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Abstract. We present an analytical and numerical study of the two-dimensional capillary-driven thin-film
equation. In particular, we focus on the intermediate asymptotics of its solutions. Linearising the equation
enables us to derive the associated Green’s function and therefore obtain a complete set of solutions.
Moreover, we show that the rescaled solution for any summable initial profile uniformly converges in
time towards a universal self-similar attractor that is precisely the rescaled Green’s function. Finally, a
numerical study on compact-support initial profiles enables us to conjecture the extension of our results
to the nonlinear equation.

Dimensional analysis is well understood through the
Vaschy-Buckingham Π theorem [1]. Historically, this
framework has already led to remarkably important re-
sults such as the expression of the hydrodynamical drag
force on a sphere by Reynolds [2], the theory of turbulence
by Kolmogorov [3,4], and the estimation of the nuclear ex-
plosion power by Taylor [5,6]. Moreover, dimensional anal-
ysis is directly connected to the fundamental concepts of
scaling and self-similarity, that appear in numerous situ-
ations such as fractals and diffusion [7].

The powerful theory of intermediate asymptotics de-
veloped in particular by Barenblatt goes one step further
in understanding the deeper meaning of self-similarity [8].
In nonlinear problems, one may wonder what is the in-
terest of finding exact particular solutions as there is no
principle of superposition. Nonetheless, in certain cases,
the self-similar solutions obtained for idealised problems,
or idealised initial conditions, represent the intermediate
asymptotic regimes of the solutions of more general non-
idealised problems. Following Zeldovich in the foreword
of [8], one might even say that intermediate asymptotics
is the key that somehow replaces the superposition prin-
ciple in nonlinear physics. In other words, by paying the
price of a loss of information at short times, one obtains a
certain generality at intermediate times. Even so, such an
asymptotic behaviour must be proved for any given initial
condition, which often turns out to be a difficult task.

Furthermore, in the afterword of his book Barenblatt
states [8]: “However, there exist many problems of recog-
nised importance where this technique has not yet been
fully explained, but for which results of substantial value
can be expected from its application.” One of these open
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problems is precisely the capillary-driven thin-film equa-
tion of interest [9–11]

∂T H + ∂X(H3 ∂ 3
XH) = 0. (1)

It governs the capillary evolution of the profile H(X,T )
of the free surface of a thin viscous liquid film: as soon
as the curvature is nonconstant, this profile is unstable
as the Laplace pressure drives a flow that is mediated by
viscosity. Despite many efforts, this equation remains only
partially solved. Nevertheless, in the past few years, sev-
eral analytical [12–14] and numerical studies [15,16] have
been performed in order to gain insights into this mathe-
matical problem.

It should be stressed that eq. (1) is of tremendous im-
portance in a variety of scientific fields such as polymer
physics, physiology, biophysics, micro-electronics, surface
chemistry, thermodynamics and hydrodynamics, since
thin films are involved in modern mechanical and opti-
cal engineering processes, through lubrication, paints and
coating. Gaining a complete understanding of these sys-
tems is a key step towards the development of molecular
electronics, biomimetics, superadhesion and self-cleaning
surfaces. Moreover, this equation may be crucial for under-
standing the nanorheology of ultra-thin polymer films, for
which enhanced mobility effects have been predicted [17],
before being related to entanglements networks [18], and
observed in various experimental configurations such as:
confinement [19–22], glassy state [23], and dewetting onto
slippery substrates [24,25]. It may also govern the surface
instabilities and pattern formation [26–28], through the
film preparation by spin-coating [29–32]. From all these
examples, we understand the necessity of further explor-
ing the solutions of the capillary-driven thin-film equation.
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universal self-similar attractor
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Fig. 1. Schematics of the intermediate asymptotics of the
capillary-driven thin-film equation (see eq. (1)). No matter the
initial condition, any summable profile converges in time to-
wards a universal self-similar attractor.

In particular, as for the diffusion equation [7], it would be
interesting to characterise the convergence of the solutions
to some asymptotic self-similar regimes [33], as depicted
in fig. 1, as well as the existence of possible exotic self-
similarities [34].

The present article is divided into three parts. In the
first one, we recall the main ingredients of the physi-
cal model that describes two-dimensional capillary-driven
flows. In the second one, we linearise the governing equa-
tion and we derive the Green’s function that enables to
calculate the general solution of the linear problem for
any summable initial condition. In particular, we study
the self-similar asymptotics of this solution (see fig. 1).
In the third part, we extend these ideas to the nonlinear
equation through numerical solutions for compact-support
initial profiles.

1 Physical model

In this part, we describe the model and derive the
capillary-driven thin-film equation, within the lubrication
approximation, for two-dimensional viscous flows. The
evolution in time t of a thin viscous film described by
a profile of height z = h(x, t) can be understood from the
Laplace pressure p(x, t), which arises due to curvature at
the free interface. Considering small curvature gradients,
one can write

p(x, t) � −γ ∂ 2
x h, (2)

where γ is the liquid-air surface tension. In the lubrication
approximation, the Stokes equation along the x horizontal
direction is given by [35]

∂xp = η ∂ 2
z v, (3)

where v(x, z, t) is the horizontal velocity and η is the shear
viscosity. We assume no slip at the solid-liquid interface
and no stress at the liquid-air interface, so that

v|z=0 = 0, (4a)

∂zv|z=h = 0. (4b)

The pressure being independent of the vertical coordinate
z, eq. (3) together with eq. (4) lead to a Poiseuille flow of
the form

v(x, z, t) =
1
2η

(z2 − 2hz) ∂xp. (5)

Conservation of volume can be expressed as

∂th = −∂x

∫ h

0

dz v. (6)

Combining eqs. (2), (5) and (6) leads to the two-dimen-
sional capillary-driven thin-film equation

∂th +
γ

3η
∂x(h3 ∂ 3

x h) = 0. (7)

Finally, eq. (7) can be nondimensionalised by letting

h = H h0, (8a)

x = X h0, (8b)

t = T
3ηh0

γ
, (8c)

where h0 is the reference height at infinity. This leads to
the dimensionless equation introduced above in eq. (1).
This equation can be linearised by letting

H(X,T ) = 1 + Δ(X,T ), (9)

and by assuming Δ � 1

∂T Δ + ∂ 4
X Δ = 0. (10)

The linear case corresponds to a situation in which the
surface of a flat film is only slightly perturbed. Note that
eq. (10) also describes surface diffusion phenomena leading
to flattening of solid surfaces [36,37], kinetic growth [38–
40], or grooving [41,42]. Therefore, the following results
apply to a broader class of physical situations.

2 Solving the linear equation

In this part, we solve eq. (10) for T > 0 and we charac-
terise its solutions. The linear study is divided into four
subsections. In the first one, we derive the Green’s func-
tion and show that it is self-similar at all positive times.
In the second one, we give the general formal solution and
exploit it through two particular canonical examples. In
the third one, we study the uniform convergence in time
of the rescaled general solution towards the rescaled self-
similar Green’s function. In the fourth one, we conclude
the discussion on the linear case with some general re-
marks.
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2.1 Green’s function and self-similarity

Since eq. (10) is a linear partial differential equation, it
can be solved by calculating the Green’s function G(X,T ).
This object is defined by

[
∂T + ∂ 4

X

]
G(X,T ) = δ(X,T ), (11)

where δ denotes the Dirac distribution. Fourier transforms
are defined as follows:

G(X,T ) =
1

(2π)2

∫
dKdΩ Ĝ(K,Ω) ei(ΩT+KX), (12a)

G̃(K,T ) =
1
2π

∫
dΩ Ĝ(K,Ω) eiΩT , (12b)

Ĝ(K,Ω) =
∫

dXdT G(X,T ) e−i(ΩT+KX). (12c)

Writing the Fourier transform, as defined in eq. (12c), of
eq. (11) leads to

Ĝ(K,Ω) =
1

iΩ + K4
. (13)

Using eq. (12b) and eq. (13), one obtains

G̃(K,T ) = Res
(

eiΩT

Ω − iK4
; iK4

)
Θ(T ), (14)

where Res (f ; z∗) denotes the complex residue of the func-
tion f at z = z∗, and where Θ is the Heaviside function
ensuring causality. Finally, expressing the residue and per-
forming the inverse Fourier transform, defined in eq. (12a),
one obtains the Green’s function

G(X,T ) =
1
2π

∫
dK e−K4T eiKX , (15)

which is consistent with previous studies [12,41]. Then, at
finite time, let us change variables through

X = UT 1/4, (16a)

K = QT−1/4, (16b)

G(X,T ) = Ğ(U, T ). (16c)

This gives

Ğ(U, T ) =
1

T 1/4
φ(U)Θ(T ), (17)

where we introduced the auxiliary function

φ(U) =
1
2π

∫
dQe−Q4

eiQU . (18)

The Green’s function is thus self-similar of the first kind
[8], at all positive times. Furthermore, the function φ is
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Fig. 2. Auxiliary function φ(U) = T 1/4 Ğ(U, T ), for posi-

tive times as given in (eq. (19)), where Ğ(U, T ) is the Green’s
function of the dimensionless linear two-dimensional capillary-
driven thin-film equation given in eq. (10).

given for all U ∈ R by
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π
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, (19)

where the (0, 2)-hypergeometric function is defined as [43,
44]

0H2 ({a, b}, w) =
∑
k≥0

1
(a)k(b)k

wk

k!
, (20)

with the Pochhammer notation (.)k for the rising factorial.
The function φ is plotted in fig. 2. Other than the oscil-
latory behaviour which is directly related to the fourth
spatial derivative of eq. (10), this solution is qualitatively
close to the point-source solution of the heat equation [7],
for which the same analytical treatment would lead to the
well-known Green’s function and to its specific self-similar
variable XT−1/2.

2.2 General solution

For a given summable1 initial condition, Δ(X, 0) =
Δ0(X), the solution Δ(X,T ) of eq. (10) is given by the
spatial convolution of Δ0(X) with the Green’s function

Δ(X,T ) =
∫

dY G(X − Y, T )Δ0(Y ). (21)

Interestingly, eq. (21) implies that the Green’s function of
the problem is exactly the point-source solution obtained
from an initial Dirac spatial distribution: Δ0(Y ) = δ(Y ).

1 Along the present article, summable means Lebesgue inte-
grable, which implies in particular that limX→±∞ Δ0(X) = 0.
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Fig. 3. Normalised analytical solution (see eq. (22)) of the
dimensionless linear two-dimensional capillary-driven thin-film
equation (see eq. (10)) as a function of the self-similar variable
U introduced in eq. (16). The initial profile is defined as a gate
function of width unity, as shown in the inset. The solution is
plotted for different dimensionless times and compared to its
normalised asymptotic attractor given in eq. (19).

Let us once again change variables through eq. (16). Then,
eq. (15) and eq. (21) lead to

Δ(X,T ) = Δ̆(U, T )

=
1

2π T 1/4

∫
dQe−Q4

eiQU

×
∫

dY e−iQY/T 1/4
Δ0(Y ). (22)

The particular case of an initial stepped film2 was stud-
ied in detail in a previous communication [14]. In the
present study, we have calculated the solutions for vari-
ous summable initial conditions. We present two of them
corresponding to canonical illustrations: a gate function
(see fig. 3) and a Gaussian function (see fig. 4). In each
case, we plot the normalised analytical solution of eq. (10)
given in eq. (22), as a function of the self-similar variable
U introduced in eq. (16), the initial profile at T = 0 be-
ing shown in the inset. The solution is plotted for different
dimensionless times. For comparison, we also plot the nor-
malised function φ(U)/φ(0), as given in eq. (19). As one
can see, both profiles seem to converge in time towards
the later function that we shall henceforward call a uni-
versal self-similar attractor (see fig. 1). This convergence
statement will be addressed in the next subsection.

2 For comparison, in such a case one gets at T > 0

Δ̆(U, T ) =
θ0

2

„

1 + −
Z

dQ
1

iπQ
e−Q4

eiQU

«

,

where the dashed integral represents Cauchy’s principal value
and where θ0 is the amplitude of the step. This solution is
self-similar for all T > 0.
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Fig. 4. Normalised analytical solution (see eq. (22)) of the di-
mensionless linear two-dimensional capillary-driven thin-film
equation (see eq. (10)) as a function of the self-similar variable
U introduced in eq. (16). The initial profile is defined as a gaus-
sian function of volume 0.1, as shown in the inset. The solution
is plotted for different dimensionless times and compared to its
normalised asymptotic attractor given in eq. (19).

2.3 Uniform convergence to the self-similar attractor

For clarity, we shall restrict here to summable initial pro-
files that have nonzero algebraic volume, that is

M0 =
∫

dX Δ0(X) �= 0. (23)

The extension of the following results to the specific case of
zero initial algebraic volume is understood as well and will
be addressed in the next subsection. For the time being,
let us introduce the function

f(U, T ) =
T 1/4

M0
Δ̆(U, T ). (24)

According to eq. (18), eq. (22) and eq. (24), for all T > 0
and for all U ∈ R, one has

|f(U, T ) − φ(U)| ≤ a(T )
2π|M0|

, (25)

where we introduced

a(T ) =
∫

dQe−Q4
∫

dY |e−iQY/T 1/4 − 1| |Δ0(Y )|. (26)

Therefore, one gets for all T > 0

‖f(U, T ) − φ(U)‖∞,U ≤ a(T )
2π|M0|

, (27)

where ‖ . . . ‖∞,U is the uniform norm3 with respect to the
variable U . In order to conclude that the function f is uni-
formly convergent4 in time towards φ, it remains to show

3 ‖f‖∞,x = sup{|f(x, y)|, x ∈ R}.
4 A function of two variables f(x, y) is defined to be uni-

formly convergent with respect to y if limy→∞ ‖f‖∞,x = 0.
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that limT→∞ a(T ) = 0. For this purpose, let us consider
the auxiliary function defined by

m(Y, T ) =
(
e−iQY/T 1/4 − 1

)
Δ0(Y ), (28)

for all Y ∈ R, and for all T > 0. This function naturally
converges to the zero function when T → ∞. In addition,
for all T > 0, and for all Y ∈ R, one has

|m(Y, T )| ≤ 2|Δ0(Y )|, (29)

where the right-hand side is a summable function. Invok-
ing Lebesgue’s continuity theorem leads to

lim
T→∞

∫
dY m(Y, T ) = 0. (30)

Similarly, we then consider the second auxiliary function
defined by

g(Q,T ) = e−Q4
∫

dY m(Y, T ), (31)

for all Q ∈ R, and for all T > 0. It converges to the zero
function when T → ∞, according to eq. (30). In addition,
using eq. (29), for all T > 0 and for all Q ∈ R, one has

|g(Q,T )| ≤ 2 e−Q4
∫

dY |Δ0(Y )|, (32)

where the right-hand side is a summable function. Once
again, invoking Lebesgue’s continuity theorem leads to

lim
T→∞

a(T ) = 0. (33)

In summary, we demonstrated that the rescaled solution
f(U, T ) of eq. (10), given by eq. (22) and eq. (24) for any
summable initial profile, always converges uniformly in
time towards the universal self-similar attractor φ(U) de-
fined in eq. (18). In other words, we exhibited the interme-
diate asymptotics of the solutions of the linear capillary-
driven thin-film equation for flat boundary conditions and
we demonstrated that it is simply given by the rescaled
Green’s function. We refer again to fig. 3 and fig. 4 for
illustration of this result with a gate function and a Gaus-
sian function as initial profiles, respectively. The crucial
point in these graphs is that the attractor is identical for
the two summable initial profiles, as summarised in fig. 1.

2.4 Remarks

In order to conclude the discussion on the linear case, we
enumerate five general remarks below.

– The latter calculations may be extended to all equa-
tions of the form

[
∂T + ∂ 2m

X

]
Δ(X,T ) = 0, (34)

with m ∈ N
∗. Indeed, other than the well known heat

equation [7], one can obtain the Green’s function for
higher even orders of the spatial derivative and extract
analogous conclusions. However, the odd orders being
free from dissipation are expected to lead to funda-
mentally different mathematical solutions.

– According to our primary interest in thin films, we
proved the uniform convergence of any summable so-
lution towards the self-similar attractor by explicitly
writing the Green’s function of eq. (10). However, this
result is more general. In fact, let us consider any
diffusive-like linear partial differential equation of two
variables for which the Green’s function G(X,T ) is
self-similar of the form

G(X,T ) =
1

T β
φ

(
X

Tα

)
, (35)

where α and β are strictly positive real numbers, and
where φ is a bounded function on R. Then, the uni-
form convergence is straightforward to demonstrate, as
soon as eq. (21) and eq. (23) remain satisfied, with a
summable initial profile.

– Another interesting feature is the following. Let us call
Δ[Δ0](X,T ) the solution of eq. (10), for an initial pro-
file Δ0(X). Then, the evolution Δ[Δ′

0]
(X,T ) of the first

derivative Δ′
0 of the previous initial condition is sim-

ply given by ∂XΔ[Δ0](X,T ). In terms of the self-similar
variable introduced in eq. (16), one gets

Δ̆[Δ′
0]

(U, T ) =
1

T 1/4
∂U Δ̆[Δ0](U, T ). (36)

This notably makes the link with our previous work on
the particular case of an initial stepped film [14]. In-
deed, the Dirac distribution being the first derivative
of the Heaviside’s distribution, the Green’s function
is thus simply given by the derivative of the solution
obtained for a stepped initial condition. Generalised
to higher-order derivatives, this relation naturally be-
comes

Δ̆
[Δ

(n)
0 ]

(U, T ) =
[

1
T 1/4

∂U

]n

Δ̆[Δ0](U, T ). (37)

– One may as well wonder what happens in the par-
ticular case of zero algebraic volume5, that is when
M0 = 0. The answer is that there is still an attractive
self-similar regime given by the first nonzero deriva-
tive φ(n)(U), under the condition that this quantity is
summable.

– At last, we have seen that for any summable initial
condition there is long-term self-similarity of the gen-
eral solution of eq. (10). The question arrises to know
whether there exists some specific summable initial
conditions that generate solutions that are self-similar

5 One could for instance imagine a dip followed by a bump
of identical shape, as a pathological initial profile.
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Fig. 5. Normalised numerical solution of the dimensionless
nonlinear two-dimensional thin-film equation given in eq. (1),
as a function of the self-similar variable U defined in eq. (16),
for an initial profile given by an arbitrary function with com-
pact support, as shown in the inset. The solution is plotted
for different dimensionless times and compared to the nor-
malised universal asymptotic attractor of the linear case given
in eq. (19).

at all positive times. Interestingly, the solution ob-
tained from the Heaviside initial condition was shown
to be self-similar at all positive times for other bound-
ary limits [14]. In the present case, let us impose the
following constraint at all times T > 0:

Δ̆(U, T ) = Tα/4F (U), (38)

with U as defined in eq. (16). By changing variables
in eq. (22), it is straightforward to see that the initial
profile must be homogeneous of degree α, meaning that
for all real numbers k and Y , one has

Δ0(kY ) = kαΔ0(Y ). (39)

Finally, using eq. (23) and eq. (39), the algebraic vol-
ume V satisfies

V =
∫

dX Δ(X,T ) (40)

= T (α+1)/4

∫
dU F (U), (41)

which implies that α = −1, since V = M0 by volume
conservation. Therefore, the only initial profile with fi-
nite algrebraic volume that exhibits the self-similarity
of eq. (38) at all positive times is the Dirac distribu-
tion. Recalling the remark made after eq. (21), this
means that the Green’s function is the only summable
solution that is self-similar at all positive times, with
the definition of eq. (38).

3 Extension to the nonlinear equation

In this last part, we extend the previous results to the non-
linear case through a numerical scheme. The excess profile

Δ(X,T ) is still defined by eq. (9), but without any restric-
tion on its amplitude. Thus, we consider the full nonlinear
partial differential equation given in eq. (1). This equa-
tion has not been solved analytically yet, but we recently
solved it numerically in various geometries [16]. The nu-
merical procedure we used is a finite difference method de-
veloped in [15,45]. It ensures capillary energy and entropy
dissipation, as required from [46]. In addition to volume
conservation, it has been shown that this method ensures
positivity of the height profile H(X,T ) [45]. Using this
numerical scheme, we verified the existence of an attrac-
tive self-similar regime for several arbitrary initial profiles,
with compact support as required from the algorithm. For
instance, we plot in fig. 5 the normalised numerical solu-
tion of eq. (1) as a function of the self-similar variable U
defined in eq. (16), the initial profile being shown in the
inset. The solution is plotted for different dimensionless
times. We also plot for comparison the normalised func-
tion φ(U)/φ(0), as given in eq. (19). As we see, the latter
is thus an attractor for any initial profile with compact
support (see fig. 1). What is remarkable here is that the
attractor of the nonlinear case is actually equal to the
rescaled Green’s function obtained analytically in the lin-
ear case. Even though this may seem unexpected, it turns
out to be quite natural when one realises that as time
goes, the initial profile progressively collapses towards the
flat film equilibrium shape, thus bringing eq. (1) closer to
its linearised form of eq. (10).

Conclusion

We reported on the intermediate asymptotics of the two-
dimensional capillary-driven thin-film equation for an ar-
bitrary summable initial profile. First, we derived an an-
alytical solution of the linearised equation. The solution
was obtained by seeking the Green’s function, which was
found to be given by a combination of generalised hy-
pergeometric functions. As schematised in fig. 1, we then
proved that any summable initial condition leads to the
uniform convergence in time of the rescaled solution to-
wards a universal self-similar attractor that is proportional
to the rescaled Green’s function of the problem; the pro-
portionality factor being equal to the initial algebraic vol-
ume. This result appears to be a more general result in
diffusive-like processes that are characterised by a self-
similar Green’s function with decaying amplitude. At last,
we were able to conjecture from compact-support numer-
ical results, as well as to justify on a physical basis, the
extension of this convergence behaviour to the nonlinear
equation. The important outcome is that the universal
self-similar attractor of the nonlinear case appears to be
precisely the one of the linear case, that is the rescaled
Green’s function.

The recent excellent agreements between thin-film the-
ories and experiments with stepped polymer films [47,48,
16,14], and polymer droplets on identical films [49,16], are
very encouraging for the physical relevance of the present
analysis. Thus, experimental implementation with viscous
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nanofilms should be performed in near future. This theo-
retical work may also be extended to other thin-film equa-
tions [15], such as the one describing flows in Hele-Shaw
cells [8] and the one governing gravity-driven flows [50–
52]. One could also address coalescence phenomena [53,
54] and various diffusive processes, in an identical way.
Moreover, it should be feasible to exhibit the necessary
conditions acting on a given partial differential equation
for showing such a uniform convergence behaviour. Fi-
nally, characterising further the conditions for finite-time
convergence may be of fundamental importance for the
field of intermediate asymptotics, and thus for nonlinear
physics in general.
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(2011).

28. R. Mukherjee, A. Sharma, U. Steiner, Surface instability
and pattern formation in thin polymer films, in Generating
Micro- and Nanopatterns on Polymeric Materials (Wiley-
VCH Verlag GmbH and Co. KGaA, Weinheim, 2011).
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