rd/∂u, or equivalently
∂Rd/∂FrL. Consequently, all solutions in Figure 3(a) which lie on the part of the drag
curve with negative slope are unstable, and all the solutions which lie on the positive
slope are stable. Using this knowledge, we have illustrated the corresponding stability
of the different branches in the bifurcation diagrams using dashed lines. Likewise, the
corresponding unstable branch in Figure 3(a) is also indicated.

We also display several possible hysteresis routes during motion. For example, in (a) we
show how slowly increasing the forcing (starting from zero) would cause a jump increase
in velocity at the turning point near Frh = 1. From here, slowly decreasing the velocity
would return on a different solution branch, until a jump back to the original branch at
the second turning point. Similarly, we show a possible hysteresis route in (b) by varying
the depth instead.

4. It came from the deep...

Having validated the theoretical results against experimental data, and having explored
the different available solution branches that occur at various depths and forcing, now we
apply the system (2.1)-(2.2) to a case study. Using our modified version of Sretensky’s
theory (for the wave drag), and wind tunnel measurements (for the form and skin drag),
we investigate the quasi-steady dynamics of a body moving in a lake of length nL with



8

a sinusoidal depth profile of the form

h(x) = 1/2
[
(hmax + hmin)− (hmax − hmin) cos 2πx/nL

]
. (4.1)

We choose a large (but realistic) race length n = 400 to ensure a slowly varying depth,
and we set the maximum and minimum depths as hmax/L = 1 and hmin/L = 0.2 to
ensure we do not venture outside of the region we have studied experimentally (so that
our predictions remain accurate). With these values, the maximum calculated value for
the acceleration due to depth change is u̇ ≈ 0.6 m/s2, which is much smaller than g =
9.8 m/s2, indicating that the quasi-steady approximation is appropriate.

Motion from shallow to deep water corresponds to 0 < x < nL/2, and likewise from
deep to shallow water nL/2 < x < nL. This canonical depth profile not only exhibits the
nonlinear phenomena we have illustrated both experimentally and theoretically, but also
is a physically realistic scenario. There are many lakes and rivers that have patches of
shallow water, and this study illustrates the possible outcomes that can occur as a boat
passes over such a patch.

We consider a sequence of forcing magnitudes Fi/mg between 0.005 and 0.11, and
investigate the quasi-steady dynamics in each of these cases. Such forcing values cover
the range relevant for rowing races, where typical forces are around 6− 8% of the total
boat weight (Boucher et al. 2018). At x = 0, where the depth is at its minimum value,
two possible stable solutions are available for all forcing values in the range 0.07 <
F/mg < 0.11. Therefore, for each forcing value i we choose initial conditions for the
system (2.1)-(2.2) as one of these two branches

xi,j(0) = 0, ui,j(0) = u∗i,j , j = 1, 2, (4.2)

where the subscript j indicates the branch number, and the starting velocity u∗i,j is one
of the two stable solutions to the equilibrium equation

Rd(0, u
∗
i ) = Fi. (4.3)

Then, we solve the system (2.1)-(2.2) for 0 < t < T , where the final time is determined
by the condition x(T ) = nL. We plot various solutions in Figure 4, where we indicate
different stable branches with different colours. Figure 4(a) shows the solutions on the
phase plane generated by h(t)/L and FrL(t). We plot these on top a colour map of the
non-dimensional wave drag coefficient Cw = Rw/ρu

2(LHW )2/3, to illustrate pronounced
regions of drag more clearly. Figure 4(b) shows the solutions FrL(t) plotted against
x(t)/nL.

The behaviour is remarkably different depending on the forcing magnitude. If the
forcing is less than a critical value Fc/mg = 0.07, then only one solution branch exists
for all values of x. The drag is largest in the shallow part and smallest in the deep part,
with perfectly symmetric motion about x = nL/2. On the other hand, for F > Fc the
catastrophic emergence of multiple solution branches and a hysteresis pattern is observed.
One branch is a very slow solution, forced beneath a drag barrier at FrL =

√
h/L (or

Frh = 1) that is visible as a bright yellow patch in the drag coefficient in 4(a), and
behaves much like the solutions observed for small forcing. The other stable branch of
the solution is much faster - in fact, even faster than the equilibrium solution at infinite
depth. However, on the return journey both branches collapse to the same trajectory due
to the fact that the fold bifurcation is topologically disconnected. Nevertheless, boats
which stay on this stable branch have a significantly better race time than the former
ones.

We plot the race times T1/2 for the first half of the race 0 6 x 6 nL/2, for various
values of the forcing in 4(c). We give the times in terms of a dimensional scaling for the
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(a)
Increasing F/mg √

h/L

(b)

(c)

Increasing F/mg

Figure 4: Phase plane analysis of the case study of a boat moving in a lake with sinusoidal
depth (4.1), where the rate of change of depth is sufficiently small that the quasi-steady
approximation is appropriate. Trajectories for different values of the forcing term F/mg
are illustrated in both the depth-Froude plane (a) and the distance-Froude plane (b).
(c) Times to complete the first half of the race 0 6 x 6 nL/2 for the different solution
branches.

total race
√
nL/g, and we illustrate where the two stable branches split at the critical

forcing. We ignore the second half of the race, since both branches converge to the same
path. Well above the critical forcing magnitude Fc/mg, race times between branches can
differ by as much as 30%. This critical value is important because force values F > Fc
present an opportunity to beat records in racing applications.

5. Discussion and perspectives

We have investigated the quasi-steady dynamics of a body moving near the surface
of a region of water with slowly varying depth. This work sheds light on previously
unstudied bifurcation behaviour that emerges in shallow water. In particular, the two
key parameters are the depth h/L and the forcing F/mg, which can produce as many
as three different solution branches (two stable and one unstable) with potentially large
differences in speeds. We showed how this can produce hysteresis routes, and can have
significant impact on the time to complete a race in a course with varying depth. In
particular, there exists a critical forcing value Fc above which there is an opportunity to
accelerate as one enters a shallow patch of water, or be quashed by a rising drag barrier,
depending on one’s particular branch of the solution.

There are several interesting perspectives following on from this work. Firstly, in
boat sports, a comprehensive study of the effect of race bathymetry on performance
for different athletes could be investigated and compared with our results. It would also
be interesting to study the interactions between multiple bodies moving in proximity,
and how this affects the results presented here.

Secondly, the extension of this work to stratified flow could be investigated. In par-
ticular, for very sharp stable stratification with heavier water below lighter water (such
as in a fresh water glacial run-off into the sea) it is anticipated that the heavier water
would act approximately like a solid barrier at finite depth. Hence, it is possible that
similar effects to those discussed here would be observed. If this is the case, then our
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results could shed light on the famous dead water problem (Ekman 1904), where drag
is enhanced in sharp stable stratification. It would be interesting to see if there exists
an anti-dead (or alive) water regime, where the drag diminishes on a different solution
branch.

We acknowledge the support from Ecole Polytechnique for the research program
Sciences 2024. We also thank JP Boucher and R Labbé for their help in building the
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