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Abstract. The vast majority of market impact studies assess each product 
individually, and the interactions between the different order flows are 
disregarded. This strong approximation may lead to an underestimation of 
trading costs and possible contagion effects. Transactions in fact mediate 
a significant part of the correlation between different instruments. In turn, 
liquidity shares the sectorial structure of market correlations, which can be 
encoded as a set of eigenvalues and eigenvectors. We introduce a multivariate 
linear propagator model that successfully describes such a structure, and 
accounts for a significant fraction of the covariance of stock returns. We dissect 
the various dynamical mechanisms that contribute to the joint dynamics of 
assets. We also define two simplified models with substantially less parameters 
in order to reduce overfitting, and show that they have superior out-of-sample 
performance.
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Price impact in financial markets—the effect of transactions on the observed market 
price—is of both scientific and practical relevance [1]. A long series of studies has 
concentrated on its various aspects in the past decades [2–9]. The metrics used in this 
body of work are usually calculated individually on each product, and possibly aver-
aged across them afterwards. The interactions between their order flows are typically 
disregarded. This is a very strong approximation, given that a financial instrument is 
rarely traded on its own. Most investors construct diversified portfolios by buying and 
selling tens or even hundreds of assets at the same time. Some of these might be simi-
lar, or even almost equivalent to each other (companies in the same industrial sector, 
dual-listed shares, etc). In these cases it is immediately clear that to treat each of them 
separately is not justified, and often an underestimation of impact costs. Intuition tells 
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us that in two related products the order flow of one of them may reveal information, 
or communicate excess supply/demand regarding the other. How important are such 
effects, both qualitatively and quantitatively?

The ‘self-impact’ of a product’s order flow on its own price, as studied in the lit-
erature, is an important component of price dynamics. In comparison, is ‘cross-impact’ 
a detectable effect? If it is, is it strong enough to significantly contribute to cross-
correlations between stocks? This question was already raised in the seminal work of 
Hasbrouck and Seppi [10]. It is particularly interesting, because in spite of the impor-
tance of cross-correlations in risk management, their microstructural origin is not clear. 
Many partial, competing explanations exist, for a review of recent economics literature 
on the subject see in [11]. When choosing their quotes, liquidity providers use correla-
tion models calibrated from real data. It would thus be a circular argument to fully 
ascribe such correlations to market makers’ quote adjustments. A dynamical explana-
tion is more plausible. When two stocks get out of line relative to one another, liquidity 
takers may also act on such a mispricing. As they consume liquidity, market makers 
adjust their pricing to avoid building up a large inventory: this is price impact. As the 
relative price reaches a (temporary) market consensus order flows become balanced. 
Several structural, equilibrium theories exist with such dynamics, but the underlying 
models often have many parameters which cannot be directly fitted to data. Only the 
qualitative predictions can be observed, which are nevertheless very important for 
practical purposes [12].

In this paper we argue in favor of such a dynamical picture, where transactions 
mediate a significant part of the interaction between different instruments, and price 
impact is an integral part of price formation. We will demonstrate quantitatively that 
correlations and liquidity are intertwined. Wang et al [13, 14] revisit the evidence for 
cross-impact by analyzing the cross-correlation structure of price changes and order 
flows. Our study complements such a perspective by focusing on the underlying inter-
actions rather than on correlations. Based on a variant of the well-known propagator 
technique [6], calibrated on anonymous data, we will show that liquidity displays a 
sectorial structure related to the one of market correlations, that we will be able to 
describe through decomposition in eigenvalues and eigenvectors. This is in the spirit of 
the principal component analysis approach advocated in [10], and the analysis of [12] 
from an econometric point of view.

For the sake of simplicity we will use here the language of stocks, and we will in fact 
limit our datasets to these. However, the techniques introduced below can be applied 
to many other markets. Moreover, note that we focus here on the impact of the aggre-
gated order flow, rather than the one of a meta-order (a sequence of trades in the same 
direction submitted by the same actor). Even though the propagator formalism that 
we employ is known to predict inaccurately the impact of a meta-order, it still provides 
qualitatively reliable estimates of market impact [15]. Thus, we believe that the cross-
interaction network that we find should generalize to the meta-order case as well, at 
least to a good approximation.

The paper is structured as follows. Section 2 introduces basic notations and our 
dataset. Section 3 defines a few fundamental quantities related to returns and price 
impact, and summarizes that main stylized facts that we observe. Section 4 provides 
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a non-parametric multivariate propagator model, which is then fitted to the data. 
Section 5 analyzes simpler, lower-dimensional models that can more efficiently capture 
the structure of cross-impact; and compares their in-sample and out-of-sample perfor-
mance. Finally, section 6 concludes.

2. Data and notations

We conduct our empirical analysis on a pool of N  =  275 US stocks as representative 
as possible in terms of liquidity, market capitalisation and tick size. The large number 
of assets and their diversity ensures strong statistical significance of our conclusions, 
and allows us to investigate the scaling of our results when the number of products 
becomes large. The data consists of five-minute binned trades and quotes information 
from January 2012 to December 2012, extracted from the primary market of each stock 
(NASDAQ or NYSE). Furthermore, we only focus on the continuous trading session, 
removing systematically the first hour after the open and the last 30 min before the 
close. In this way we avoid artifacts arising from the particularities of trading activity 
in these periods. Out-of-sample tests will be carried out on an equivalent dataset from 
2013.

For each five-minute window whose end point is t and for each asset i, we com-
pute the log-return x X Xt

i
t
i

t
i

1= − − , where X plogt
i

t
i=  and where pt

i denotes the price 
of stock i at time t. In addition, we compute the trade imbalance n nt

i
t
i

t
i,buy ,sellε = − , 

where nt
i,buy sell/  denotes respectively the number of buyer- and seller-initiated market 

orders of stock i in bin t. We choose this proxy for volume imbalance because the strong 
fluctuations in the size of the trades are only moderately compensated by the extra 
information that they provide [4, 6].

We normalise xt
i and t

iε  by their standard deviation computed over the entire trad-
ing period. As a result, both time series display zero mean and unit variance. This 
choice of normalisation has the benefit of making the problem extensive in the following 
sense: For any linear model that one infers (such as the one presented in section 4.1), 
the results obtained for a larger bin size (say, one hour) can always be recovered from 
the results obtained at a finer scale. Moreover, extensivity allows the predictions of 
the model not to depend on the estimation of the local normalization. One does not 
need to build estimators for volatility and volume in the next five-minute bin in order 
to exploit these results. This would not have been the case had we used a local nor-
malization for the fluctuations of the returns and the volumes. Still, we have checked 
that the choice of a local normalization, while spoiling extensivity, yields qualitatively 
similar results.

Also note that we have chosen to use real time to measure t as opposed to count-
ing it on a trade-by-trade basis. This is because in the regime of large N that we 
consider, there would be too many trades, and our dataset would become unmanage-
able [13, 14]. Finally, the choice of a five-minute bin size allows us to abstract away 
from microstructure effects which are not the subject of the present mesoscopic study. 
All along this manuscript time shall be seen as dimensionless, five minutes being the 
time unit.

https://doi.org/10.1088/1742-5468/aa53f7
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3. Market impact and price fluctuations

In this section, we define the multivariate correlation functions relevant to the problem 
at hand, and investigate their relations.

3.1. The correlation structure of returns

The covariance matrix of returns is one of the central objects in quantitative finance, 
and is of paramount importance in a number of applications such as portfolio con-
struction and risk management [16, 17]. Let us recall first some of its most prominent 
properties.

We denote by ijΣτ the return covariance of contracts i and j at scale τ, defined as

[( )( )]EΣ = − −τ τ τ+ +X X X X .ij
t
i

t
i

t
j

t
j

 (1)

Figure 1(a) displays a plot of the mean diagonal N i
iidiag 1Σ = ∑ Στ τ

−  and off-diagonal 

N N i j
ijoff 2 1( )Σ = − ∑ Στ τ

−
≠  return covariances rescaled by τ. As one can see, the diago-

nal terms of the return covariance matrix are on average a factor 5∼  larger than the 
off-diagonal ones. Microstructural effects are almost absent in ijΣτ even at 1τ = : we 
only observe a weak decrease of the variance at short lags in the signature plot, and 
the ratio between covariance and variance—that determines the so-called Epps effect 
[18, 19]—is almost flat in τ. This is consistent with the absence of statistical arbitrage 
price, because the time scale for these arbitrage effects is nowadays expected to be well 
below the five-minute time scale [20–22]. Finally, one can define the customary return 
correlation matrix as ij ii jj 1 2( ) /Σ Σ Στ τ τ

− .
Figure 2(a) displays a representation of ijΣτ at 1τ =  from which we subtracted its 

mean ( 0.21≈ ) for better readability, and in which the contracts have been sorted by 
industrial sector, as indicated by the labels. As one can see, ijΣτ displays a strong secto-
rial structure, in line with previous studies [23–25]. The behaviour of the covariance 
matrix is best understood in its eigenbasis. Indeed, ijΣτ is a real symmetric matrix, so it 
be diagonalised as

Figure 1. Plots of average diagonal and off-diagonal (a) returns covariance (see 
equation (1)), (b) sign covariance (see equation (4)), and (c) response function (see 
equation (5)). The dashed lines for the response indicate the prediction of the 
model at negative lags.

https://doi.org/10.1088/1742-5468/aa53f7
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O O .ij

a

ia a ja∑Σ = Λτ τ τ τ (2)

Oia
τ  is an orthogonal matrix, its columns correspond to the eigenvectors of ijΣτ, and aΛτ is 

a vector made of the corresponding eigenvalues. Figure 2(b) displays the histogram of 
the eigenvalues aΛτ at 1τ = . We have assessed their stability by verifying that a τΛ ∝τ , as 
it was the case for the average quantities displayed in figure 1(a). Interestingly, we find 
the eigenvectors Oia to be stable in time, indicating that the directional structure of 
the market is consistent across scales ranging from some minutes to one day, while its 
associated fluctuations increase linearly1. The value of the largest eigenvalue 621

0Λ ≈ , 
indicates that N 23%1

0/Λ ≈  of the total variance of the system can be explained by this 
mode, in good agreement with [10]. Often referred to as the market mode, it corre-
sponds to a collective—and rather homogeneous—mode, as can be seen in figure 2(c). 
The next few modes after the market mode, individually, explain a considerably smaller 
part of the variance. Their structure supports an economic interpretation in terms of 
industrial sectors (see figure 2(c) and [23]). The subsequent modes fall into a noise band 
that is roughly described by a Marčenko-Pastur distribution [27, 28] (see red curve on 
figure 2(b)), due to the fact that the number of stocks is of the same order of magnitude 
as the number of observations, making it impossible to obtain a statistically accurate 
estimation of all the modes.

Figure 2. (a) Plot of the returns covariance matrix Στ
ij at lag τ = 1. (b) Histogram 

of eigenvalues of Σij
1 . (c) Composition of the eigenvectors (weights per sector). 

(d)–(f) Same plots for the sign covariance matrix τCij.

1 This however does not mean that there is no intraday seasonality in the correlation structure, see [26].

https://doi.org/10.1088/1742-5468/aa53f7
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3.2. The correlation structure of the trade signs

In order to investigate the relation between returns and trade sign imbalance, it is 
natural to define a covariance matrix for the signs, and to compare its structure with 
the one built out of the returns. Accordingly, we define the lagged covariance of signs as

c .ij
t
i

t
j[ ]ε ε=τ τ+E (3)

Its behaviour is radically different from that of returns. While returns are uncor-
related ( ij τΣ ∼τ  after a few trades) compatible with statistical efficiency of prices, signs 
are well known to be long-range correlated, as cij τ∼τ γ−  with 0.5γ∼  (see the appendix). 
This result stems from the fact that in limit order markets investors split their trading 
decisions into smaller pieces in order to avoid excessive costs, because instantaneously 
available liquidity at the best quotes is small [7], much smaller than the daily volume. 
This yields the famous anomalous response puzzle [6]: Prices are diffusive despite being 
driven by trades which themselves are superdiffusive.

A well-known solution to this problem is that of the linear propagator model (or, 
equivalently, the surprise model), postulating that trades in the most probable direc-
tion impact the price less than those in the unexpected one [1, 6, 7, 29]. While this 
model has been thoroughly explored in one dimension (with extensions to multi-order 
types, [8, 30, 31]), its richer multi-dimensional counterpart has not been fully con-
sidered yet. A multivariate framework allows us to precisely formulate a number of 
questions that are central to our study, and that cannot be addressed in a one-dimen-
sional setting. What is the role of the trade sign process in shaping the cross-sectional 
structure of the return correlations? Is there such a thing as a market mode for trade 
signs? Are there liquidity sectors? In order to push this parallel further, it is useful to 
define the equal-time covariance Cij

τ of the cumulated trade sign process, which is akin 
to ijΣτ , defined as

Figure 3. (a) Plot of the mean diagonal and off-diagonal propagators. (b) 
Corresponding histogram of fitted slopes β, as given by equation (9).

https://doi.org/10.1088/1742-5468/aa53f7
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C ,ij
t
i

t
i

t
j

t
j[( )( )]= − −τ τ τ+ +E E E EE (4)

where the t
iε  are the analogue of the ‘returns’ for t

iE : t
i

t
i

t
i

1ε = − −E E . Figure 1(b) displays 
a plot of the mean diagonal C diag

τ  and off-diagonal C off
τ  sign covariances rescaled by τ. 

Similarly to iiΣτ, the diagonal terms are on average larger than the off-diagonal ones, 
only this time by a factor 30∼ . After a short sublinear regime, the results show super-
linear time dependence at large t, consistent with the long-range correlation of signs for 
a single asset. Figure 2 shows that, in contrast with the covariance of prices, the cova-
riance of signs displays no or very weak sectorial structure. Although the first mode of 
the sign covariance also corresponds to a market mode (delocalized and rather homo-
geneous), it is weaker. Additionally, one has a small number of ‘sectorial’ modes out of 
the noise band [32], that even in this case are coherent in time, showing a time-overlap 
close to 1. Despite this, only the sign market mode is aligned with the market mode of 
returns. All the other modes show surprisingly small overlap with their return counter-
parts (see figure 7(b) for a quantitative discussion on the fraction of common modes).

3.3. Price response

Do trades shape the return covariance matrix? Or does it result from other mechanisms 
such such as quote revisions, that do not involve trading volume? In order to address 
such questions, one needs to look into yet another quantity, the market response Rij

τ 
defined as:

R X X .ij
t
i

t
i

t
j[( ) ]ε= −τ τ+E (5)

This measures the average price change of contract i at time t τ+ , after experiencing a 
sign imbalance t

jε  in contract j at time t. Figure 1(b) displays a plot of the mean diagonal 
Rdiag
τ  and off-diagonal Roff

τ  responses. The diagonal terms are on average larger than the 
off-diagonal ones by a factor 5∼ . This is consistent with the ratio of the corresponding 
diagonal/off-diagonal factors for the price and sign covariances, and with the results 
of [13, 14]. The response at positive times is roughly constant, consistently with the 
hypothesis of a statistically efficient price. In other words, the current sign does not pre-
dict future returns. The behavior at negative lag indicates that the current return allows 
some prediction of the sign imbalance, an effect that has been extensively investigated in 
[31, 33]2. It is worth mentioning that, other than the expected amplitude difference, the 
off-diagonal response shows the same temporal behaviour as its diagonal counterpart.

4. A simple model for cross-impact

In this section, we present and analyse the implications of the multivariate propagator 
model, which shall allow us to explain within a coherent framework the stylised facts 
discussed above.

2 We will disregard in the following the behavior of returns at negative lags, and only focus on the positive part of 
the curve, equivalent to assuming no price-sign correlation, that is approximately correct for small tick stocks, and 
breaks down at high frequency and for large tick stocks due to microstructural effects [31, 33, 34].

https://doi.org/10.1088/1742-5468/aa53f7
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4.1. The multivariate propagator model

As we shall see the simplest linear model (i) describing the cross-sectional structure of 
covariance matrices, (ii) accounting for their dynamical structure, and (iii) assuming future 
signs are weakly affected by recent past returns, is the multivariate propagator model:

X X G W .t
i i

j t

t

t t
ij

t
j

t
i

0
1

∑ ∑ ε= + +
=

−
′

′ ′ (6)

This expresses the price variations of contract i as a linear regression on the past sign 
imbalances of all assets j. The matrix Gij

τ is customarily called the propagator, as it 
describes the effect of the trade sign imbalance of contract j at time t on the price of 
contract i at time t τ+ 3. The quantities Wt

i are defined by w W Wt
i

t
i

t
i

1= − − , where the 
wt

i are i.i.d. idiosyncratic noises with zero mean and covariance matrix given by

w w ,t
i

t
j

W
ij

t t[ ] σ δ= −′ ′E (7)

so that the covariance of the process Wt
i is linear in time, and is given by

W W W W .W
ij

t
i

t
i

t
j

t
j

W
ij

, [( )( )] σ τΣ = − − =τ τ τ+ +E (8)
Since we consider a setting in which tε  is a stationary process, and both Gτ and the cor-
relations of tε  decay to zero at large lags, it’s straightforward to check that the model 
defined by (6) converges to a stationary state at large times. Accordingly, the main 
text will always refer to the value of the observables C, Σ and R computed under the 
stationary measure of the process [ ]!E . In the calibration of the process we will also 
assume stationarity to hold, by imposing time-translational invariance for the correla-
tions of tε  (see the appendix).

We have fitted the propagator matrix Gij
τ from data. Figure 3(a) displays a plot 

of the mean diagonal Gdiag
τ  and off-diagonal Goff

τ  propagators that we have obtained 
under a non-parametric inversion of the model (See also section 5 for a comparison of 
the different inversion techniques that we have adopted.). The diagonal terms are on 
average larger than the off-diagonal ones by a factor 50∼ , see figure 3(a). Both are 
consistent with a power-law decay in time, as expected from the one-dimensional case. 
Figure 3(b) shows fluctuations in the plot, while the slope of the diagonal components 
is rather well defined, that of the off-diagonal presents large fluctuations. However such 
fluctuations average away, as they seem to be structureless. More precisely, despite the 
large difference in magnitude between the diagonal and the off-diagonal entries of Gij

τ, 
they are both compatible with a power-law decay:

3 Note that the model is self-consistent, in the sense that artificially splitting the same contract i in two fully 

 correlated instruments i1 and i2 yields a completely equivalent dynamics for the returns =X Xt
i

t
i1 2 under any trans-

formation of the type i i i1 2ε ε ε= + , provided that = = =G G G Gi i i i i i i i1 1 1 2 2 1 2 2, G Gi j i j1 2=  and =G Gji ji1 2 for all j. This 

is due to our choice of extensive units for the volume. Because of our requirement of unit variance for the series of 

xt
i and εt

i, in order to obtain consistency one obviously has to reintegrate units back into the problem. We believe 

this self-consistency condition to be a necessary requirement for any satisfactory model for cross-impact.

https://doi.org/10.1088/1742-5468/aa53f7
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G G 1 .ij ij

0

⎛
⎝⎜

⎞
⎠⎟
τ
τ

= +τ

β−

 (9)

This constitutes a factorized model in which the temporal and cross-sectional parts 
are separated, and as we shall see this will facilitate the analysis by reducing the 
dimensionality of the problem. Fitting equation (9) to the diagonal and off-diagonal 
data yields 0.14diagβ = , 0.09offβ = , 0.300

diagτ =  and 0.320
offτ = . Figure 4(a) displays a 

plot of Gij from which we subtracted its mean for better readability, and in which the 
stocks have been sorted by industrial sector, as indicated by the labels. As one can see, 
Gij displays a stronger sectorial structure4 than Ct

ij.
In order to address this issue more quantitatively, we introduce the singular-value 

decomposition of Gij, defined as [10]
G U S V .ij

a

ia a ja∑=
 (10)

Uia and Via are real orthogonal matrices, the columns of which correspond to the left/
right singular vectors of Gij, and where Sa is a vector made of the corresponding singu-
lar values. The interpretation of the decomposition is straightforward: For a given a the 
value Sa is the increase of a linear combination Uia of stock prices after the combina-
tion of trades Via. Figure 4(b) displays the histogram of singular values Sa. Figure 4(b) 
shows, among other things, that a market-neutral net imbalance has a smaller impact 
on prices than a directional one. In fact, due to U V Ni i0 0 1 2/≈ ≈ −  (see the inset of 

Figure 4. (a) Plot the propagator matrix Gij as obtained from the factorised 
scheme. (b) Histogram of singular values and composition of the ground singular 
vectors.

4 Also note the presence of vertical stripes in figure 4(b), indicating that—while the choice of the standard devia-
tion of returns for normalizing returns allows to obtain a homogeneous rows—using the standard deviation at 
t  =  1 for the signs is not the best choice to obtain a uniform Gij. Of course, this feature can be reabsorbed through 
a suitable definition of the units of εt

i.

https://doi.org/10.1088/1742-5468/aa53f7
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figure 4(b)), trading one standard deviation of the imbalance of the market mode costs 
roughly three standard deviations of its price, while all the other modes have a consis-
tently smaller impact.

4.2. Response function and price covariation

Having found the propagator, we can investigate the interplay of Gij
τ with Cij

τ in shap-
ing the response function and return correlation. In particular, within the propagator 
model one finds:

R G c G G c ,ij

k

ik kj ik ik kj

0

1

( )
⎡
⎣⎢

⎤
⎦⎥∑ ∑ ∑= + −τ

τ

τ

τ τ τ
τ τ

τ τ τ τ τ
=

−

−
=

∞

− −
′

′ ′
′

′ ′ ′ (11)

and:

,ij
G
ij

W
ij

, ,Σ = Σ + Στ τ τ (12)
where:

G c G G c G G
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=
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=
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=

∞
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=

∞

− − −

′
′ ′

′
′ ′

′
′ ′ ′

 
(13)

This is an extension of the result found in [6, 12] in a linear equilibrium setting. The 

time-behavior of the first term G
ij

,Σ τ captures the dynamics of the model, that is very sim-
ilar to the one found in the one-dimensional model. In that case, even if at large times 
c τ∼τ γ−  with 0.5γ≈ , the long range dependence of the resulting propagator G τ∼τ β−  

Figure 5. Plot of the fraction of explained diagonal and off-diagonal covariance as 
given by equation (12) as a function of the lag. The solid lines were obtained by 
extrapolating the sign correlation to infinity while the dotted lines are the result 
of truncating the past to a maximum lag equal to T  =  30.
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with 0.25β≈  is able to compensate the long-range dependence of the imbalances and 
restore the diffusivity of price, which indeed requires 1 2( )/β γ= −  [1, 6]. In this more 
general setting, as the time behavior of the model is found to be well-described by the 

factorized model (9), we are offered the same solution to reconcile the behavior of sign 

and return correlations. With these definitions, G
ij

,Σ τ denotes the part of the return cova-
riance explained by the impact of transactions, while W

ij
,Σ τ stands for its unexplained 

component, for example due to news. Figure 5 displays the fraction of explained diago-
nal and off-diagonal covariance, which appears to increase with the lag. Interestingly, 
one can see that while only 25≈ –35% of the diagonal variance can be explained by 
impact5, this figure rises to 60≈ –90% for its off-diagonal counterpart, meaning that the 
propagator model is more efficient to explain the covariance than it is to account for 
the variance. It is also interesting to mention that the propagator model is successful in 
reproducing the sectorial structure of the covariance matrix. For a visual interpretation, 
figure 6 displays plots of the three matrices that appear in equation (12).

In order to assess whether the propagator model helps in understanding the direc-
tion of the risk modes of the market (and in particular, the composition of the sectors), 
we raise the following question: does G

ij
,Σ τ explain more of the price covariance structure 

than the sign covariance Cτ alone? To answer this quantitatively we compare the over-
lap of the eigenvectors of Στ with those of G,Σ τ and with those of Cτ.

More precisely, if we denote the eigenvectors of these matrices by U U, CΣ  and U GΣ , we 
have computed the overlap matrices U UT

CΣ  (see figure 7(a)) and U UT
GΣ Σ  (see figure 7(b)). 

As one can see with the naked eye, the eigenmodes of Στ have significantly larger over-
lap with G,Σ τ than there is with Cτ. Figure 7(c) displays a plot that captures quanti-
tatively the latter statement and is constructed as follows: (i) we crop each of the 
overlap matrices at n N1,[[ ]]∈ , (ii) compute their singular values wa a n1,{ } [[ ]]∈  and sort 
them in decreasing order (the inset shows the singular value spectra at n  =  50), and (iii) 

Figure 6. Plot of (a) the returns covariance matrix, (b) Σ τG
ij

, , and (c) Σ τW
ij

, , at lag 
τ = 1 (see equation (12)). Note that the matrices have been substracted of their 
mean for better visibility of their structure.

5 Note that this number is significantly smaller than the 60–70% fraction quoted in [8, 30] is probably related to low 
 frequency nature of the 5 min binned data used in the present study.
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compute the so-called fraction of common modes wa
n

a
n

1
1( ) /∏ =  and plot it as a function of 

n. The dashed black line corresponds to the theoretical expectation for the noise level 
[32]. This measure represents the volume of the common subspace spanned by the first 
n eigenvectors, and is a very strict measure of similarity, which is why the results in 
figure 7(c) are rather remarkable: one sees that the directional structure of the return 
covariance matrix can be predicted rather well using trade signs only.

4.3. Direct and cross-impact

A lot of the covariance and part of the variance come from impact, but how to measure 
the direct influence of impact versus its cross-sectional component? For the response 
Rij
τ and covariance G

ij
,Σ τ, one can simply use the following relations, which we have writ-

ten in a diagrammatic way for the sake of readability. Note that the time structure 
has been omitted but can be easily recovered as each of the following terms has the 
temporal structure given in equations (11) and (13). Red and blue filled circle signify 
returns and signs respectively. Empty circles imply exclusive sum over the products. 
Solid arrows represent propagators and dashed lines stand for sign correlations.

Figure 7. Plot of the overlap of eigen-rotation matrices of the returns covariance 

matrix with (a) Σ τG
ij

,  (see equation (12)) green, and (b) the sign covariance matrix 

τCij, orange. (c) Plot of the fraction of common modes as defined in the text.
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Below each term, we have indicated its relative contribution to the average self/cross-
response/covariance. The interpretation of each term in the response is as follows:

 a1 Self-response via direct impact. This is the classical term considered in most 
works on impact: trading in product i impacts the price of i itself.

 a2 Self-response mediated by cross-trading and cross-impact. This term is induced 
by the order flow on all the stocks k that are correlated to i. This causes market 
makers to include this extra information in their price for i.

 b1 Cross-response mediated by cross-trading and direct impact. The mechanism is 
similar to a1, except that the order flow on j now induces an imbalance on i, 
that translates into a price change via direct impact.

 b2 Cross-response mediated by direct trading and cross-impact. Here the market 
markers react to the order flow on j by updating their quotes on product i.

 b3 Cross-response market mediated by cross-trading and cross-impact. Trading in a 
stock j is correlated with a large number of other stocks k. The market maker 
observes the order flow all of those, and adjusts his quote of i based on this 
aggregate information.

Regarding the average weights of the different terms, it is interesting to notice that 
while most of the self-response can be explained through direct impact, this is no lon-
ger the case for the cross-response. For the latter, the dominating mechanism is b3, 
implying that most of the cross-response is mediated by delocalized modes (such as the 
market mode, or large sectors). This is one of the central messages of this paper. Note 
that the same story can be told for the returns covariance with similar conclusions for 
the off-diagonal contribution.

4.4. Finite size scaling

As the main goal of this study is the characterization of the interactions among a large 
number of stocks, the fact that we only consider a sample of 275 instruments (whereas 
the US stock market amounts to several thousands of them), might seem restrictive. 
Such a relatively smaller sample implies that the order flow for all those missing prod-
ucts is—to us—unobserved, even though the interaction (C and G) between stocks is 
on average positive. This may therefore lead to an overestimation of the magnitude of 
the propagators, which would then depend on system size.

In order to empirically verify this effect, we have fitted a factorized model as in 
equation (9) on many random subsets of stocks of variable size N. One would naively 
expect that the typical strength of direct impact propagators (Gij with i  =  j) is roughly 
constant regardless of N. On the other hand, cross propagators (i j≠ ) are expected to 
decrease as N−1 or faster, in order to avoid that their contribution ends up dominating 
over direct impact when N → ∞.

The results are shown in figure 8. We can see that indeed Gij
i j=  decreases only very 

slightly with N (fitting it to k N1 1ν−  yields k1  =  0.36 and 0.041ν = ), while we get an excel-

lent fit of cross terms by G k 1ij
i j

N

N2

1

2
( )= +≠

−
, with k2  =  0.06 and N2  =  24 (see dashed 

lines in figure 8). This suggests a total asymptotic contribution of the off-diagonal propa-
gators equal to k N 1.52 2 ≈ , to be compared to an average diagonal contribution of 0.3≈ .
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We have also made a fit on the average of off-diagonal elements, conditioned such 

that i and j are in the same sector s: G k 1ij
i j i j

N

N;s s 3
3

3( )( ) ( ) = +
ν

≠ =

−
 gives k3  =  0.078, 

N3  =  10.4 and 0.543ν = . Pairwise cross-impact is naturally stronger in this case than 
between two randomly selected stocks, since they are more likely to have a high cor-
relation. Nevertheless, understanding how 3ν  should behave is more delicate, as it 
requires estimating how the sizes of the sectors themselves scale with N. The analysis 
of the higher order momenta of the propagator ( ) ≠Gij q

i j with q  >  1 reveals that local-
ized modes, whose interaction amplitude does not depends on the number of assets in 
the pool, also exist.

5. Estimators of G: structure and statistical significance

5.1. The models

The model defined in equation (6) is a very general object, that is described by a propa-
gator Gij

τ of dimension N T2 × , plus a covariance matrix W
ijσ  of dimension N(N  +  1)/2. 

Such an abundance of parameters results in the impossibility to estimate reliably the 
individual entries of Gij

τ with the data in our possession. Only the aggregated statistics of 
Gij
τ have been found statistically significant, see figure 4 and table 1 below. We have thus 

decided to use a fully non-parametric estimation only in order to extract the main quali-
tative features of data. In order to estimate the interaction strengths Gij and investigate 
their structure in a more robust fashion, we have considered lower dimensional models.

More precisely, we have used three models in order to fit the propagators and we 
have compared their performance:

Figure 8. Plot of the mean diagonal (Gdiag) and off-diagonal (Goff) propagators, as 
well as the mean of the off-diagonal elements where the traded and the impacted 
stock belong to the same sector ( ∗Goff ). All curves are computed for N stocks, as a 
function of N, and each data point results from the average of 103 random bootstrap 
subsamples for each of which we perform cross-sectional propagator inversions.
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Fully non-parametric The most general propagator model is specified the 
N 2T  +  N(N  +  1)/2 parameters defining equation (6). This corresponds to the 
absence of any prior about the structure of the Gij

τ.

Factorized A simpler model is obtained under the assumption G Gij ijφ=τ τ, where 
φτ given by equation (9). The dimensionality of the model is then reduced to 
N 2  +  N(N  +  1)/2  +  T.

Homogeneous The simplest non-trivial linear model for cross-impact is obtained by 
assuming

G G G1 ,ij ij ijdiag off( )δ δ= + − (14)

1 ,W
ij ij

W
ij

W
diag off( )σ δ σ δ σ= + − (15)

 so as to capture a single collective mode of the return covariance, accounting for 
global market moves. The dimensionality of the model in this case is 4  +  T. The 
estimators for this model are reported in the appendix, and yield G 0.29diag =  and 
G 0.0046off = , consistent with the average diagonal and off-diagonal values of the 
previous model (see appendix 6.2).

All these models can be calibrated by minimizing their negative log-likelihood under 
a Gaussian assumption for the residuals wt

i:

T
w wln

2
ln det

1

2
,W

i j t
t
i

t
j

W

ij

, ,

1( )∑σ σ− = + −L (16)

allowing us to compute estimators for both the propagators Gij
τ and the residual covari-

ance matrix W
ijσ 6. In this way, the estimated covariance matrix of the residual Wˆ ( )σ  itself 

can be used in order to build metrics for the quality of the fit, and check how well the 
results generalize out-of-sample.

5.2. Discussion

The effort of fitting the different models described above can be justified by two different 
perspectives. On the one hand from the statistical point of view, it is desirable to avoid 
overfitting, so to have a robust model that generalizes well out-of-sample. This enables 

Table 1. Table of scores for the three models described in section 5.

In-sample (2012) Out-of-sample (2013)
Model Rdiag Roff R Lln Rdiag Roff R Lln

Non-parametric 0.437 0.185 0.466 2.08 1.312 1.187
Factorised 0.748 0.374 0.744 0.79 0.454 0.762
Homogeneous 0.819 0.484 0.841 0.786 0.628 0.81

6 Note that the Gaussian assumption can be relaxed, as the generalized method of moments employed for example 
in [6, 8, 29] yields the same estimators that we have derived. Nevertheless, we choose the Gaussian assumption for 
the residuals in order to have closed-form results for the residuals and the likelihood function.
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us to predict the future covariation of prices given the imbalances. On the other hand, 
from the informational point of view, one might prefer to compress the structure of 
the interaction in a small number of informative param eters, rather than dealing with 
a larger set of more anonymous coefficients. In order to quantitatively address these 
points, we have chosen to inspect the behavior of the residuals and of the likelihoods 
in all the three models, by defining three types of scores. The first two scores assess 
how well one is able to describe the fluctuations along the diagonal and the off-diagonal 
parts of the return covariance matrix (thus, they specify particular axes of the matrix 

W( )σ  in which we are interested):

N

1
,i W

ii

i
ii

i
W
iidiag

0

ˆ ˆ∑
σ
σ

σ=
∑
∑

=R (17)

.
i j W

ij

i j
ij

off

0

σ̂

σ
=

∑ | |

∑ | |
≠

≠
R (18)

Alternatively, the likelihood function automatically considers the fluctuations along 
the eigenmodes of W( )σ , as its value is uniquely fixed by the eigenvalues of the residual 
covariance:

NT N

ln 1

2
1

1
log det .W

ln ˆ⎜ ⎟⎛
⎝

⎞
⎠σ= − = −R

LL
 (19)

Table 1 compares these scores for an in-sample period (2012) and an out-of-sample one 
(2013), in order to assess how well the model generalizes to yet unseen data. Note that 
the in-sample scores are consistent with the results of figure 5 at lag 1τ = , indicating 
that the metrics that we have chosen provide a very conservative estimate of the model 
performance due to the increase of the predictive power with lag. We find that:

 • All the in-sample scores improve by increasing the complexity of the models, as 
expected due to the fact that the models are nested. On the contrary, the good 
in-sample performance of the fully non-parametric model does not generalize 
out-of-sample. The scores displayed by the lower dimensional models are roughly 
the same in and out-of-sample, thus validating the practical use of the factorized 
and homogeneous propagator models.

 • The quality in the reconstruction of the covariance of returns, measured by offR , 
is better than the one of the variance. While the factorized model explains around 
20% of the variance, it accounts for more than 50% of the covariance. This is 
compatible with the findings of [10] using a model with purely permanent impact.

 • While both the factorized model and the homogeneous one have good out-of-
sample performance, it is interesting to notice that the factorized model has a 
consistently better offR  score. This is consistent with our previous results (see 
figure 7), indicating that the directional structure of the matrix Gij is statistically 
significant, and allows one to explain a consistent part of the return covariation.
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The good out-of-sample performance also indicates that heterogeneities in the temporal 
behaviour of the propagator discussed in section 4.1 are weak enough for these models 
to generalize well across years.

6. Conclusions

The treatment of cross-impact in the existing literature has been scarce at best [10, 
12–14], despite its importance—in our opinion—to correctly estimate the liquidation 
costs of a diversified portfolio. In this work we have attempted to give a more complete 
picture of such effects by decomposing them using a simple, linear propagator approach. 
Our dynamical model explains rather well the off-diagonal elements of the correlation 
matrix, which makes us conclude that to a large extent, cross-correlations between 
different stocks are mediated by trades. Market makers/HFT liquidity providers learn 
from correlated order flow on multiple instruments, and adjust their prices at a port-
folio level. This allows them to better adapt to global movements in the market, and 
to reduce the amount of adverse selection they are faced with. Such an observation is 
underpinned by the good fit of our homogeneous model, where each stock reacts to the 
total, net order flow of the others. This focus of market makers/HFT on their net inven-
tory is consistent with the idea that being uniformly long or short across stocks is much 
more risky than to be long-short by the same gross amount in a diversified fashion.

In the present study we took an empirical, descriptive point of view regarding price 
reaction and market maker behavior. In particular, we have disregarded the strong 
implications that these results have in the context of optimal execution, that will be 
the object of a forthcoming paper [35].
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Appendix. Models

It is important to mention that while the results in this paper are presented with inte-
grated response functions Rij

τ and propagators Gij
τ, all propagator inversions have been 

done with differential response functions rij
τ. This is consistent with the idea that such 

quantities have a decaying asymptotic behaviour in contrast with their integrated 
counterparts and thus suffer less from the cut-off effect [30, 36]. The integrated propa-

gator was then computed by using the relation G gij ij
1= ∑τ τ

τ
τ=′ ′. Figure A1 displays the 

diagonal and off-diagonal means of the lagged sign correlation function, the lagged 
return correlation function and the differential response function.
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A.1. Fully non-parametric model

The maximization of the likelihood function (16) of the model in the fully non-paramet-
ric case yields a well-known matrix equation for the propagator:

r g c ,ij

k

T
ik kj

0

1

,ˆ ˆ ˆ∑ ∑=τ
τ

τ τ τ
=

−

′
′ ′

 

(A.1)

that is defined in terms of the (biased) estimators for, respectively, the differential 
response and the sign correlation:

r
T

x t t
1ij

t t

T

t
i

t
j

, 1

ˆ ( )∑ ε δ τ= − −′τ
=′

′

 

(A.2)
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t t t t
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.ij

t t t

T

t
i

t
j

,
, , 1

ˆ ( ) ( )∑ ″ε ε δ τ δ τ= − − − −′ ′
″

″τ τ
=

′
′

′ (A.3)

In order to reduce noise and facilitate matrix inversion, we’ve assume stationarity, so 
that we define the following stationary estimator for the sign correlation, in which we 
enforce a Toeplitz structure:

c
T

t t
1

.ij

t t

T

t
i

t
j

, 1

ˆ ( )∑ ε ε δ τ= − −′τ τ−
=

′
′

′ (A.4)

so that equation (A.1) becomes a simpler convolution. The estimator of the residuals is 
also straightforward to compute:

T
w w

1
.W

ij

t

T

t
i

t
j

1

ˆ ∑σ =
=

 (A.5)

Figure A1. Plot of the diagonal (a) and off-diagonal (b) means of the lagged sign 
correlation function, the returns lagged correlation function and the differential 
response function.
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The total number of parameters to estimate under this method is N(N  +  1)/2  +  N 2T, 
while the computational bottleneck results from the inversion of the block-Toeplitz 
matrix cij

τ appearing in equation (A.5).

A.2. Factorized model

The assumption of a propagator of the form

G G ,ij ijφ=τ τ (A.6)
where φτ is given by equation (9), results in a simpler estimation of N 2  +  T param-
eters for the kernel and N(N  +  1)/2 parameters for the residuals. The estimator for the 
propagator is found by solving:

G A B ,
ij T 1ˆ ( )= − (A.7)

where one has preliminarily defined:

A Rij ijˆ∑ φ=
τ

τ τ (A.8)

B c ,ij ij

,

ˆ∑ φ φ=
τ τ

τ τ τ τ−
′

′ ′ (A.9)

whereas the estimator of the variance is given by the earlier expression (A.5).

A.3. The homogeneous model

The estimator for the propagator reads:

G
N

A

B
N

A A

B B

1
1 ,

diag
M

M

M I

M I
ˆ ( )

⎛
⎝⎜

⎞
⎠⎟= + − −

− (A.10)

G
N

A

B

A A

B B

1
,

off
M

M

M I

M I
ˆ ⎛

⎝⎜
⎞
⎠⎟= − −

− (A.11)

where one has preliminarily defined the market (M) and idiosyncratic (I) means:

A A
N

A
1

,ij

ij

ijM
2

[ ] ∑= =E (A.12)

A A
A

N

Tr
,iiI [ ] [ ]= =E (A.13)

and equivalently for BM and BI. The estimator of the variance is given by (we give the 
inverse of the estimator for simplicity):

N
N

1
1 ,W

1,diag M I( ˆ ) ( ( ) )σ λ λ= + −−
 (A.14)
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N

1
.W

1,off M I( ˆ ) ( )σ λ λ= −−
 (A.15)

We have also introduced:

N

A

B

1
,M

0

M2

M

1

[ ]
⎡
⎣⎢

⎤
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