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Wave resistance for capillary gravity waves: Finite-size effects
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PACS 47.35.-i – Hydrodynamic waves
PACS 68.03.-g – Gas-liquid and vacuum-liquid interfaces

Abstract – We study theoretically the capillary-gravity waves created at the water-air interface
by an external surface pressure distribution symmetrical about a point and moving at constant
velocity along a linear trajectory. Within the framework of linear wave theory and assuming the
fluid to be inviscid, we calculate the wave resistance experienced by the perturbation as a function
of its size (compared to the capillary length). In particular, we analyze how the amplitude of the
jump occurring at the minimum phase speed cmin = (4 gγ/ρ)

1/4 depends on the size of the pressure
distribution (ρ is the liquid density, γ is the water-air surface tension, and g is the acceleration due
to gravity). We also show how for pressure distributions broader than a few capillary lengths, the
result obtained by Havelock for the wave resistance in the particular case of pure gravity waves
(i.e., γ = 0) is progressively recovered.
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Introduction. – Water waves are both captivating
and of great practical significance [1–3]. They have thus
attracted the attention of scientists and engineers for many
decades [4]. Water waves can, for instance, be generated
by the wind blowing over the ocean, by a moving ship on
a calm lake, or simply by throwing a stone into a pond.
Their propagation at the surface of water is driven by
a balance between the liquid inertia and its tendency,
under the action of gravity or of surface tension (or a
combination of both in the case of capillary-gravity waves),
to return to a state of stable equilibrium [5]. The dispersive
nature of water waves is responsible for the complicated
wave pattern generated at the free surface of a still liquid
by a moving disturbance such as a partially immersed
object (e.g. a boat or an insect) or an external surface
pressure source [6]. The propagating waves generated by
the moving disturbance continuously remove energy to
infinity. Consequently, the disturbance will experience a
drag, R, called the wave resistance. In the case of ships (for
which surface tension is negligible), this drag is known to
be a major source of resistance [7] and has been analyzed
in detail by Havelock [8]. The case of objects that are small
compared to the capillary length has been considered only
recently [9–16] and has attracted strong interest in the
context of insect locomotion on water surfaces [17–19]. For
such objects, one has to take into account both gravity
and surface tension. In the case of a point-like surface
pressure distribution, this leads to a discontinuity of the
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wave resistance at a critical velocity given by the minimum
of the wave velocity cmin = (4gρ/γ)1/4 [9]. For clean water
at room temperature, one has cmin ≈ 0.23m s−1. When the
velocity V of the surface pressure distribution is smaller
than cmin, no steady waves are generated and the wave
resistance vanishes. Emission of steady waves becomes
possible only when V > cmin, leading to the onset of a
finite wave drag 1. The wave resistance discontinuity at the
critical velocity cmin has been experimentally investigated
by several groups [13,14].
It is important to notice that while the analysis of [9]

was mainly concerned with a point-like surface pressure
distribution2, real perturbations (like insects) have finite
sizes. The aim of the present paper is thus to analyze
in detail the role played by the finite size of the surface
pressure distribution for the wave resistance3. We will see
in particular that for b much larger than κ−1, the influence
of surface tension is negligible. In that case, the results of
Havelock [8] for pure gravity waves are recovered.

1As shown in [15,16], the threshold at V = cmin exists only for
objects moving with no acceleration.
2Note that the particular case where the typical size b is much

smaller than the capillary length κ−1 = (γ/ρg)1/2 has also been
(briefly) discussed in [9]. It has been shown that the wave resistance
displays a maximum at a velocity of the order of

√
γ/(ρb) [9].

However, the consequences of a pressure distribution of finite size on
the amplitude of the discontinuity of the wave resistance at V = cmin
has been overlooked in [9].
3Note that the effect of a pressure distribution of finite size on

the amplitude of the discontinuity of the wave resistance was already
briefly discussed in [14].
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Formulation. – Consider an incompressible, inviscid,
infinitely deep liquid whose free surface is unlimited. We
take the xy-plane as the equilibrium surface of the fluid
and the z-axis along the upward direction perpendicular
to the equilibrium surface. We study the wave motion
created by an external surface pressure distribution that
moves with speed V in the negative x-direction. In the
frame of that moving disturbance, physical quantities are
stationary: the pressure distribution is given by P (x, y)
and the displacement ζ of the free surface from its
equilibrium position is of the form ζ(x, y).
In order to calculate the wave resistance experienced

by the disturbance, we use a method first introduced by
Havelock [8]. According to this author, we may imagine
a rigid cover fitting the surface everywhere. The assigned
pressure system P (x, y) is applied to the liquid by means
of this cover; hence the wave resistance is simply the total
resolved pressure in the x direction. This leads to

R=

∫
dxdy P (x, y)∂xζ(x, y). (1)

For the sake of simplicity, let us restrict ourselves to the
case of a pressure system symmetrical around the origin
so that P (x, y) = g(r) with r= (x2+ y2)1/2). The Fourier
transform P̂ (kx, ky) is then a function only of k and can

be written as P̂ (kx, ky) =G(k), where

G(k) =

∫ ∞

0
dr rg(r)

∫ 2π

0
dθ e−ikr cos θ (2)

= 2π

∫ ∞

0
dr rg(r)J0(kr). (3)

J0 denotes the Bessel function of the first kind of zeroth
order. It has been shown by Raphaël and De Gennes in [9]
that in such a case the wave resistance R (for V ! cmin)
reduces to

R=

∫ χ

0

dθ cos θ

πγ

{k2(θ)G[k2(θ)]}2+ {k1(θ)G[k1(θ)]}2
k2(θ)− k1(θ)

,

(4)
where

k1(θ) = κ

(
V

cmin

)2
{cos2 θ− (cos4 θ− cos4 χ)1/2},

k2(θ) = κ

(
V

cmin

)2
{cos2 θ+(cos4 θ− cos4 χ)1/2},

(5)

where χ is defined by cosχ= cmin/V . Equation (4) is an
important result as it predicts how the wave resistance
varies as a function of the velocity for any pressure
distribution.

Finite-size effects on the wave resistance. –
Equation (4) was studied in detail in [9] in the particular
case of a point-like pressure distribution g(r) = p δ(r).
We here consider the case of a pressure distribution of
finite size, b. For instance, we can assume the pressure
distribution to be Gaussian

g(r) =
p

2πb2
exp

(
− r

2

2b2

)
, (6)

Fig. 1: (Color online) Plot of the wave resistance R in units
of p2κ(πγ)−1, as a function of V/cmin. The red (dashed) curve
corresponds to a point-like pressure source g(r) = p δ(r), the
black one (solid line) corresponds to a Gaussian pressure field
(6) of size b= 0.04κ−1.

Fig. 2: (Color online) Plot of the wave resistance R in units
of p2κ(πγ)−1, as a function of V/cmin. The red (dashed) curve
corresponds to a point-like pressure field g(r) = p δ(r), the black
one (solid line) corresponds to a gaussian pressure field (6) of
size b= 0.4κ−1 (upper graph) and b= 0.55κ−1 (lower graph).

Equation (3) then becomes

G(k) = p exp

(
−b
2k2

2

)
. (7)

By inserting the Fourier transform of the pressure field
G(k) in eq. (4), we obtain the wave resistance as a function
of V/cmin (see figs. 1 and 2).
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Fig. 3: Plot of the amplitude of the jump AR of the wave
resistance in units of p2κ(πγ)−1, as a function of bκ.

Fig. 4: Plot of Vmax corresponding to the maximum of wave
resistance in units of V/cmin, as a function of bκ. The black
dotted line (horizontal) corresponds to a situation in which
the maximum value is reached at Vmax = cmin. For bκ! 1, Vmax
scales as

√
γ/(ρb), whether for bκ" 1, Vmax scales as

√
gb.

The red (dashed) in curve in fig. 1 corresponds to
a point-like pressure distribution g(r) = p δ(r), the black
one (solid line) corresponds to a Gaussian pressure field
(6) of size b= 0.04κ−1. We clearly observe, for both
curves, the discontinuity (or jump) at V = cmin that we
discussed earlier. In fig. 1, the black curve (solid line)
presents a maximum at Vmax ∼

√
γ/(ρb) which is the first

consequence of the finite-size effects. This separates the
behavior of the wave resistance in two regimes: below
Vmax, R increases with the disturbance velocity whereas
for V > Vmax, R decreases with V .
In fig. 1, the disturbance typical size b is much smaller

than the capillary length κ−1. When b becomes of the same
order of magnitude than κ−1 (see fig. 2), the amplitude
of the jump, denoted by AR in the following, decreases as
shown in fig. 3. When the typical size b gets close enough to
the capillary length κ−1, the maximum value of the wave
resistance is obtained for Vmax = cmin. Such a situation
is depicted in the lower graph in fig. 2. Figures 4 and 5
give quantitative information on this situation: we show
that in the particular case of a Gaussian pressure field
it occurs for 0.5κ−1 " b" 1.65κ−1. Note that the above

Fig. 5: Plot of the maximum of wave resistance Rmax in units
of p2κ(πγ)−1, as a function of bκ. The dotted line corresponds
to a situation in which the maximum value is reached at
Vmax = cmin.

interval is only valid for the Gaussian pressure field (6).
If, for instance, one uses a Lorentzian pressure source
p(2π)−1b(b2+ r2)−3/2 instead of (6), the above interval
becomes 0.3κ−1 " b" 2.2κ−1.
From eq. (4) on can get the jump amplitude at V = cmin:

AR =
κ

2
√
2

G(κ)2

γ
=

(
p2

πγ
κ

)
π

2
√
2

(
G(κ)

p

)2
. (8)

Equation (8) is an important result as it gives how the
jump of the wave resistance at the critical velocity cmin
varies with the size of the pressure distribution. In the
particular case of the Gaussian pressure field given in
eq. (6), the jump amplitude becomes

AR =

(
p2

πγ
κ

)
π

2
√
2
exp

(
−b2k2

)
. (9)

Note that in the limit b→ 0, the result of [9] AR = π/(2
√
2)

for of a point-like pressure distribution is recovered. The
amplitude of the jump AR of the wave resistance in units
of p2κ(πγ)−1, is depicted in fig. 3 as a function of bκ. We
notably observe that AR is significantly suppressed when
the typical size b becomes greater than 2.5κ−1. In such a
case, the jump in the wave resistance might be difficult to
observe experimentally (see also fig. 6 below).
One may also wonder how the maximum in the wave

resistance scales with b. The abscissa (Vmax) and ordinate
(Rmax) of the maximum of wave resistance as a function
of bκ are depicted in fig. 4 and fig. 5.
In both figures the dotted line corresponds to the

situation in which the maximum value is reached at
Vmax = cmin (see lower graph in fig. 2).
In the limit bκ& 1, the asymptotic behavior Vmax '

√
gb

can be simply recovered by substituting b−1 to k in the
pure gravity wave dispersion relation ω(k)/k=

√
g/k. In

the opposite limit bκ( 1, the asymptotic behavior Vmax '√
γ/(ρb) can analogously be obtained by substituting

34003-p3



M. Benzaquen et al.

Fig. 6: Plot of the quotient AR/Rmax as a function of bκ. The
dotted line corresponds to a situation in which the maximum
value is reached at Vmax = cmin.

b−1 to k in the pure capillary wave dispersion relation
ω(k)/k=

√
γk/ρ (see footnote 4).

We observe in fig. 5 that Rmax (and hence the whole
wave resistance) strongly decreases with the size b of the
pressure source. Although this might be surprising at first
sight, one has to notice that we have kept constant the
magnitude p=

∫
dxdy P (x, y) of the pressure source while

varying b.
In order to discuss the general shape of the graph of the

wave resistance, and whether or not the jump in the wave
resistance can be easily detected, we plot the ratio between
the amplitude AR and the maximum of wave resistance
Rmax (see fig. 6). One can see how the ratio AR/Rmax
starts at zero (for κ−1→ 0, AR is finite and Rmax→∞)
and increases until reaching the constant value 1 in the
range 0.5κ−1 " b" 1.65κ−1 discussed earlier (see fig. 2).
For larger values of b, the ratio AR/Rmax is essentially
suppressed.

Pure gravity waves. – As we have seen above, Vmax
scales as

√
gb for bκ& 1. One shall thus wonder if, more

generally, our results for the wave resistance are for b&
κ−1 well approximated by the result of Havelock [8] for
pure gravity waves (γ = 0).
If γ = 0, the wave resistance (4) reduces to

R=
g2

ρV 6
1

π

∫ π
2

0

dθ

cos5 θ

(
G
( g

V 2 cos2 θ

))2
, (10)

which, for the Gaussian pressure field (6), yields

R =
p2

πρgd3

(√
gb

V

)6

×
∫ π

2

0

dθ

cos5 θ
exp

(

− 1

cos4 θ

(√
gb

V

)4)

. (11)

Using eq. (11), one can plot the wave resistance
for pure gravity waves as a function of V/cmin for different
values of b (see the black curves (solid line) in fig. 7).

4Note however, that Vmax is not simply given by
√
γ/(ρb)+ gb.

Fig. 7: (Color online) Plot of the wave resistance R in units of
p2κ(πγ)−1, as a function of V/cmin. The black curve (solid line)
corresponds to the formula for pure gravity waves (11), the red
one (dashed) corresponds to the initial formula for capillary
gravity waves (4). On the top we have b= 2κ−1, in the middle
we have b= 5κ−1, while at the bottom we have b= 10κ−1.

Note that Vmax is now exactly given by
√
gb. For velocities

smaller than 0.6
√
gb, the wave resistance is practically

unnoticeable5.
We have also plotted in fig. 7 the wave resistance for

capillary-gravity waves (red (dashed) curves).
One can see how both curves come closer to each other

as b is increased. For b much larger than κ−1, one does
not see much differences between the two curves, meaning
that in this limit the problem is essentially ruled by pure
gravity waves theory.

Concluding remarks. – We have shown theoreti-
cally how the finite size of an external axisymmetric
pressure source significantly modify the wave resistance,
and in particular its singular behavior at the minimum
phase speed cmin, compared to the case of a point-like

5For velocities up to 0.8
√
gb, on can show that eq. (11)

is well approximated by p2κ(πγ−1)
√
π/2 exp(−1/x4)/(2x4) with

x= V/
√
gb.
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disturbance6. Our study also provides a quantitative
description of the crossover between capillary-gravity and
purely gravity wave resistance described in previous works.
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[10] Richard D. and Raphaël E., Europhys. Lett., 48 (1999)
53.

[11] Sun S.-M. and Keller J., Phys. Fluids, 13 (2001) 2146.
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