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ersal self-similar attractor for the
levelling of thin liquid films

Michael Benzaquen,†a Paul Fowler,†b Laetitia Jubin,b Thomas Salez,a Kari Dalnoki-
Veressab and Elie Raphaël*a

We compare the capillary levelling of a random surface perturbation on a thin polystyrene film with a

theoretical study on the two-dimensional capillary-driven thin film equation. Using atomic force

microscopy, we follow the time evolution of samples prepared with different initial perturbations of the

free surface. In particular, we show that the surface profiles present long term self-similarity, and

furthermore, that they converge to a universal self-similar attractor that only depends on the volume of

the perturbation, consistent with the theory. Finally, we look at the convergence time for the different

samples and find very good agreement with the analytical predictions.
1 Introduction

In the past decades, thin lms have been of undeniable interest
to scientic and industrial communities.1–3 Indeed, under-
standing the dynamics and stability of thin lms is essential to
technological applications such as nanolithography4,5 and the
development of non-volatile memory storage devices.6 More-
over, thin lms have enabled the study of the effect of
connement on polymers.7–16 Several experiments have been
performed in order to gain insights into the dynamics of these
lms. Examples are provided by the broad class of dewetting
experiments,17–29 as well as studies on capillary levelling.30–40

Levelling experiments on thin polymer lms in the vicinity of
the glass transition temperature have recently given insights
into the surface ow in glassy polymers.41 The effect of visco-
elasticity related to the polymeric nature of these lms has been
addressed as well.42–44

Thin liquid lms are also of great interest to the hydrody-
namics and applied mathematics community, as the viscous
relaxation of a perturbed free surface is described by a
nonlinear partial differential equation that, to date, remains
only partially solved. This equation is called the capillary-driven
thin lm equation.1–3 Several analytical45–47 and numerical48

studies have led to a deeper understanding of its mathematical
features. Recently, it was shown that the solution of the thin
lm equation for any sufficiently regular initial surface prole
uniformly converges in time towards a universal self-similar
attractor that is given by the Green's function of the linear
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capillary-driven thin lm equation.47 In the terminology of
Barenblatt,49 this attractor corresponds to the intermediate
asymptotic regime. “Intermediate” refers to time scales that are
large enough for the system to forget the initial condition, but
also far enough from the generally predictable nal equilibrium
steady state; which, for capillary-driven thin lms is a perfectly
at surface. For thin lms, the question of the convergence time
to this universal attractor has not been addressed so far and is
the focus of this paper.

Here, we report on levelling experiments on thin polystyrene
lms that corroborate the theoretical predictions on the
convergence of the surface proles to a universal self-similar
attractor. In the rst part, we recall the main results of the
theoretical derivation of the intermediate asymptotic regime,
and address the question of the convergence time. In the
second part, we present the experiments where we follow the
time evolution of samples prepared with different random
initial perturbations of the free surface. Consistent with the
theory, we show that the surface proles present long term self-
similarity, and converge to a universal self-similar attractor that
only depends on the volume of the perturbation. In particular,
the convergence times measured in the different samples show
very good agreement with the theory.
2 Theory

Here we recall the main theoretical results from our previous
work,47 and derive an expression for the convergence time as a
function of the volume of the perturbation.
2.1 Levelling of a thin liquid lm

The levelling of a supported thin liquid lm can be described
within the lubrication approximation. Assuming incompress-
ible viscous ow, together with a no-slip boundary condition at
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Schematic illustrating the convergence of any given initial
profile to the universal intermediate asymptotic solution.
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the substrate and a no-stress boundary condition at the free
surface, yields the so-called capillary-driven thin lm
equation:1–3

vthþ g

3h
vx
�
h3vx

3h
�¼ 0; (1)

where h(x, t) is the thickness of the lm at position x and time t,
g is the surface tension, and h is the viscosity. Eqn (1) can be
nondimensionalised through h ¼ h0H, x ¼ h0X and t ¼ (3hh0/g)
T, where h0 is the equilibrium thickness of the lm innitely far
from the perturbation. This leads to:

vTH + vx(H
3vx

3H) ¼ 0. (2)

The height of the lm can be written as h(x, t) ¼ h0 + d(x, t),
where d(x, t) is the perturbation that levels with the passing of
time. For the case of small perturbations compared to the
overall thickness of the lm, eqn (2) can be linearised by letting
H(X, T) ¼ 1 + D(X, T) where D(X, T) � 1. This yields the linear
thin lm equation:

vTD + vx
4D ¼ 0 . (3)

For a given sufficiently regular initial condition D(X, 0) ¼
D0(X), the solution of eqn (3) is given by:

D(X, T) ¼ Ð
dX0G(X � X0, T)D0(X

0) , (4)

where G is the Green's function of eqn (3), and reads:47

GðX ;TÞ¼ 1

2p

ð
dK e�K4T eiKX : (5)

By ‘sufficiently regular’, we mean in particular that the initial
perturbation of the prole is summable, with a non-zero alge-
braic volume, and that this perturbation vanishes when X /

�N. The Green's function is obtained by taking the spacial
Fourier transform of eqn (3). Eqn (4) and (5) are central to the
problem as, for a given initial condition, they give the prole at
any time.
2.2 Universal self-similar attractor

Guided by the mathematical structure of eqn (3), we introduce
the self-similar change of variables: U ¼ XT�1/4 and Q ¼ KT1/4,
together with D

^ðU;TÞ ¼ DðX ;TÞ. These variables, together with
eqn (4) and (5), yield:

D
^ðU ;TÞ ¼

ð
dX 0G

^�
U � X 0T�1=4;T

�
D0

�
X 0�; (6)

where G
^ðU;TÞ¼ T�1=4fðUÞ; and:

fðUÞ¼ 1

2p

ð
dQe�Q 4

eiQU : (7)

Note that the integral in eqn (7) can be expressed in terms of
hypergeometric functions (see the Appendix). The main result
from our previous work47 was that, for any given initial
condition D0(X) the rescaled solution T1=4D

^ðU;TÞ=M 0; where
This journal is © The Royal Society of Chemistry 2014
M 0 ¼
Ð
dXD0(X)s 0 is the algebraic volume of the perturbation,

uniformly converges in time to f(U) (see Fig. 1):

lim
T/N

T1=4D
^ ðU ;TÞ
M 0

¼fðU Þ: (8)

According to Barenblatt's theory,49 this is the intermediate
asymptotic solution. The solution is universal in the sense that
it does not depend on the shape of the initial condition. Note
that in the particular case of a zero volume perturbation, the
attractor is given by the derivatives of the function f(U). The
question of the time needed to reach this fundamental solution
is important as it quanties how long one has to wait to forget
the initial condition.
2.3 Convergence time

In order to study the approach to the self similar attractor, we
look at the surface displacement at x ¼ 0 as a function of time.
Letting DN(X, T) be the perturbation prole in the intermediate
asymptotic regime, then according to eqn (8) at U ¼ 0 one has:

DN(0, T) ¼ M 0f(0)/T
1/4. (9)

We then dene the convergence time Tc as being the inter-
section of the initial central height and the central height in the
intermediate asymptotic regime:

D0(0) ¼ DN(0, Tc), (10)

which leads to:

Tc ¼
�
Gð5=4Þ

p

M 0

D0ð0Þ
�4

: (11)

Note that the choice of origin, x ¼ 0, is arbitrary and will be
discussed in the experimental section.
3 Experiments

Samples were prepared using polystyrene (PS) with weight
averaged molecular weight Mw ¼ 31.8 kg mol�1 and
Soft Matter, 2014, 10, 8608–8614 | 8609



Soft Matter Paper
polydispersity index PI ¼ 1.06 (Polymer Source Inc.). Solutions
of PS in toluene (Fisher Scientic, Optima grade) were prepared
with various weight fractions, 1 < f < 10 wt%. Films with
thickness hSi were spincast onto clean 10 mm � 10 mm Si
wafers (University Wafer) and lms with thickness hMi were
spincast onto freshly cleaved 25 mm � 25 mm mica substrates
(Ted Pella Inc.).

To prepare samples with various surface geometries the
following procedure was used. First,�10 mm� 10 mm sections
of the lms prepared on mica were oated onto the surface of
an ultrapure water bath (18.2 MU cm, Pall, Cascada, LS). These
pieces of lm were then picked up using the previously
prepared lms with thickness hSi on the Si substrate. During
this transfer, the oating lms were intentionally folded back
on themselves to create random non-uniform surface geome-
tries. We emphasize that samples were prepared at room
temperature, well below the glass transition temperature Tg z
100 �C. Two types of samples were prepared:

� Small perturbations: Films with a relatively small thickness
perturbation, where the linear thin lm equation is expected to
be valid. Such lms were prepared with thicknesses hMi � hSi to
create surface perturbations with max[d(x, 0)]/h0 � 1. We used
lm thickness combinations {hSi, hMi} z {600 nm, 80 nm} and
{200 nm, 25 nm}.

� Large perturbations: Films with large thickness perturba-
tions relative to h0. Varying geometries were prepared with
thicknesses hMi z hSi to create surface perturbations with max
[d(x, 0)]/h0 � 1. Samples were prepared using lm thickness
Fig. 2 The results of three experiments on small perturbations. The top
function of position for annealing times 0# t# 60 min for samples with
shows the height of the perturbation scaled by the height at x ¼ 0 as a fu
rescaled self-similar attractor (see eqn (7)) which is shown as a black da

8610 | Soft Matter, 2014, 10, 8608–8614
combinations {hSi, hMi}z {100 nm, 100 nm}, {150 nm, 150 nm},
and {200 nm, 200 nm}.

The shapes of the non-uniform perturbations were not
prepared by design, rather, during the preparation process
many proles were found on a single sample. Regions of
interest were then located and chosen such that, while the
height varies in one direction, it is sufficiently invariant in the
orthogonal horizontal direction, i.e. h can be taken to be a
function of x and t alone. Ensuring that the proles were
invariant in one direction was crucial for the comparison with
the two-dimensional theory discussed above. Having prepared
non-uniform surface perturbations, a second piece of lm with
thickness hMi was oated onto a portion of the sample with
thickness hSi to create a stepped bilayer geometry, the details of
which are fully explained elsewhere.36 Briey, the initial height
prole of such a step is well described by a Heaviside step
function. When a stepped lm prole is annealed above Tg the
step levels due to capillary forces. For this well dened and well
studied geometry, measuring the evolution of the lm height
prole over time gives an in situ measurement of the capillary
velocity, g/h. We emphasize that each sample has both the
perturbation of interest as well as a region where there is a
stepped bilayer. By obtaining the capillary velocity g/h from the
bilayer portion of the sample while also probing the perturba-
tion on the same sample, we reduce the measurement error (for
example due to small sample-to-sample variations in annealing
temperature). The nal stage in the preparation of the samples
is 1 min annealing at 130 �C on a hot stage (Linkam Scientic
panel shows the height of the perturbation, d(x, t) ¼ h(x, t) � h0, as a
(a) h0 ¼ 221 nm, (b) h0 ¼ 681 nm, and (c) h0 ¼ 681 nm. The bottom row
nction of U ¼ XT�1/4 ¼ x(3h/h0

3gt)1/4. For comparison, we also plot the
shed line in the bottom row.

This journal is © The Royal Society of Chemistry 2014
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Instruments Inc.) to ensure that the oated lms are in good
contact with the substrate lm and to remove any water from
the system. Note that although there is some evolution of the
geometry during this short initial annealing stage, as will
become clear below, t ¼ 0 is dened aer this annealing step.

The initial lm height proles of both the surface pertur-
bation and the stepped bilayer were measured with AFM (Veeco,
Caliber). In order to measure the evolution of the surface
proles, samples were annealed under ambient conditions on
the hot stage at 140 �C using a heating rate of 90 �C min�1.
Above Tg, capillary forces drive the non-uniform surface
geometries to level. Aer sometime the samples were rapidly
quenched to room temperature and both the perturbation
and bilayer lm proles were measured using AFM. From
the AFM scans of the stepped bilayer (not shown), we use
the technique described previously36 to extract the capillary
velocity. For all samples we measure the capillary velocity
g/h z 50 mm min�1, which is in excellent agreement with
previous measurements.36,39
Fig. 3 An example data set with large perturbation. (a) Height of the
perturbation as a function of position and annealing time with h0¼ 216
nm; (b) the normalized profiles. For times t $ 303 min, profiles were
measured using imaging ellipsometry (IE). Regions where IE is insen-
sitive have been interpolated with quadratic splines as indicated by the
dashed lines. The black dashed line corresponds to the rescaled self-
similar attractor (see eqn (7)).
4 Results and discussions
4.1 Small perturbations

In Fig. 2(a)–(c) are shown the evolution of three examples of
small perturbations, with the highest proles corresponding to
the initial t ¼ 0 proles. Here, we have chosen the coordinate x
¼ 0 such that the volume of the perturbation for x < 0 is equal to
that of x > 0. In the initial stages of annealing, the perturbations
quickly lose any asymmetry in their shape. With additional
annealing, the symmetric proles broaden and their maximal
heights decrease. Since the heights of the linear proles are
small compared to the equilibrium lm thicknesses h0, we
expect their evolution to be governed by eqn (3) (the linearized
thin lm equation). In particular, at long times we expect the
proles to converge to the universal self-similar attractor
described in Section 1.2.

To test this prediction we plot the normalized height of the
perturbation as a function of the variable U ¼ XT�1/4 ¼ x(3h/
h0

3gt)1/4, as shown in Fig. 2(d)–(f). We observe that at late times
the proles converge to the rescaled self-similar attractor f(U)/
f(0) regardless of the initial condition, as predicted in Section
1.2. Here, we emphasize that since we have determined the
capillary velocity in situ by measuring the evolution of a stepped
bilayer geometry near the perturbation on each sample, there is
no free parameter in the above rescaling and comparison to the
theoretical prediction (shown as a dashed black line in
Fig. 2(d)–(f)). Furthermore, at late times, the error between the
experimentally measured proles and the attractor is less
than 1%.
‡ This issue can be circumvented by varying the angle of incidence. However this
was not possible for the experiments presented here because changing the angle
of incidence also shis the region of interest slightly.
4.2 Large perturbations

Measurement of the samples with large perturbations (see the
example in Fig. 3) were more challenging because at long
annealing times (t > 100 min) the lateral extent of the height
proles exceeds the accessible range of the AFM (�100 mm).
Here, we resort to imaging ellipsometry (Accurion, EP3) to
This journal is © The Royal Society of Chemistry 2014
record height proles. Imaging ellipsometry (IE) has � nm
height resolution with lateral resolution comparable to an
optical microscope: � mm. Thus, IE and AFM are complimen-
tary techniques. For the example in Fig. 3, data were acquired
with AFM for t# 63 min, while IE was used for the three longest
annealing times. With IE there is one caveat: in certain ranges of
thickness there is a loss of sensitivity depending on the wave-
length of laser light and the angle of incidence used (658 nm,
42–50 deg).‡ For the IE data the regions where the IE was
insensitive were interpolated with a quadratic spline as indi-
cated by dashed lines to guide the eye.

The evolution of a large perturbation is shown in Fig. 3. In
this case, the perturbation does not obey the condition d(0, 0)/h0
� 1. As can be seen in Fig. 3(a), with sufficient annealing, the
large perturbations become symmetric. Similar to the evolution
observed for the small perturbations, once the proles are
symmetric, the maximal height d(0, t) decreases with further
annealing and the proles broaden.
Soft Matter, 2014, 10, 8608–8614 | 8611
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The normalized proles are shown in Fig. 3(b). Although the
perturbations are initially large, upon long annealing the
condition d(0, t) � h0 can be reached. In particular, the nal
state of a large perturbation is still expected to be the self-
similar attractor. For the data shown in Fig. 3, even aer 11 022
min of annealing, the prole did not reach the condition that
d(0, t) � h0. While the height proles are clearly symmetric at
long times, and they converge towards self-similarity, the nal
prole is not yet equivalent to the nal attractor of Fig. 2. The
fact that the sample has not yet fully reached the self-similar
attractor is simply because the starting prole is so tall, that the
long annealing times required and the width of the prole
(while still requiring good height resolution) place this outside
our experimental window.
Fig. 5 Non-dimensionalized convergence time as a function of non-
dimensionalized width. Here the square data points represent data
from small perturbation samples which are in excellent agreement
with the dashed black line. The dashed black line is the theoretical
prediction of eqn (11). In the inset both the small perturbation results,
which have reached the self-similar regime, and the large perturbation
data (circles and arrows) which are not yet self-similar are shown.
4.3 Convergence time

One of the main predictions of the theory outlined in Section
1.3 is that the time taken to converge to the attractor depends
on the algebraic volume of the perturbation according to eqn
(11). The convergence time is determined in accordance with
eqn (10) as the crossover from an initial regime, which is highly
dependent on d(x, 0), to a universal intermediate asymptotic
regime. In Fig. 4, we plot the normalized central height of the
perturbation, d(0, t)/d(0, 0), for the small perturbation shown in
Fig. 2(a) and (d). The initial state can be characterized by the
central height of the perturbation at t ¼ 0 and is given by the
horizontal line. At late times, the maximal height of the
normalized perturbation d(0, t)/d(0, 0) decreases in time
following the t�1/4 power law. Note that the t�1/4 line is t to the
last three data points which correspond to the latest proles
shown in Fig. 2(d). These three proles are in excellent agree-
ment with the calculated asymptotic prole (see the black
dashed line in Fig. 2(d)). The crossover from the initial regime
to the intermediate asymptotic regime shown in Fig. 4 gives the
Fig. 4 Central height of the small perturbation shown in Fig. 2(a) and
(d) normalized by its initial value as a function of time. The horizontal
dashed line represents the initial value. A power law of t1/4 is fit to the
late time data. In accordance with eqn (10), the convergence time is
defined as the intersection of these two regimes, as indicated by the
vertical dashed line.

8612 | Soft Matter, 2014, 10, 8608–8614
experimentally determined convergence time, tc. From tc, the
non-dimensionalized convergence time, Tc, can be obtained.

The theory predicts a very clear dependence of the dimen-
sionless convergence time, Tc, on M0/D0(0), a measure of the
dimensionless width of the initial prole (see eqn (11)).
In Fig. 5 is plotted the dimensionless convergence time
obtained as in Fig. 4 as a function of M0/D0(0), for seven small
perturbations, as well as four large perturbations. For small
perturbations, we observe excellent agreement between
experiments and the theoretical prediction of eqn (11) with no
tting parameters. We also show the convergence time for the
large perturbation data (see the inset of Fig. 5). However, since
the large perturbations have not fully reached the interme-
diate asymptotic regime, the Tc one obtains by forcing a t�1/4

power law through the latest data point corresponds to a lower
bound. For this reason, the data points provided are shown
with vertical arrows.
5 Conclusions

We have studied, both with theory and experiment, the capil-
lary-driven levelling of an arbitrary surface perturbation on a
thin liquid lm. Using atomic force microscopy and imaging
ellipsometry we follow the evolution of the perturbations and
compare the results to the theoretical predictions of the two-
dimensional capillary-driven thin lm equation. We have
shown that regardless of the initial condition, the perturba-
tions converge to a universal self-similar attractor that is given
by the Green's function of the linear thin lm equation.
Furthermore, we have shown that the time taken to converge
to the attractor depends on the volume of the perturbation. We
measured the convergence time for both small and large
This journal is © The Royal Society of Chemistry 2014
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perturbations and found good agreement between theory and
experiment. Specically, the experimental results are consis-
tent with the theory over two orders of magnitude in the
dimensionless typical width of the initial prole and six orders
of magnitude in dimensionless convergence time, with no free
parameter.
Appendix

We here wish to calculate the integral in eqn (7) in terms of
hypergeometric functions. Performing a Taylor expansion of the
integrand yields:

fðUÞ¼ 1

2p

XN
k¼0

ðiUÞk
k!

�ð
dQQk e�Q4

�
: (12)

At this stage one can see that all terms corresponding to an
odd k ¼ 2p + 1 are null and thus the function f is real.
Furthermore, changing the variables through S ¼ Q4 leads to:

fðUÞ¼ 1

4p

XN
p¼0

ðiUÞ2p
ð2pÞ!

ðN
0

dSSð1þ2 pÞ=4�1 e�S; (13)

where we recognise a G function:

fðUÞ¼ 1

4p

XN
p¼0

ðiUÞ2p
ð2pÞ! G

�
1þ 2p

4

�
: (14)

Then, separating the sum over p in even p ¼ 2m and odd p ¼
2m + 1 terms yields:

fðUÞ ¼ 1

4p

XN
m¼0

U4m

ð4mÞ!G
�
mþ 1

4

�
� U2

4p

X
m¼0

N U4m

ð4mþ 2Þ!G
�
mþ 3

4

�
:

(15)

Developing the G function in terms of Pochhammer rising
factorials G(m + a) ¼ G(a)(a)m where (a)m ¼ a � (a + 1) �.� (a
+ m � 1), and using the relationship G(a + 1) ¼ aG(a) yield:

fðUÞ¼ 1

p
G

�
5

4

�XN
m¼0

U4m

ð4mÞ!
�
1

4

�
m

� U2

4p
G

�
3

4

�XN
m¼0

U4m

ð4mþ 2Þ!
�
3

4

�
m

: (16)

Developing the factorials and rising factorials and proving by
mathematical induction that:

43m
1�5�.� �

1þ 4ðm� 1Þ�
4m�ð4m� 1Þ�.�1

¼ 1

m!

1�
1

2

�
m

�
3

4

�
m

; (17)

and that:

43m
3�7�.��

3þ 4ðm� 1Þ�
ð4mþ 2Þð4mþ 1Þ�.�1

¼ 1

2

1

m!

1�
3

2

�
m

�
5

4

�
m

; (18)
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nally leads to:

fðUÞ¼ 1

p
G

�
5

4

�
0

H2

"�
1

2
;
3

4

�
;

�
U

4

�4
#

�U2

8p
G

�
3

4

�
0

H2

"�
5

4
;
3

2

�
;

�
U

4

�4
#
: (19)

where the (0, 2)-hypergeometric function is dened as:50,51

0H2ðfa; bg;wÞ¼
XN
m¼0

1

ðaÞmðbÞm
wm

m!
: (20)
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Veress, E. Raphaël and J. A. Forrest, Science, 2014, 343,
994–999.

42 M. Rauscher, A. Münch, B. Wagner and R. Blossey, Eur. Phys.
J. E, 2005, 17, 373.

43 A. Münch, B. Wagner, M. Rauscher and R. Blossey, Eur. Phys.
J. E, 2006, 20, 365.

44 M. Benzaquen, T. Salez and E. Raphaël, Europhys. Lett., 2014,
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