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We present a theoretical study of gravity waves generated by an anisotropic moving
disturbance. We model the disturbance by an elliptical pressure field of given aspect
ratioW . We study the wake pattern as a function ofW and the longitudinal hull Froude
number Fr = V/

√
gL , where V is the velocity, g is the acceleration of gravity, and L

is the size of the disturbance in the direction of motion. For large hull Froude numbers,
we analytically show that the rescaled surface profiles for which

√
W/Fr is kept

constant coincide. In particular, the angle outside which the surface is essentially flat
remains constant and equal to the Kelvin angle, and the angle corresponding to the
maximum amplitude of the waves scales as

√
W/Fr , thus showing that previous

work on the wake’s angle for isotropic objects can be extended to anisotropic objects
of given aspect ratio. We then focus on the wave resistance and discuss its properties
in the case of an elliptical Gaussian pressure field. We derive an analytical expression
for the wave resistance in the limit of very elongated objects and show that the position
of the speed corresponding to the maximum wave resistance scales as

√
gL/

√
W .

C⃝ 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896257]

I. INTRODUCTION

The influence of Lord Kelvin’s theory1 on the study of water waves and particularly on the wake
pattern that falls behind an object moving at constant speed is no longer to be proved. His work
revealed a certain universality of the wake pattern, that everyone can notice when looking at the
waves produced by objects as different as swans or sailing boats. One of his most remarkable results
concerns the well-known constant wake angle ϕK ≃ 19.47◦, delimiting a region outside which the
water remains essentially unperturbed. Since Lord Kelvin’s first results, a lot of efforts have been
done to extend his work,2–5 for instance to nonlinear waves,6 or waves in the presence of vorticity.7, 8

Recently, the constancy of the wake angle has been contested.9, 10 Indeed, in their analysis of airborne
images, Rabaud and Moisy showed that, for large hull Froude numbers Fr = V/

√
gL , where V

is the object velocity, g is the acceleration of gravity, and L is the typical size of the object in
the direction of motion, the angle of the wake decreases and scales as 1/Fr. In response to these
intriguing observations, we recently11 presented an analytical study of the wake pattern as a function
of the Froude number and showed that the delimiting angle of the wake actually remains constant for
all Fr, therefore comforting Lord Kelvin’s theory. We also provided an explanation to the airborne
observations of Rabaud and Moisy by analytically proving that, for an axisymmetric object of typical
size L, the angle corresponding to the maximum amplitude of the waves decreases as Fr is increased,
scaling as 1/Fr for large Froude numbers.

The main issue that arose from our previous study11 is that an axisymmetric object does not
correctly reflect the real geometry of boats.12 Indeed, boats have elongated shapes with aspect ratios
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typically ranging between 0.1 and 0.5, with the exception of hovercrafts which actually display a
cylindrical symmetry. For elongated objects, the emphasis has been placed on the planning regime in
the limit of small aspect ratios.13, 14 The important feature that needs to be considered when it comes
to hull design, is the so-called wave resistance, or wave drag, a force resulting from the generation
of surface waves. Indeed, a well profiled hull noticeably reduces the wave resistance thus improving
the velocity performances of the ship. Along with wake patterns, wave resistance has been widely
studied both at practical15, 16 and theoretical levels.2, 17, 18

We here present a theoretical study on anisotropic moving objects. In the first part, we focus
on the wake pattern. After recalling the main ingredients of the physical model, we calculate the
surface displacement induced by an elliptical moving pressure distribution and discuss its main
features. In particular, we investigate the universality of the wake pattern as a function of the aspect
ratio of the moving disturbance and the longitudinal hull Froude number. In the second part, we
derive the expression of the wave resistance for an anisotropic moving disturbance and focus on
the case of an elliptical Gaussian pressure field. In the limit of very elongated objects, we obtain
interesting analytical results on the scaling of the velocity corresponding to the maximum of the
wave resistance.

II. WAKE PATTERN

For gravity waves, the surface displacement generated by a pressure field p(x, y) moving in
the −x direction with constant speed V can be written in the frame of reference of the moving
perturbation as11, 17, 19

ζ (x, y) = − lim
ε→0

∫∫
dkx dky

4π2ρ

k p̂(kx , ky) e−i(kx x+ky y)

ω(k)2 − V 2k2
x + 2iεV kx

, (1)

where k =
(
k2

x + k2
y

)1/2, p̂(kx , ky) is the Fourier Transform of p(x, y), ρ is the water density
and ω(k) = (gk)1/2 is the dispersion relation for pure gravity waves. Let us nondimensionalise
the problem through x = L X ; y = LY ; kx = K X/L ; ky = KY /L ; k = K/L ; p = ρgL P ;
p̂ = ρgL3 P̂ ; ε = (g/L)1/2ε̃ where L is the typical size of the pressure field p(x, y) in the direction
of motion. This yields ζ (x, y) = (L/4π2) Z(X, Y) where

Z (X, Y ) = − lim
ε̃→0

∫∫
dK X dKY

K P̂(K X , KY ) e−i(K X X+KY Y )

K − Fr2 K 2
X + 2i ε̃ Fr K X

, (2)

and where Fr = V/
√

gL is the longitudinal hull Froude number. In order to account for the
anisotropic geometry of a real ship’s hull in a simple manner, we consider an elliptical pressure field
of the form

P(X, Y ) = F
(

X2 + Y 2

W2

)
, (3)

where W = l/L is the aspect ratio of the ellipse of major diameter L and minor diameter l. Consis-
tently with this choice, we let the elliptical change of variables

X = R̆ cos ϕ̆ K X = K̆ cos θ̆ (4)

Y = W R̆ sin ϕ̆ KY = W−1 K̆ sin θ̆ .

This leads to Z (X, Y ) = Z̆ (R̆, ϕ̆) where

Z̆ (R̆, ϕ̆) = − lim
ε̃→0

∫∫
K̆ dK̆ dθ̆

√
W2 cos2 θ̆ + sin2 θ̆ ˘̂P(K̆ ) e−i K̆ R̆ cos(θ̆−ϕ̆)

√
W2 cos2 θ̆ + sin2 θ̆ − V2 K̆ cos2 θ̆ + 2i ε̃ V

√
W cos θ̆

, (5)

and where V = Fr
√
W and ˘̂P(K̆ ) = W−1 P̂(K X , KY ). The interest of the elliptical change of

variables in Eq. (5) is that the Fourier transform of the pressure field is now a function of the single
variable K̆ . This, as we shall see later, implies that our previous derivation with an axisymmetric
pressure field11 is applicable to the case of an elliptical pressure field. Using the Sokhotski-Plemelj
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formula (see, e.g., Ref. 20) to perform the integral over K̆ yields Z̆ (R̆, ϕ̆) = Z̆0(R̆, ϕ̆) + Ğ(R̆, ϕ̆)
where Ğ(R̆, ϕ̆) is a rapidly decreasing function with the distance to the perturbation and where

Z̆0(R̆, ϕ̆) = iπ
∫ π/2

−π/2
dθ̆

(W2 cos2 θ̆ + sin2 θ̆ ) ˘̂P(K̆0) e−i K̆0 R̆ cos(θ̆−ϕ̆)

V4 cos4 θ̆
, (6)

where K̆0 =
√
W2 cos2 θ̆ + sin2 θ̆/(V2 cos2 θ̆ ). The integral in Eq. (6) is of the form

∫
dθ̆ H (θ̆ ) ei φ(θ̆)

and may be approximated through the method of the stationary phase. For R̆/V2 > 1, the integrand
oscillates rapidly and there are two stationary points θ̆1 and θ̆2 given by φ′(θ̆) = 0. One can then
write Z̆0(R̆, ϕ̆) ≃ iπ (Z̆01(R̆, ϕ̆) + Z̆02(R̆, ϕ̆)), where Z̆01 corresponds to the transverse waves and
Z̆02 corresponds to the diverging waves. For large Froude numbers, the transverse waves vanish
compared to the diverging waves,11 so that within this limit we shall only consider the latter

Z̆02(R̆, ϕ̆) = Q̆(R̆, ϕ̆) ei(φ(R̆,θ̆2(ϕ̆),ϕ̆)+ π
4 ), (7)

where Q̆(R̆, ϕ̆) is the envelope of the wave signal

Q̆(R̆, ϕ̆) =
√√√√

2π∣∣∣∂2
θ̆
φ(R̆, θ̆2(ϕ̆), ϕ̆)

∣∣∣
H (θ̆2). (8)

For small elliptical angles ϕ̆, the stationary point θ̆2 reads θ̆2(ϕ̆) = π/2 + 2ϕ̆, and the envelope
Q̆(R̆, ϕ̆) of the waves eventually becomes in the small ϕ̆ approximation

Q̆(R̆, ϕ̆) ≃ 1
4

√
π

R̆

1
V3 ϕ̆5/2

˘̂P
(

1
4V2ϕ̆2

)
. (9)

It is worth mentioning here that we recover a very similar expression to that of the isotropic case,11

where the hull Froude number Fr has been replaced by V , and ϕ by ϕ̆. Let us now change the
variables back to real polar coordinates (R, ϕ),

R = R̆
(
cos2 ϕ̆ + W2 sin2 ϕ̆

)1/2
, (10a)

ϕ = arctan(W tan ϕ̆). (10b)

For small angles, Eqs. (10a) and (10b) become

R ≃ R̆, (11a)

ϕ ≃ Wϕ̆. (11b)

Combining Eqs. (9) and (11a)–(11b) and defining the rescaled envelope in real polar coordinates
Q(R,ϕ) =

√
W Q̆(R̆, ϕ̆), one gets

Q(R,ϕ) ≃ 1
4

√
π

R
U3

ϕ5/2
˘̂P

(
U2

4ϕ2

)
, (12)

where U = W V−1 =
√
W Fr−1. This shows that the rescaled envelope Q(R, ϕ) depends on the

aspect ratio W and the rescaled Froude number V only through the single variable
√
W Fr−1. In

other terms, for large Froude numbers and small angles, profiles resulting from moving disturbances
with the same

√
W Fr−1 coincide when multiplied by

√
W (see Fig. 1). In particular, the angle ϕmax

corresponding to the maximum amplitude of the waves reads

ϕmax ∼
√
W

Fr
. (13)

This may explain why objects with very low aspect ratio, such as rowing boats, usually display a
small maximum amplitude angle even though their longitudinal hull Froude number is not very high
as they are propelled by man power.
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FIG. 1. Relief plots of the rescaled surface displacement produced by a moving elliptical Gaussian pressure field (see
Eq. (14)) computed using Eq. (6). Here, rescaled means multiplied by

√
W . Each relief plot corresponds to given values of

the longitudinal hull Froude number Fr and aspect ratio W and is plotted as a function of X̃ = X/* and Ỹ = Y/* where
* = 2πFr2 is the dimensionless wavelength. The parameters Fr and W are varied, respectively, along the horizontal axis
and the vertical axis on a logarithmic scale. In all graphs, the angle ϕmax indicating the maximum amplitude of the waves is
signified with a solid line (red) and the Kelvin angle ϕK = 19, 47◦ with a black dashed line. On each diagonal, signified by a
grey stripe, the value of the ratio U =

√
W Fr−1 is kept constant. The first row (W = 1) corresponds to the isotropic case.

To illustrate these analytical results, we then perform a numerical evaluation of the integral in
Eq. (6) with an elliptical Gaussian pressure field whose dimensionless Fourier transform reads

P̂(K , θ ) = f0

ρgL3
exp

[
− K 2

4π2
(cos2 θ + W2 sin2 θ )

]
, (14)

where f0 is the total integrated pressure force. The resulting rescaled surface profiles are displayed
in Fig. 1. Here, rescaled means multiplied by

√
W . Each relief plot corresponds to given values

of Fr and W and is plotted as a function of X̃ = X/* and Ỹ = Y/* where * = 2πFr2 is the
dimensionless wavelength. The parameters Fr and W are varied, respectively, along the horizontal
axis and the vertical axis on a logarithmic scale. In all graphs, the angle ϕmax indicating the maximum
amplitude of the waves is signified with a solid line (red) and the Kelvin angle ϕK with a black
dashed line. On each diagonal, signified by a grey stripe, the value of the ratio U =

√
W Fr−1 is kept

constant. The first row (W = 1) corresponds to the isotropic case. First, one can see that for any set
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of parameters (Fr, W) the angle delimiting the region outside which the surface remains essentially
flat is constant and equal to the Kelvin angle ϕK. Second, on a given diagonal (

√
W Fr−1 = cst),

all the profiles seem identical to the naked eye, therefore comforting the analytical results found in
this section. Finally, looking closely, one can note that the agreement between different profiles on
the same diagonal becomes all the more true as we go towards higher values of Fr, as predicted by
the analytical study.

III. WAVE RESISTANCE

The waves generated by the moving disturbance continually remove energy to infinity. This
translates into a drag force R experienced by the disturbance, often referred to as the wave drag or
the wave resistance. We here investigate the wave resistance experienced by the disturbance, using
the method proposed by Havelock,17, 19 according to whom the wave resistance is the total resolved
pressure in the direction of motion

R = −
∫∫

dx dy p(x, y) ∂xζ (x, y). (15)

Inserting Eq. (1) into Eq. (15) yields21

R = lim
ε→0

∫∫
dkx dky

4π2ρ

ikx k
∣∣ p̂(kx , ky)

∣∣2

ω2(k) − V 2k2
x + 2iεV kx

. (16)

Changing to dimensionless variables consistently with Sec. II, switching to polar coordinates, and
inserting the dimensionless elliptical Gaussian pressure field defined in Eq. (14) into Eq. (16) leads
to

R = lim
ε̃→0

⎛

⎝ f 2
0

4π2ρgL3

∫∫
dK dθ

i K 2 cos θ exp
(
− K 2

2π2

(
cos2 θ + W2 sin2 θ

))

1 − Fr2 K cos2 θ + 2i ε̃Fr cos θ

⎞

⎠ . (17)

Performing the integral over K in Eq. (17) yields

R = f 2
0

2πρgL3
f (V,W), (18)

where

f (V,W) = W3

V6

∫ π/2

0

dθ

cos5 θ
exp

(
−W2(1 + W2 tan2 θ )

2π2V4 cos2 θ

)
. (19)

Equations (18) and (19) are central as they give the wave resistance of an elliptical Gaussian pressure
field as a function of the dimensionless parameters V and W . In order to seek for a limit form of
the wave resistance at low aspect ratios, and guided by the fact that the integrand is dominant in the
vicinity of π /2, this being all the more true for large values of V and small values of W , we develop
the integrand in the vicinity of π /2 at the lowest relevant order in θ and let the change of variables
α = π /2 − θ . This yields

f (V,W) ≃ W3

V6

∫ π/2

0

dα

α5
exp

(
− W2

2π2V4

(
W2

α4
+ 1

α2

))
. (20)

Furthermore, aiming for a Gaussian like analytical integral, we let the change of variables m = 1/α2.
This leads to

f (V,W) ≃ W3

2V6

∫ ∞

4/π2
dm m exp

(
− W2

2π2V4

(
W2m2 + m

))

≃ e− 2W2(π2+4W2)
π6V4

8V4W

[
4π2V2 − π3/2

√
2 e

(π2+8W2)2

8π6V4 erfc
(

π2 + 8W2

2π3
√

2V2

)]
, (21)
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FIG. 2. Plot of W f (V,W) as given by Eq. (21) as a function of the dimensionless parameter V = Fr
√
W , where

Fr = V/
√

gL is the longitudinal hull Froude number, for different values of the aspect ratio W . The dashed curve (red)
corresponds to the limit regime W → 0 as given analytically by Eq. (22).

where erfc = 1 − erf is the complementary error function.22 In the limit of small aspect ratios W ,
f (V,W) scales as 1/W and

lim
W→0

W f (V,W) = π2

2V2
− π3/2

√
2

8V4
exp

(
1

8π2V4

)
erfc

(
1

2π
√

2V2

)
. (22)

Equation (22) provides an analytical limit of the wave resistance at very low aspect ratios W . The
fact that this limit is independent of W shows that V is the relevant variable to describe the problem
of anisotropic moving objects. Figure 2 displays W f (V,W) as given by Eq. (21) as a function of
V for different values of the aspect ratio W . The dashed curve (red) corresponds to the limit regime
W → 0 as given analytically by Eq. (22). As one can see, the curves converge to the limit regime
W → 0 as the aspect ratio is decreased, the convergence being faster at large V . In the limit of
small aspect ratios, the position of the maximum of wave resistance Vmax is obtained numerically
by solving d

dV (limW→0 W f (V,W)) = 0; one gets Vmax ≃ 0.3702. Recalling that V = Fr
√
W , one

has the scaling of the position of the maximum of wave resistance in terms of Froude number

Frmax ∼ 1√
W

, (23)

or identically in terms of real speed

Vmax ∼
√

gL
W

=
√

gL

√
L
l

. (24)

It is known that for cylindrical objects of size L, the position of the maximum of wave resistance
scales as23 √

gL . Equation (24) shows that in our case, the scaling is that of the cylindrical object
multiplied by the square root of the inverse aspect ratio. Note that, in order to discuss the amplitude of
wave resistance rather than the position of its maximum, one must prescribe how the total integrated
force f0 behaves with the dimensions of the distribution. For example, one could have f0 proportional
to the area Ll = L2W , and given that the wave resistance behaves as f 2

0 , the relevant quantity to
plot would be W2 f (V,W).

Recently, Noblesse et al.10 analyzed the observations of Rabaud and Moisy9 in terms of inter-
ference between the dominant bow and stern waves created by the ship, assuming a pressure field of
dipolar nature. Note that their analysis leads to additional interference peaks in the wave resistance
at small Froude numbers, in accordance with a number of observations.
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IV. CONCLUSION

In this study, we performed a theoretical analysis of the wake pattern and the wave resistance
of an anisotropic moving disturbance. In order to account for anisotropy in a simple manner, we
modelled the disturbance by an elliptical pressure distribution. In Sec. II, we derived the expression
of the surface displacement and analyzed it as a function of two relevant dimensionless parameters.
We showed that the angle delimiting the wake region remains constant and equal to the Kelvin angle
ϕK = 19.47◦; and that, at large Froude numbers, the angle corresponding to the maximum amplitude
of the waves scales as

√
W/Fr where W is the aspect ratio of the elliptical disturbance and Fr

is the longitudinal hull Froude number. This notably extends the results of our previous study11

that focused on isotropic moving objects. Note that very recently similar results have been obtained
independently by Moisy and Rabaud.24 Another study25 by the same authors where capillary effects
are taken into account may also be of interest to the readers. In Sec. III, we derived the expression
of the wave resistance for an elliptical Gaussian pressure field and analyzed it as a function of the
same relevant dimensionless parameters. We obtained a limit analytical expression for the case of
very small aspect ratios, and showed that the position of the maximum of wave resistance in terms
of real speed scales as that of a cylindrical object multiplied by the square root of the inverse aspect
ratio. We believe this study is of interest as it reveals the main physical features of waves created by
anisotropic moving objects, closer to the real geometry of ships than axisymmetric objects.
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