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We con¯rm and substantially extend the recent empirical result of Andersen et al.
(Andersen, T. G., O. Bondarenko, A. S. Kyle and A. A. Obizhaeva, 2015, Unpub-
lished), where it is shown that the amount of risk W exchanged in the E-mini S&P
futures market (i.e., price times volume times volatility) scales like the 3/2 power of
the number of trades N . We show that this 3/2-law holds very precisely across 12
futures contracts and 300 single US stocks, and across a wide range of time scales.
However, we ¯nd that the \trading invariant" I ¼ W=N 3=2 proposed by Kyle and
Obizhaeva is in fact quite di®erent for di®erent contracts, in particular, between
futures and single stocks. Our analysis suggests I=C as a more natural candidate,
where C is the average spread cost of a trade, de¯ned as the average of the trade size
times the bid–ask spread. We also establish two more complex scaling laws for the
volatility � and the traded volume V as a function of N , that reveal the existence of a
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characteristic number of trades N0 above which the expected behavior � � ffiffiffiffiffi
N

p
and

V � N hold, but belowwhich strong deviations appear, induced by the size of the tick.

Keywords: Trading invariance; stocks; futures.

1. Introduction

Understanding the dynamics of ¯nancial markets is of obvious importance for

the ¯nancial industry, but also for decision makers, central bankers and

regulators. It is also a formidable intellectual challenge that has attracted the

interest of many academic luminaries, with perhaps Benoit Mandelbrot as a

legendary ¯gure. He was the ¯rst to propose the idea of scaling in this con-

text (Mandelbrot, 1997), a concept that in fact blossomed in statistical

physics before getting acceptance in economics and ¯nance (for a review, see

Gabaix (2009)). In the last 20 years, many interesting scaling laws have been

reported, concerning di®erent aspects of price and volatility dynamics. One

particular question that has been the focus of many studies is the relation

between volatility and trading activity, measured as the number of trades

and/or the volume traded (see e.g., Clark (1973), Tauchen and Pitts (1983),

Jones et al. (1994), Bollerslev and Jubinski (1999), An�e and Geman (2000),

Liesenfeld (2001) and Engle (2000) and more recently Zumbach (2004), Eisler

and Kertecz (2006) and Wyart et al. (2008)). Revisiting these results, Kyle

and Obizhaeva (KO) recently proposed a bold but inspiring hypothesis,

coined as the trading invariance principle.

Their original idea primarily relies on dimensional analysis, which is very

common in physics and states that any \law" relating to di®erent observables

must express one particular dimensionless (or unit-less) combination of these

observables as a function of one or several other such dimensionless combi-

nations. The simplest example might be the ideal gas law that amounts to

realizing that pressure p times volume v has the dimension of an energy.

Hence, pv must be divided by the thermal energy RT of a mole of gas to yield

a dimensionless combination. The right-hand side of the equation must be a

function of other dimensionless variables, but in the case of non-interacting

point-like particles, there is none ��� hence the only possibility is

pv=RT ¼ cst. Deviations from the ideal gas law are only possible because of

the ¯nite radius of the molecules, or the strength of their interaction energy,

that allows one to create other dimensionless combinations (and corre-

spondingly new interesting phenomena such as the liquid–gas transition!).

In the search of an \ideal market law" for stocks, several possible ob-

servable quantities that characterize the trading activity come to mind: the
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total market capitalization M (in dollars), the share price P (in dollars per

share), the square volatility �2 (in %2 per day), the amount traded V (shares

per day), and the volume of individual \bets" Q (in shares).1 Other, more

microstructural quantities might come into play, such as the di®erence be-

tween the best bid and best o®er price, called the spread S (in dollars per

share), the tick size s (in dollars) that ¯xes the smallest possible price change,

the lot size ‘ (in shares) that ¯xes the smallest amount of exchanged shares,

the average volume available at the best quotes, and perhaps other quantities

as well.

KO further postulate the existence of a universal invariant I in dollars that

they interpret as the average \cost" of a single bet, and keep only P; �2;V

and Q as relevant variables. Dimensional analysis then immediately leads to

the following relation:

PQ

I
¼ f

Q�2

V

� �
; ð1Þ

where f is a certain function that cannot be determined on the basis of

dimensional analysis only. At this point, KO (Kyle and Obizhaeva, 2016b)

invoke the Modigliani–Miller theorem and argue that capital restructuring

between debt and equity should keep P � � constant, while not a®ecting the

other variables. This suggests that f ðxÞ � x�1=2, ¯nally leading to the KO

trading invariance principle2:

I ¼ P�Q3=2

V 1=2
:¼ W

N 3=2
; ð2Þ

whereW :¼ PV� is a measure of exchanged risk (precisely the dollar amount

of risk traded per day), also referred to as trading activity by Andersen and

coauthors (Andersen et al., 2015), and N :¼ V=Q represents the number of

bets per day.

This simple scaling relation was empirically con¯rmed by KO using

portfolio transition data (Kyle and Obizhaeva, 2010). Portfolio transitions

correspond to rebalancing decisions by institutional investors, that are then

executed by brokers who collated the corresponding data. However, these

trades only re°ect part of the market activity, and it is furthermore not

obvious that these portfolio transitions can be associated with elementary

bets. Andersen et al. (2015) reformulated KO's invariance principle in a way

1A bet is the ensemble of trades that originate from a single trading decision. It is alternatively
called a \metaorder" in the literature.
2Up to a rede¯nition of I , one can always set f ðxÞ ¼ x�1=2 without any numerical prefactor.
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that can be tested on public trade-by-trade data. Their analysis on the E-mini

S&P 500 futures contract showed that Eq. (2) holds remarkably well at the

single-trade scale. In this context, Q denotes the average volume of trades

and N is the total number of trades within some time interval � (1min in

their analysis). Because the activity of the market has signi¯cant intraday

variability, notably marked by the switching from Asian to European and

American trading hours, N typically varies over almost two decades, indeed

allowing one to test the scaling relation W � N 3=2 quite convincingly (see

Fig. 1).

Such a remarkable empirical result, and its purported universal status,

clearly cries for further scrutiny and interpretation. Indeed, the idea of

Andersen et al. (2015) that the trading invariance hypothesis can be down-

scaled from bets to trades is far from obvious. Although bets are made of a

collection of successive trades, the way in which bets are shredded into trades

signi¯cantly depends on the investor and the market (Kyle et al., 2016; Bae et

al., 2014). The goal of this paper is to dissect the trading invariance hy-

pothesis on a wide range of futures contracts and individual stocks. Equa-

tion (2) can actually be interpreted in di®erent ways, depending on the degree

of universality attached to its validity:

1. No universality: The scaling relation W � N 3=2 (the \3/2-law" hence-

forth) holds for some contracts and some time intervals � (over which W

and N are computed). In the cases where the scaling law holds, the pre-

factor I has a non-universal value (that depends on the contract and/or

on �).

2. Weak universality: The 3/2-law holds for all contracts and some (possibly

all) time intervals � , but with a non-universal value of I .

3. Strong universality: The 3/2-law holds for all contracts and all time

intervals � , with a universal value of I , independent of � and of the

contract type.

The last case might in fact be too strong: it would already be a remarkable

result that I only depends on the contract type (say stocks) and on the

geographical zone (say the US). In fact, from general considerations it would

be very strange that I (in dollars) is completely universal, for one thing

because the value of the dollar itself is time dependent. As we will show in

detail below, our results favor the second interpretation of \weak uni-

versality" where the 3/2-law holds for all contracts, and all time intervals � .

However, the value of I itself varies signi¯cantly, both within the universe of
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US stocks and among the di®erent futures contracts. Furthermore, the sep-

arate analysis of the scaling of � versus N on the one hand and V versus N on

the other (the product of the two essentially leading to the 3/2-law) reveals a

surprisingly rich and universal behavior, and suggests that W � N 3=2 might

only be an approximation.

The outline of the paper is as follows. In Sec. 1, we replicate and con¯rm

Andersen et al.'s results on E-mini S&P 500 futures contract (Andersen et al.,

2015) and extend them to 11 other futures contracts. We show that the 3/2-

law does hold both across time and across contracts, but that the average

value of I (and the whole distribution of I , for that matter) clearly depends

on the considered contract. In Sec. 2, we con¯rm the 3/2-law across a pool of

300 US stocks and show that microstructure e®ects play a much more im-

portant role than in the case of futures contracts. In Sec. 3, we propose a

unifying picture that decomposes the 3/2-law into two more fundamental

scaling laws, that allow us to rescale all futures contracts and all time scales

onto two universal master curves. Similar to the deviations away from the

ideal gas law example alluded to above, our results suggest that additional

microstructural variables must be involved in the search of a relation gen-

eralizing Eq. (1), where the bid–ask spread and the tick size, among other

things, should play an important role ��� like the molecular size in the ideal

gas analogy. In Sec. 4, we suggest an alternative and more natural de¯nition

for trading invariant that accounts for some of the microstructural details

mentioned above.

2. Futures Contracts

We have analyzed tick by tick data for the best bid and o®er of 12 di®erent

futures contracts spanning over three years, from January 2012 to December

2014 (see Table 1). We consider front month contracts only, among which are

three index futures, four energy futures, two agriculture futures, one bond

future, one FX future and one metals future. All contracts are traded basi-

cally 24 h a day, ¯ve days a week, on the CME, NYBOT, NYMEX, ECBOT,

COMEX, ICUS and IPE electronic platforms. Three trading regimes can be

distinguished corresponding respectively to Asian, European and American

regular trading hours. At variance with the analysis of Andersen et al. (2015),

we do not discard any time intervals from our study since we found that doing

so did not signi¯cantly change the results.

For each contract, we group the trades by market time stamp, under the

assumption that simultaneous trades correspond to a market order

Unravelling the Trading Invariance Hypothesis

1650009-5



originating from a single participant. We then compute trading volume V ,

number of trades N , average trade size Q ¼ V=N and average price P within

each 1min bin (� ¼ 1 min). We also compute the volatility �, from the

average of 10 s squared returns. At variance with Andersen and coauthors

(Andersen et al., 2015), we do not annualize our volatilities. Average values of

these quantities for � ¼ 1 min, as well as average volume at the bid and the

ask and average spread, are provided in Table 1. Note that throughout the

paper, we will elicit power-laws by considering linear regression of log

quantities (for example logW versus logN). Consistent with this procedure,

averages shall be de¯ned with respect to the log-transform, and we will write

hXi :¼ exp½EðlogXÞ�.
Following the method of Andersen to test the intraday trading invariance

hypothesis, we ¯rst average over all days the logarithm of the aforementioned

quantities, for each ¯xed 1min bin. The latter averaging operator shall be

noted h : ibin. Note that taking the logarithm prior to averaging dampens the

in°uence of outliers and leads to a robust estimate of the \typical value" of

these quantities. The linear regression of hlogW ibin versus hlogNibin is dis-

played in Fig. 1 and Table 1, and indeed con¯rms the 3/2-law for all 12

contracts independently. However, the conjecture that the quantity

I ¼ WN �3=2 ��� which visually corresponds to the y-intercept of the linear

regressions shown in Fig. 1 ��� is invariant across di®erent contracts is clearly

rejected (see Table 1). The top right inset of Fig. 2 displays hI i for the 12

Table 1. Summary table for 12 futures contracts. Values are computed in 1min bins. The
average spread and volatility are given in units of tick, the trade size is given in number of
contracts, the volume is given in contracts per unit time. The \invariant" I ¼ PV�=N 3=2 is
given in dollars. All averages are de¯ned as hXi :¼ exp½EðlogXÞ�.

Name hSpreadi hNi hQi hV i hPi h�i hVbidi hVaski � hI i �

TBOND 1.007 18 10.8 191 140960 1.22 206.1 206.5 1.58 98.0 2.49
SPMINI 1.011 45 11.2 499 81025 1.46 183.8 185.4 1.50 30.5 2.51
EUR 1.021 22 4.1 89 163831 1.70 33.9 33.7 1.52 18.6 2.26
NSDQMINI 1.120 17 2.8 47 58969 2.04 11.9 12.0 1.56 7.0 2.18
DJMINI 1.157 13 2.5 33 73777 1.98 9.8 9.8 1.53 6.7 2.33
CRUDE0 1.227 21 2.2 48 94290 2.50 6.4 6.4 1.55 12.0 1.37
GOLD0 1.323 21 2.2 45 153092 2.61 4.6 4.6 1.58 12.5 1.63
NCOFFEE0 2.066 6 2.0 12 59407 1.57 3.1 3.0 1.66 24.7 1.52
WTICRUDE0 2.258 9 1.8 17 94520 2.71 5.2 5.1 1.52 16.5 1.41
NCOTTON0 3.628 5 2.0 10 40375 2.38 2.5 2.5 1.47 10.9 1.64
HEATOIL0 4.950 9 1.7 15 122626 6.56 2.0 2.0 1.48 15.6 1.62
RBGASOL0 6.052 9 1.7 15 116292 7.49 1.8 1.8 1.46 18.1 1.61
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futures contracts sorted by spread over tick, and shows that hI i varies by a

factor & 10 across di®erent contracts.

For robustness, we checked that the above results also stand on sub-

intervals of one year of the full period 2012–2014. In particular, we observe

that the variations of hI i across contracts (more than a factor 10) are much

larger than the variations from one year to the next for a given contract

(around � 20%). The role of the bin size � is also very interesting. Averaging

over 1, 5 and 10min bins across days shows consistent results. The analysis on

longer time scales (30min, 1 and 2 h bins), however, shows a slight but sys-

tematic underestimation of the predicted 3/2 slope of hlogW ibin versus

hlogNibin which disappears when the volatility estimator based on 10 s

squared returns is replaced by the Rogers–Satchell volatility estimator

(Rogers and Satchell, 1991), known to be more adequate when the underlying

follows a geometric Brownian motion with an unknown drift. Note that the

Rogers–Satchell estimator measures zero volatility whenever the open price

matches the high/low and the close price matches the low/high, which are

not rare events for small bin sizes. Enforcing that the volatility must be non-

vanishing leads to discarding a substantial fraction of the data at high

Fig. 1. (Color online) Scatter plot of hlog10W ibin versus hlog10Nibin for 12 di®erent futures
contract sorted by spread over tick values from cold (large ticks) to warm colors (small ticks).
The inset shows the slopes � obtained from linear regression of the data, which are all clustered
around 3=2. Spread over tick values as well as the slopes � are provided in Table 1.
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frequencies. However, we checked that removing the zero volatility intervals

has no material impact on the results. In the following, we shall thus con-

sistently use the Rogers–Satchell estimator to compute the volatility.3 The

conclusion of our analysis is that the 3/2-law holds across all futures contracts

and across all time intervals � . Figure 3 displays a plot of the average I

rescaled by the average trade cost C, de¯ned as the product of the spread S (in

dollars per share) and the trade sizeQ (in shares), a choice that will be further

motivated in Sec. 4. At this point, one should note that (a) I=C is now a

dimensionless quantity of order unity, and (b) I=C appears to be signi¯cantly

more stable across assets than I itself (see Fig. 3).

Finally, the trading invariance hypothesis ��� in its strongest version ���
states that the full probability distribution of I ¼ W=N 3=2 (and not only its

average value) should be invariant across time and across contracts. To test

this point, we have computed the complementary cumulative distribution

Fig. 2. (Color online) Rescaled complementary cumulative distribution function of I ¼
WN �3=2 for 12 di®erent futures contracts sorted by spread over tick values from cold (large
ticks) to warm colors (small ticks). The insets show the average values of I (in dollars) and the
tail exponents computed according to the Hill estimator with a cuto® at PðI > xÞ ¼ 10�2.
Spread over tick values as well as the average values and tail exponents are provided in
Table 1.

3We have in fact checked that other estimators based on the open, high, low, close prices lead
to very similar results.
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function PðI > xÞ for the 12 futures contracts (see Fig. 2). For the sake of

readability, the main plot of Fig. 2 displays these distributions with the x-axis

rescaled by x0:001 de¯ned by PðI > x0:001Þ ¼ 10�3. As one can see, the tail of

the distributions is close to a power-law. The tail exponent � ��� de¯ned as

PðI > xÞ � x�� ��� however varies signi¯cantly from � � 2:5 for the larger

tick futures to � � 1:5 for the smaller tick futures. Tail exponents were

computed using the Hill estimator with a cuto® at PðI > xÞ ¼ 10�2.4 The

values of the tail exponents are provided in Table 1.

The conclusions so far are thus:

1. We fully con¯rm the 3/2-law found by Andersen et al. (2015) on the

E-mini S&P futures on 1-min intervals;

4The Hill estimator (1975) allows to compute the tail behavior of a distribution. De¯ning the
tail exponent � as PðX > xÞ � x��, one has � ¼ ½1k � k�1

i¼0 logðXi=XkÞ��1 where k denotes the
rank of the cuto®.

Fig. 3. Plot of hI i=hSQi where S denotes the spread (in dollars per share) and Q denotes the
trade size (in shares) computed at the daily scale as a function of bin size � (in min) for 12
di®erent futures contracts. Note that this ratio is nearly � -independent. The inset shows
hI i=hSQi at � ¼ 120 min sorted by spread over tick values, which is now constant to within a
factor 3 (compare to the top right inset of Fig. 2). The light gray markers have been computed
using the implicit spread as introduced by Dayri and Rosenbaum (see Dayri and Rosenbaum,
2015). The latter (based on the ratio of the number of alternations and continuations, thus
accounting for mean reversion e®ects) was shown to be a more relevant parameter for large
tick assets, for which the e®ective spread is almost always equal to one tick.
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2. The 3/2-law holds surprisingly accurately for all contracts and all time

intervals;

3. The \invariant" I is in fact not universal: both its average value and the

shape of its distribution function depends quite signi¯cantly on the chosen

contract. However, I for a given contract is to a good approximation

�-independent.

We now extend our analysis to a much wider sample of single stocks, and ¯nd

that the above conclusions are indeed vindicated.

3. US Stocks

Our analysis is conducted on a pool of 300 US stocks, chosen to be as rep-

resentative as possible in terms of market capitalization and tick size. Note

that the large number of assets ��� and their diversity ��� allows for great

statistical signi¯cance. We consider 5min bins using trades and quotes data

from January 2012 to December 2012, extracted from the primary market of

each stock (NYSE/NASDAQ). We remove auction time intervals, as well as

30min after the opening and before the closing of the market, so as to avoid

any artefact due to these speci¯c trading periods. To compute the volatility,

we again use the Rogers–Satchell estimator for which only the high, low, open

and close prices are needed (Rogers and Satchell, 1991). The average values of

N , Q, V and � are provided in Table 2 for a random selection of 12 stocks

within the pool.

Table 2. Summary table for a random subset of 12 stocks and Applied Materials
Inc. (used in Fig. 9(a)). Values are computed in 5min bins. Units are identical to
those of Table 1. All averages are de¯ned as hXi :¼ exp½EðlogXÞ�.

Name hSpreadi hNi hQi hV i hPi h�i � hI i �

YHOO UQ 1.006 68 325.2 22025 16.0 1.28 1.55 0.51 3.67
EBAY UQ 1.097 124 153.4 19045 41.9 4.00 1.58 0.55 4.26
WMI UN 1.099 21 249.3 5146 33.6 2.05 1.53 1.13 3.56
PG UN 1.172 43 280.9 12057 66.1 3.18 1.52 1.37 3.42
FE UN 1.335 21 187.8 3888 44.9 2.60 1.50 1.07 3.98
FAST UQ 1.574 35 117.4 4133 44.9 3.66 1.53 0.72 4.17
DISCA UQ 1.923 26 111.5 2853 52.5 3.45 1.53 0.76 3.89
ZMH UN 2.204 17 148.0 2490 62.6 3.72 1.58 1.34 3.70
MON UN 2.628 30 153.5 4577 82.7 6.06 1.54 1.70 3.95
MGA UN 3.319 11 132.1 1508 43.1 3.63 1.53 1.42 3.58
ALXN UQ 5.568 24 110.5 2628 93.5 7.85 1.54 1.78 3.47
MARY UQ 7.613 13 126.9 1679 58.1 6.82 1.56 2.38 3.57
AMAT UQ 1.003 55 338.6 18535 11.4 1.10 1.49 0.51 3.20
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As in the previous section, we perform a linear regression of logW versus

logN for each stock. Figure 4 is analogous to Fig. 1, only here we do not

compute the average of the bins across days as was done in the previous

section. This is due to the fact that, unlike futures, the stocks we consider are

exclusively traded during American hours and thus lack the \three-con-

tinent" seasonality of the futures. Proceeding as suggested by Andersen et al.

for futures would thus signi¯cantly reduce the range of possible values of

V ;Q;N and �, thereby degrading the determination of the slopes of the ¯ts.

For the sake of readability, Fig. 4 shows a centered rolling average along

logN , with window size of 100 data points. However, all regressions were

performed before the rolling average. For the 300 stocks, a cross-sectional

determination of the slope yields � ¼ 1:54� 0:11, where the uncertainty here

is the root mean square cross-sectional dispersion. This is again in very good

agreement with the prediction � ¼ 3=2, thereby considerably bolstering the

results of the previous section. We also checked that these results hold un-

changed for lower frequencies, and in particular at daily time scales � ¼ 6 h.

Fig. 4. (Color online) Centred rolling average (window size = 100) of the scatter plot of
log10W versus log10N for a random subset of 12 di®erent stocks chosen from a pool of 300 US
stocks sorted by spread over tick values from cold (large ticks) to warm colors (small ticks).
The inset shows the slopes obtained from linear regression of the data (before performing the
rolling average). Spread over tick values as well as the slopes � obtained from the linear
regressions are provided in Table 2.
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Figure 5 displays the average values of I (computed using � ¼ 5 min) as

well as the tail exponents � of the complementary cumulative probability

distributions for 300 stocks, sorted by spread over tick from left to right. The

typical value of I for the stocks is on average one order of magnitude smaller

than for futures ��� i.e., the \bet sizes" are smaller in dollars on individual

stocks than on futures, which is not very surprising. The main plot reveals a

striking feature: the appearance of two distinct branches in the larger ticks

region. The higher branch presents an intriguing U-shape, somewhat similar

to what was observed for futures contracts, while the lower branch is con-

sistent with a nearly linear dependence on the average spread. Remarkably,

the two branches correspond chie°y to stocks traded on the NYSE (upper

branch) and NASDAQ (lower branch) platforms. For better readability,

NASDAQ stocks are represented by crosses while NYSE stocks appear as

¯lled circles. Several points could actually explain this di®erence ���
although our understanding of this e®ect is only partial. For example, a

Fig. 5. (Color online) Main plot: average value of I (in dollars) at � ¼ 120 min for 300 US
stocks sorted by spread over tick values from cold (large ticks) to warm colors (small ticks).
NASDAQ/NYSE stocks are marked with crosses/¯lled circles respectively. Top left inset:
average value hI i as a function of average trade cost C ¼ hSQi (in dollars). Top right inset: tail
exponents � of the complementary cumulative probability distributions PðI > xÞ � x��.
Numerical values of hI i as well as tail exponents are provided in Table 2 for a random subset of
12 stocks.
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non-negligible fraction of the trades on NASDAQ happens within the spread

(hidden trades), a particularity that would naturally a®ect the dynamics of

large tick stocks and leave unaltered the small tick stocks. It is also known

that fees/rebates are slightly higher on NASDAQ than on NYSE. We no-

ticed that the main di®erence actually lies in the trade size, which appear to

be on average smaller on NASDAQ than on NYSE for the large tick stocks

(in some sense, one could say that the large ticks on NASDAQ have a small

tick behavior, consistent with the possibility of having trades within the

spread).

The latter point in fact suggests that the average trade size should also

be taken into consideration when it comes to the quest of a universal market

invariant. Quite remarkably, the two-branch structure nearly disappears

when hI i is plotted against average trade cost C ¼ hSQi, in addition to

revealing a roughly linear dependence (see top left inset of Fig. 5, and the

last section below for a quantitative interpretation). Moreover, the average

rescaled invariant equals 0:86� 0:54, where the uncertainty re°ects the root

mean square cross-sectional dispersion is now of the same order than the

corresponding value for futures (0:30� 0:09, see Fig. 3). As was the case for

futures contracts, the distributions of I have power-law tails with tail

exponents °uctuating around � � 4, but with no particular tick depen-

dence. The values of � for 12 randomly chosen stocks can be found in

Table 2.

4. Theoretical Analysis

We now turn to a theoretical analysis of the above results with the aim of

gaining a better understanding of the 3/2 scaling law, observed both on

futures contracts and on single stocks. In most of this section, we rede¯ne the

trading activity as eW ¼ V� without the price P which is irrelevant for the

points we want to make. The role of the price will be discussed in the next

section.

We ¯rst propose a very simple argument that suggests to decompose the

N -dependence of the trading activity eW into two parts, one coming from the

N -dependence of � and the other coming from the N -dependence of V . This

decomposition reveals a much more subtle picture, where neither � nor V

behaves as naively expected, but the product of the two indeed scales ap-

proximately as N 3=2. Most of this section is about futures, for which the story

is surprisingly complex, whereas stocks behave more trivially and are dis-

cussed at the end.
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4.1. A naive argument

If one assumes that there is a well-de¯ned average trading frequency � (de-

¯ned as the number of trades per unit time) and a well-de¯ned average trade

size Q0, then after time � , one expects the following two relations:

N ¼ �� � ; V ¼ Q0 � N : ð3Þ
Since the (log)-price is close to a random walk, one should also have

� ¼ &0
ffiffiffi
�

p
:¼ &0ffiffiffi

�
p ffiffiffiffiffi

N
p

; ð4Þ

where &0 is a constant which, according to Wyart et al. (2008), is proportional

to the spread S . Hence,

eW ¼ V� ¼ &0Q0ffiffiffi
�

p N 3=2 / Q0SN
3=2: ð5Þ

This appears to fully explain the 3/2 scaling law, which would then be an

almost trivial observation. Although this will indeed turn out to be the correct

mechanism for individual stocks, futures contracts reveal a much more in-

tricate story, at least for large ticks and small time intervals � ��� more pre-

cisely when the volatility on scale � is small compared to the tick size s.

4.2. A more complex picture

We ¯rst analyze independently the above two scaling laws (� � ffiffiffiffiffi
N

p
, V � N)

on our pool of 12 futures contracts. We focus ¯rst on � = 5min bins, a good

trade-o® between high frequency and noise. The insets of Figs. 6(a) and 6(b)

show the exponents obtained by a power-law ¯t of h�2=Nibin versus hNibin
(the so-called signature plot) and hQibin versus hNibin, respectively. As can be

seen in these ¯gures, small tick futures are indeed consistent with the

expected � � ffiffiffiffiffi
N

p
and V � N behavior. For the large tick futures, one rather

¯nds � � N � and V � N �, with � < 1=2 and � > 1, suggesting of (i) a sub-

di®usive price dynamics and (ii) an e®ective average trade size that increases

with N . The rather puzzling fact, however, is that the two exponents appear

to conspire to give � þ � � 3=2 such that the scaling eW � N 3=2 indeed holds

regardless of tick size.

4.3. Delayed di®usion for large ticks

A sub-di®usive behavior for large tick contracts is in fact expected at short

times because a continuous random walk Bð�Þ that is constrained to take
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integer values ½Bð�Þ� ¼ n � s (where n is an integer and s the tick size) can

easily be shown to °uctuate as � 1=4 when � is small (instead of the usual
ffiffiffi
�

p
behavior). Furthermore, one expects a large amount of microstructural high

frequency noise on the price when the tick is large. A simple way to account

(a)

(b)

Fig. 6. Data for 12 futures contracts at high frequency (5min bins). (a) Rescaled signature
plot obtained by ¯tting h�2=Nibin against hNibin as given by Eq. (6), with a ¼ 0:5. (b)
Rescaled average trade size obtained by ¯tting Eq. (7) with � ¼ 0:54 to the data, as a function
of hNibin=N0. (c) Rescaled plot of h~I ibin=I0 against hNibin=N0, resulting from (a) and (b), and
consistent with Eq. (8). The values of N0, �0 and Q0 are reported in Table 3. The insets of plots
(a) and (b) display the slopes obtained from linear regression of h�2=Nibin and hQibin against
hNibin, respectively, for each of the 12 futures contracts at hand.
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for these two e®ects is to postulate the following e®ective di®usion law5:

� ¼ �0 a þ N

N0

� � 1
2 þ N

N0

" # 1
2

; ð6Þ

where a accounts for the high-frequency noise and N0 is a characteristic

number of trades such that the usual random walk behavior is expected for

N � N0. One expects that N ¼ N0 roughly corresponds to a one tick move,

so that �0 should be of order s and, correspondingly, a of order unity (since

the amount of microstructural noise should be set by the tick size). The

parameters N0 and �0 are to be ¯tted to the data for each contract. We will

see below that these expectations are indeed con¯rmed by the data (see

Table 3). Note that for large ticks and small trade sizes, one has N0 � 1 and a

very wide region where the anomalous sub-di®usion law N 1=4 holds. In the

other limit N0 . 1, the di®usive regime is almost immediately reached.

4.4. Master curves for volatility and volumes

Now, as shown in Fig. 6(a), the signature plots of all our futures contracts can

be quite convincingly rescaled on a unique master curve given by Eq. (6),

with appropriately chosen values of �0 and N0 that are reported in Table 3.

(c)

Fig. 6. (Continued)

5For an inspiring approach of the price dynamics of large tick assets, see a recent paper by
Dayri and Rosenbaum (2015). Their analysis might shed light on the results discussed here.
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We ¯xed a ¼ 0:5 for all contracts, consistent with an overall goodness of ¯t

when considering the 12 futures together. As expected, �0 is indeed found to

be of the order of the tick size.

We now turn to the e®ective trade size Q ¼ V=N , which can be similarly

rescaled on a unique master curve by the following formula ��� see Fig. 6(b):

Q ¼ Q0 1þ N

N0

� ���
� ��1

; ð7Þ

where the value of N0 is ¯xed, contract by contract, to the very value favored

by the rescaling of the signature plot. The only free parameters are Q0

(reported in Table 3), and the exponent � � 0:54, determined by the mini-

mization of the overall error function of the aggregated data from all the

futures. Note that Q0 is the asymptotic value (for large N) of the average

volume per trade. Figure 7 displaysQ0 against the average volume at the bid/

ask Vbest ¼ ðVbid þ VaskÞ=2. As expected, Q0 � Vbest for small tick stocks, but

grows sub-linearly for large tick stocks where trades only represent a smaller

and smaller fraction of the available volume.

4.5. Deviations from the 3/2-law

We have shown that the deviations from simple di®usion and naive additivity

of trade sizes can be rationalized by two more sophisticated scaling laws,

Eqs. (6) and (7), leading to two universal master curves. Combining these

Table 3. Values of N0, �0 (in ticks), Q0 obtained by ¯tting the data of 12
futures (with � ¼ 5min) to Eqs. (6) and (7) (see Fig. 6), I0 ¼ Q0�0=

ffiffiffiffiffiffi
N0

p
as

well as Vbest ¼ ðVbid þ VaskÞ=2. Averages are de¯ned as hXi :¼
exp½EðlogXÞ�.

Name hSpreadi N0 �0 Q0 I0 hVbesti
TBOND 1.008 177.63 1.23 35.18 3.25 224.6
SPMINI 1.012 156.88 1.34 24.77 2.65 190.3
EUR 1.022 40.06 1.26 7.18 1.43 35.3
NSDQMINI 1.130 8.07 0.98 4.16 1.44 12.7
DJMINI 1.171 4.71 0.84 3.40 1.31 10.4
CRUDE0 1.242 5.85 1.08 3.06 1.36 6.8
GOLD0 1.340 4.46 0.99 2.79 1.31 4.9
NCOFFEE0 2.143 20.16 1.87 4.32 1.80 3.3
WTICRUDE0 2.304 45.17 2.78 4.24 1.75 5.6
NCOTTON0 3.819 2.16 1.25 3.01 2.56 2.8
HEATOIL0 5.092 0.08 0.51 1.80 3.28 2.1
RBGASOL0 6.253 0.07 0.55 1.86 3.78 1.9
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two laws and letting n ¼ N=N0 and I0 ¼ Q0�0=
ffiffiffiffiffiffi
N0

p
, allows one to writeeW

N 3=2
¼ ~I ¼ I0

an�1 þ n�1=2 þ 1
� �

1=2

1þ n��
: ð8Þ

Equation (8) o®ers a quantitative unifying picture of the above observation

that � þ � � 3=2 regardless of tick size. Note that for N � N0, ~I ! I0 (such

that I0 can be seen as the asymptotic trading invariant at large N), while for

N � N0, ~I ! I0a n
��1=2 which is also nearly constant when � � 1=2.

Therefore, our scaling analysis suggests that eWN �3=2 has in fact a residual N

dependence. Figure 6(c) displays a plot of h~I ibin=I0 against hNibin=N0,

showing that the data can be rescaled onto a single master curve, as given by

Eq. (8), and indeed revealing a small, but signi¯cant variation with N .

4.6. Time rescaling

Equation (6) describes the crossover between a sub-di®usive regime for small

N and a purely di®usive regime at large N , and was calibrated on di®erent

contracts for the same bin size � ¼ 5min. If our line of reasoning is correct,

the very same rescaling should hold when focusing on a given contract but

letting � vary, in such a way that N=N0 itself increases. This assumption is

indeed in agreement with the data on all futures contracts. For the sake of

clarity, we only show data for the SPMINI contract ��� but other contracts

behave similarly. We considered � ¼ 1min, 5min, 10min, 25min, 1 h and 2 h,

Fig. 7. Plot of Q0 - as obtained from ¯tting Eq. (7) to the data - as a function of average
volume at the bid/ask (see Table 3), for 12 futures contracts.
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and set N0 to the value obtained in the previous paragraph for 5min bins.

Figure 8 displays plots analogous to those of Fig. 6, but for the SPMINI

contract across the di®erent sampling frequencies. As one can see, our extend

scaling hypothesis allows one to explain both the variations across contracts

for a given � and across time intervals (see Table 4 for the values of �0,Q0, I0).

The scaling exponents of �ðNÞ and V ðNÞ do converge to their natural values

(a)

(b)

Fig. 8. Figure analogous to Fig. 6, only for the SPMINI futures contract at di®erent sampling
frequencies: � ¼ 1min, 5min, 10min, 25min, 1 h and 2 h bins. The value of N0 has been set to
that measured on 5min bins. The values of �0 and Q0 are left free but are found to be roughly
constant across sampling frequencies (see Table 4). The mild increase of I with � (bottom
graph) should be compared to the results shown in Fig. 3.
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(1=2 and 1) as N becomes much larger than N0. However, the fact that

Eqs. (6) and (7) hold for all � explains why ~I=I0 varies mildly with � , as Fig. 3

above also demonstrated.

4.7. Naive scaling for single stocks

We now test the naive scalings � � ffiffiffiffiffi
N

p
and V � N for � ¼ 5 min by

regressing log� and logQ versus logN for each of the 300 stocks individually.

Keeping with the notations introduced above, we ¯nd that the slopes � and �

of these regressions show no signi¯cant systematic dependence on the tick

size. A cross-sectional determination of these two exponents yields � ¼
0:51� 0:06 and � ¼ 1:04� 0:07, where the uncertainty again re°ects the root

(c)

Fig. 8. (Continued)

Table 4. Values of �0 (in ticks) and Q0 obtained
by ¯tting the data of the SPMINI at di®erent
sampling frequencies to Eqs. (6) and (7) (see
Fig. 8), and I0 ¼ Q0�0=

ffiffiffiffiffiffi
N0

p
.

Binsize �0 Q0 I0

1min 1.21 33.80 3.27
5min 1.34 24.77 2.65
10min 1.45 21.98 2.54
25min 1.64 19.14 2.51
1 h 1.83 16.93 2.47
2 h 1.94 15.91 2.46
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mean square cross-sectional dispersion. At the daily time-scale, one has

equivalently � ¼ 0:54� 0:10 and � ¼ 1:02� 0:12. Therefore, for all time

scales � 	 5 min, one can assume that the natural asymptotic scaling holds

for all stocks, which trivially leads to the 3/2-law.

(a)

(b)

Fig. 9. Signature scatter plot for (a) our largest tick stock (Applied Materials Inc, see
Table 2) and (b) our largest tick future (TBOND) computed with all 5min bin data. The black
line represents an average on consecutive log-spaced bins, and the color code indicates the
density of data. This graph shows that discretization e®ects are much larger for the TBOND
than for Applied Materials Inc.
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Still, it is surprising that the deviation from � � ffiffiffiffiffi
N

p
, clearly observed for

futures, does not seem to be present for stocks. In order to understand this

di®erence, we display in Fig. 9 the scatter plot �2=N versus N for both our

largest tick future (TBOND) and our largest tick stock (Applied Materials

Inc, see Table 2). The black line represents an average on consecutive log-

spaced bins. As one can see, while for the future the average slope of the black

line is consistent with the sub-di®usive behavior discussed above, this is not

the case for the stock which is on average rather °at in the region where most

points are found.

This e®ect can actually be attributed to the fact that futures are traded on

three di®erent time zones, so that 5min bins where trading is slow (i.e., N

small compared to N0) are much more represented in the data than for stocks.

The latter are indeed only active on American regular trading hours for which

periods of very low activity are much rarer.6 Therefore, the regression slope �

for futures is expected to be more sensitive to sub-di®usive e®ects. Further-

more, the volatility of single stocks is a factor 2–4 smaller than the volatility

of large tick futures, meaning that for the same relative tick size, dis-

cretization e®ects are expected to be smaller for stocks. In this sense, large

tick futures have a \larger tick" than large tick stocks!

5. Prices, Spreads and a New De¯nition of the Trading Invariant

As noted in Fig. 3 and the top left inset of Fig. 5, the quantity I=C where

C ¼ hSQi appears to be more universal across assets than I itself, both for

futures and for stocks. The microstructural quantity hSQi, where S and Q,

respectively, denote the spread (in dollars per share) and trade size (in

shares), corresponds to the average cost of trading. As a matter of fact, there

is a direct element supporting that the spread should be included in the

discussion. Indeed, the theory presented in Wyart et al. (2008), based on zero

marginal pro¯ts for market makers, see also Madhavan et al. (1997), predicts

that for small tick contracts, �ðNÞ ¼ cS
ffiffiffiffiffi
N

p
, where S is the spread and c a

numerical constant of order unity. Such a prediction was found to be very

accurately obeyed by data, see Wyart et al. (2008). These observations

naturally lead to a slightly amended de¯nition of the trading invariant, that

has the additional virtue of leading to a unit-less quantity, at variance with

6Note that we only have 5min binned data for stocks, preventing us to zoom on shorter time
intervals � for which the sub-di®usive behavior for large ticks should eventually show up.
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KO's de¯nition where the invariant has dollar units. Our proposal, inspired

from Eq. (5), is thus to consider the quantity I , de¯ned as

I ¼ PV�

CN 3=2
; C ¼ hSQi; ð9Þ

where both the price and the spread are expressed in dollars per share, and

C is the average spread cost, a concept actually at the very basis of the

original trading invariant proposed by Kyle and coauthors. The quantity I
is clearly less scattered across contracts than I itself, in particular when

using the implicit spread (see Fig. 3). Actually, I is of order unity for both

individual stocks and futures, which is quite remarkable in view of the

strong di®erences between these asset classes. In any case, we ¯nd it much

more convincing to de¯ne a unit-less quantity as a plausible candidate for a

genuine market invariant or quasi-invariant, in a sense we discuss now.

6. Conclusion

Let us summarize what we have achieved in this work:

. The most important result, to our eyes, is the 3/2-law, stating that the

amount of risk W exchanged in markets (i.e., price times volume times

volatility) scales like the 3/2 power of the number of trades N . We have

shown that this holds very precisely across all 12 futures contracts and

300 single stocks, and across all times scales � , thereby considerably

extending the results obtained by Andersen et al. (2015) on the E-mini

S&P futures.

. The second result is that the trading invariant I ¼ W=N 3=2 proposed by

KO is in fact quite di®erent for di®erent contracts, in particular, between

futures and single stocks. Furthermore, this quantity has dollar units,

which makes its invariance property dubious. On the basis of a combina-

tion of dimensional, theoretical and empirical arguments, we have proposed

that a more natural candidate should rather be I ¼ I=C, where C is the

average (spread) cost of a trade. In fact, this rescaling is in line with KO's

initial intuition that I should be related to the cost of a \bet".

. Third, we have unveiled two remarkable master curves for the volatility �

and the traded volume V as a function of N , in the case of large tick futures

contracts. We have argued for the existence of a characteristic number of

trades N0 above which the naively expected behavior � � ffiffiffiffiffi
N

p
and V � N

hold, but below which strong deviations appear, induced by the size of the

tick.
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A synthetic way to summarize all our ¯ndings is to generalize and amend the

dimensional analysis formula, Eq. (1), as

PQ

C ¼ fasset
Q�2

V
;
P�

ffiffiffi
�

p
s

� �
; ð10Þ

where the left-hand side is dimensionless. The function fasset now depends on

the asset class (futures versus stocks) as well as on a second dimensionless

argument which involves the time interval � and the tick size s. For large

enough � , or small enough s, one expects this dependence to disappear, i.e.,

f ðx; y ! 1Þ ¼ x�1=2 leading back to KO's hypothesis (up to the presence of

the spread S , rather than I , in the left-hand side). In the other limit,

f ðx; y ! 0Þ, could, in principle, behave very di®erently, but our detailed

analysis above has revealed that f ðx; yÞ remains close to x�1=2, with only a

weak dependence on the second argument ��� see again Fig. 6(c). In other

words, the 3/2-law holds much beyond the regime y � 1, where it is expected

on the basis of naive scaling. We do not have, at this stage, a detailed un-

derstanding of whether this is merely coincidental, or whether there is a

deeper principle enforcing this property. We leave this as an open question for

future work.
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