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Using a large database of 8 million institutional trades executed in the U.S. equity market, we establish a
clear crossover between a linear market impact regime and a square-root regime as a function of the volume
of the order. Our empirical results are remarkably well explained by a recently proposed dynamical theory
of liquidity that makes specific predictions about the scaling function describing this crossover. Allowing at
least two characteristic timescales for the liquidity (“fast” and “slow”) enables one to reach quantitative
agreement with the data.
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Financial markets sputter enormous amounts of data that
can now be used to test scientific theories at levels of
precision comparable to those achieved in physical sciences
(see, e.g., Ref. [1] for a recent example). Among the most
remarkable empirical findings in the last decades is the
“square-root impact law,” which quantifies how much
prices are affected, on average, by large buy or sell orders,
usually executed as a succession of smaller trades. Such a
succession of small trades, all executed in the same
direction (either buys or sells) and originating from the
same market participant, is called ametaorder. A metaorder
of total size Q impacts the price as ∼

ffiffiffiffi
Q

p
and not propor-

tionally to Q as naively expected and actually predicted by
classical economics arguments [2]. The square-root law is
surprisingly universal: it is found to be to a large degree
independent of details such as the asset class, time period,
execution style, and market venues [3–14]. In particular,
the advent of electronic markets and high frequency trading
has not altered the square-root behavior, in spite of radical
changes in the microstructure of markets.
The universality of this square-root law, together with its

insensitivity to the high frequency dynamics of prices,
suggests that its interpretation should lie in some general
properties of the low frequency, large scale dynamics of
liquidity [15]. In fact, the publicly displayed liquidity at any
given time is usually very small—typically on the order of
10−2 of the total daily transaction volume in stock markets.
Financial markets are the arena of a collective hide-and-
seek game between buyers and sellers, resulting in a
somewhat paradoxical situation where the total quantity
that markets participants intend to trade is very large (0.5%
of the total market capitalization changes hands every day

in stock markets) while most of this liquidity remains
hidden, or “latent.” These observations have lead to the
development of a physics inspired, “locally linear order
book” (LLOB) model for the coarse-grained dynamics of
latent liquidity [7,15–17], which naturally explains why the
impact of metaorders grows like the square root of its size
in a certain regime of parameters [17]. In a nutshell, the
LLOB model predicts a linearly growing equilibrium
liquidity profile, which implies a square-root impact law
even in the absence of any reaction of the liquidity
providers to the incoming metaorder. But this LLOB model
also suggests that for a given execution time T, the very
small Q regime should revert to a linear behavior. The
model, in fact, predicts the detailed shape of the crossover
between linear and square-root impact. Deviations from
a pure square root were observed in Ref. [9], where
the authors fitted the data with a logarithmic function
lnðaþ bQÞ, which indeed behaves linearly for small
arguments [18].
The aim of the present Letter is to test for the first time

the detailed theoretical predictions of a crossover from
linear to square root impact using the very large ANcerno
[21] database of metaorders, executed on the U.S. equity
market and issued by a diversified set of institutional
investors. We find that the crossover between linear and
square-root impact is well described by the theory, albeit
the transaction volume at the crossover point is much
smaller than the predicted one.
We argue that this can be accounted for by the coexist-

ence of “slow” and “fast” agents in financial markets. Fast
agents contribute to the total transaction volume but are
unable to offer resistance against the execution of large
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metaorders. Therefore, only slow agents are able to dampen
market impact and only their contribution is relevant for
shaping up the square-root law. We recall how the LLOB
model can be augmented to account for multiple agent
frequencies [23], and compute the impact crossover func-
tion within this extended framework, resulting in a remark-
ably good fit of the data.
Let us first briefly recall the basic ingredients of the

LLOB model, as well as its main predictions. The funda-
mental quantity of interest is the density φðx; tÞ of latent
orders around price x at time t. Conventionally, one can
choose φ to be positive for buy latent orders [corresponding
to x < pðtÞ, where pðtÞ is the current transaction price] and
negative for sell latent orders [corresponding to x > pðtÞ].
As argued in Refs. [7,16,17], the coarse-grained dynamics
of the latent liquidity close to the current price is well
described by the following equation:

∂tφ ¼ D∂xxφ − νφþ λsgnðyÞ þmδðyÞ; ð1Þ

where y ≔ pðtÞ − x, and ν describes order cancellation, λ
new order deposition, and D∂xx limit price reassessments.
The final “source” term corresponds to a metaorder of size
Q executed at a constant ratem ¼ Q=T, corresponding to a
flux of orders localized at the transaction price x ¼ pðtÞ.
In the absence of a metaorder (m ¼ 0), Eq. (1) admits a
stationary solution in the price reference frame, which is
linear when y is small (hence the name LLOB):

φstðyÞ ¼ Ly; ð2Þ

where L ¼ λ=
ffiffiffiffiffiffi
Dν

p
is a measure of liquidity. The linear

behavior of the latent liquidity close to the transaction price
is in fact a generic result, which holds much beyond the
simple setting defined by Eq. (1), while being at the origin
of the square-root impact law [7,15–17]. The total trans-
action rate J is simply given by the flux of orders through
the origin, i.e., J ≔ D∂yφstjy¼0 ¼ DL.
In the limit of a slow latent order book (i.e., νT ≪ 1), the

price trajectory pmðtÞ during the execution of the metaorder
[obtained as the solution of φðpm; tÞ ¼ 0] is given by the
following self-consistent expression [17]:

pmðtÞ ¼ p0ðtÞ þ yðtÞ; ð3Þ

yðtÞ ¼ m
L

Z
t

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDðt− sÞp exp

�
−
½yðtÞ − yðsÞ�2
4Dðt− sÞ

�
; ð4Þ

where p0ðtÞ is the price trajectory in the absence of the
metaorder that starts at t ¼ 0 and ends at t ¼ T. Price
impact is then defined as I ≔ yðTÞ, and is found to be
given by

IðQÞ ¼
ffiffiffiffiffiffiffiffi
DQ
J

r
F ðηÞ; with η ≔

Q
JT

; ð5Þ

where η is the participation rate and the scaling function
F ðηÞ ≈ ffiffiffiffiffiffiffiffi

η=π
p

for η ≪ 1 and ≈
ffiffiffi
2

p
for η ≫ 1. Hence, IðQÞ

is linear in Q for small Q at fixed T, and crosses over to a
square-root for largeQ. Note that in the square-root regime,
impact is predicted to be independent of the execution time
T. Many other results, such as the decay of impact for
t > T, have been derived and discussed in Refs. [17,23].
We now turn to the ANcerno database to see how well

Eq. (5) is supported empirically. Our sample covers for a
total of 880 trading days, from January 2007 to June 2010
and we follow the cleaning procedure introduced in Ref. [9]
to remove possible spurious effects. The sample is repre-
sented by around 8 million metaorders uniformly distrib-
uted in time and market capitalization [24]. Each metaorder
in the database is characterized by a broker label, a stock
symbol, the total number of traded shares Q, the sign
ϵ ¼ �1 (buy or sell), the start time ts, and the end time te
of its execution. In line with the definition given above,
and following Ref. [9], the participation rate is given by
η ¼ Q=VT where VT ¼ VðteÞ − VðtsÞ is the total volume
traded in the market during the metaorder execution. In
order to compare different stocks with very different daily
volumes, we shall measure Q in units of the corresponding
daily volume Vd, and introduce the volume fraction
ϕ ≔ Q=Vd, which in the model notation is equal to
Q=JTd, where Td ¼ 1 day. We will also measure execution
in relative volume time and redefine the execution time
T as T ≔ ½VðteÞ − VðtsÞ�=Vd. Finally, we introduce
rescaled log prices as pðtÞ ≔ ½logPðtÞ�=σd, where σd ¼
ðPhigh − PlowÞ=Popen is the daily volatility estimated from
the daily high, low and open prices PðtÞ.
The average price impact IðQÞ for a given executed

volumeQ, as studied in most previous studies, is defined as

IðQÞ ¼ E½ϵðpe − psÞjQ�; ð6Þ

where ps, pe are, respectively, the midprice at the start and
at the end of the metaorder. As shown in Refs. [9,13], the
ANcerno data confirm that IðQÞ is close to a square-root in
an intermediate regime of volume fraction 10−3≲ϕ≲10−1,
but shows an approximate linear behavior for smaller
volume fractions ϕ≲ 10−3. Note that data for large volume
fractions ϕ≳ 10−1 are difficult to interpret, as they are
prone to strong conditioning effects.
In order to test directly Eq. (5), we estimate the scaling

function F ðηÞ by dividing the data into evenly populated
bins of constant participation rate η and compute the
conditional expectation of ϵðpe − psÞ=

ffiffiffiffi
ϕ

p
for each bin.

According to the LLOB model this expectation is equal toffiffiffiffiffiffiffiffiffiffiffi
D=σ2d

q
F ðηÞ. Here and in the following, error bars are

determined as standard errors.
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The results are shown in Fig. 1 and are, up to a rescaling
of both the x and y axis, remarkably well accounted for by
the LLOB function F ðηÞ, that describes the crossover
between a linear-in-Q regime for small participation rates η,
and a T independent,

ffiffiffiffi
Q

p
regime at large η. Whereas a

linear regime for small Q’s was already reported in
Refs. [9,13], the scaling analysis provided here has not
been attempted before. The fact that impact in the

ffiffiffiffi
Q

p
regime chiefly depends on Q but not on T is compatible
with the results of Refs. [9,25], but contradicts theories that
assign the

ffiffiffiffi
Q

p
dependence to duration of the metaorder,

as in Refs. [3,26–28].
However, whereas the crossover between the two

regimes should occur around η⋆ ¼ 1 within the original
LLOBmodel, empirical data points towards a much smaller
value η⋆ ∼ 10−3. This is actually consistent with the fact
that all the empirical evidence for the square-root law
reported in the literature concern moderate participation
rates (typically in the range 10−3 − 10−1, see, e.g.,
Refs. [4,8,13,14]), but never in a regime where the volume
of the metaorder becomes larger than that of the rest of the
market, as would be requested within the LLOB specifi-
cation. Note that in our sample, 70% of the metaorders are
such that η > η⋆.
In order to account for this large discrepancy in the value

of η⋆, we shall consider the extended LLOB model recently
proposed by two of us to include agents with different time
horizons, as is clearly the case in financial markets [23].
In the simplest case of a bi-modal distribution of agents
(fast and slow), the LLOB formalism can be generalized

to describe two latent order book densities, φsðx; tÞ for the
slow liquidity and φfðx; tÞ for the fast liquidity—for
example, provided by high frequency traders. The corre-
sponding dynamical equations then read [23]

∂tφ∘ ¼ D∘∂xxφ∘ − ν∘φ∘ þ λ∘signðyÞ þm∘ðtÞδðyÞ; ð7Þ

where y ¼ pðtÞ − x and ∘ ¼ s; f, and where msðtÞ [mfðtÞ]
is the fraction of the metaorder absorbed by the slow (fast)
traders, with msðtÞ þmfðtÞ ¼ m. We allow the activity
rate of the two categories of agents to be different through
the coefficients D∘, ν∘, and λ∘. The interesting limit for our
purpose is (i) Js≪Jf and m ≪ Jf, where J∘ ¼ λ∘

ffiffiffiffiffiffiffiffiffiffiffiffi
D∘=ν∘

p
.

These inequalities mean that (i) the total transaction rate
J ¼ Js þ Jf ≈ Jf is dominated by fast traders and (ii) the
flux corresponding to the metaorder is small compared to
the total transaction rate of the market, as with most
metaorders executed in liquid markets. (ii) νsT ≪ 1 and
νfT ≫ 1. As shown in Ref. [23] this implies that slow,
persistent agents are able to resist the impact of the
metaorder, whereas fast agents are playing the role of
“transparent” intermediaries, only lubricating the high-
frequency activity of markets. This double-frequency
model can be solved exactly in some limits [23]. One
should distinguish two cases, depending on whether
the execution time T is larger or smaller than a certain
T† ≔ ν−1f η⋆−2Ds=Df, where η⋆ ≔ Js=Jf. For T > T†, the
scaling result Eq. (5) is simply modified as

IðQÞ ¼
ffiffiffiffiffiffiffiffiffiffi
DsQ
Js

s
F
�
η

η⋆
�
: ð8Þ

For T < T†, this result is further multiplied by
ffiffiffiffiffiffiffiffiffiffiffi
T=T†

p
,

with a shifted crossover point η⋆ → η⋆T†=T.
If we assume that T† is small enough for all data points

(which needs to be checked a posteriori), then the
prediction of the double-frequency model, Eq. (8), is
precisely the same as the one of the standard LLOB model,
up to a rescaling of the x axis by η⋆, and of the y axis by a
ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DsJ=DJs

p
. Figure 1 shows that the LLOB scaling

prediction indeed reproduces the data very well, which
allows a direct determination of η⋆ ≈ Js=J ≈ 3.15 × 10−3.
In other words, we find that most of the daily liquidity is
provided by fast agents, whereas the resistance to a meta-
order relies on a small fraction of slow agents. We have
checked that neither the quality of the fit nor the value of
η⋆ are significantly different in the period 2007–2008 and
2009–2010. We have also investigated the dependence
of η⋆ on market capitalization and volatility. We find
that low volatility-large cap. stocks are characterized
by a larger value of η⋆ than high volatility-small cap.
stocks, suggesting, perhaps counterintuitively, that the low

FIG. 1. Empirically determined scaling function F ðηÞ vs
participation rate η. The data (blue points) interpolate between
a

ffiffiffi
η

p
behavior observed at small participation rates and an

asymptotically constant regime ≈0.4 for large η, i.e., for η≳ η⋆
with η⋆ ≈ 3.15 × 10−3. Black line: prediction of LLOB, with an
adjusted crossover η⋆ ≔ Js=Jf allowing for the existence of two
categories of agents (fast and slow). The data points are obtained
by restricting to metaorders with sufficient large order size,
i.e., ϕ≳ 10−5.
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frequency activity is comparatively more important in low
volatility-large cap. stocks.
The plateau value for η > η⋆, on the other hand, leads toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DsJ=DJs

p ¼ 0.4=
ffiffiffi
2

p
, leading to

ffiffiffiffiffiffiffiffiffiffiffiffi
Ds=D

p
≃ 10−2. Sinceffiffiffiffi

D
p

should be close to the price volatility [17], we find that,
consistently with its interpretation, the slow liquidity moves
much more slowly than the price itself. These estimates in
turn lead to T† ≈ 45ν−1f , or ∼45 sec for ν−1f ¼ 1 second.
Since the median execution time of the metaorders in our
sample is 35 min, we conclude that most metaorders in our
sample are indeed longer than T†.
Still, a bi-modal distribution of trading frequencies is

certainly an oversimplification. One should consider
instead, as in Ref. [23], a continuous distribution of
frequencies. Several empirical facts about the dynamics
of financial markets (see, e.g., Refs. [15,29–31]) actually
suggest that such a distribution is a power law. The
numerical solution and the fitting procedure of such a
general model is beyond the scope of the present Letter, but
the simplified analysis of Ref. [23] suggests that the LLOB
scaling function should be approximately valid, with a
crossover value η⋆ that decreases as a power law of T.
Intuitively, the critical participation rate η⋆ should be larger
for small metaorder duration T, since there are less traders
that can be considered fast on such short timescales and
more traders that are “slower” than T. This intuition is
indeed confirmed by Fig. 2, where we show the rescaled
data as a function of η, for metaorders longer and shorter

than the median execution time T̄ ≈ 0.09. The crossover
participation rate η⋆ for small durations is found to be
10 times larger for large durations. In the inset of Fig. 2 we
show the T dependence of η⋆, obtained by fitting the
rescaled data by F ðη=η⋆Þ using five bins of T containing
the same number of data points (∼1.4 × 106), suggesting
η⋆ ∼ T−1=2 [32]. It would be very interesting to use this
result to map out the frequency distribution of the hidden
liquidity, but this requires going beyond the approximate
solution of Ref. [23]. We leave this for a subsequent
investigation [33].
In this Letter, we have used a very large dataset of orders

executed in the U.S. equity market to quantitatively test a
market impact model, which predicts a crossover from a
linear (in volume) behavior for small volumes to a square-
root behavior for intermediate volumes. The data unam-
biguously suggest the existence of such a crossover, and
once again confirms the square-root law which, as empha-
sized on several previous occasions, is remarkably inde-
pendent of the execution time—contradicting many early
theories [3,26,27]. We have shown how the data points
towards the existence of multiple timescales in the dynam-
ics of liquidity, with its high-frequency component domi-
nating the total market activity and its low-frequency
component contributing to the concavity of the impact
function. (For a complementary viewpoint, see Ref. [34]).
Our results are interesting from two rather different points
of views. One is that they represent a significant improve-
ment in our understanding of the determinants of market
impact which is both the main component of trading costs
for institutional investors and an important aspect of the
stability of financial markets. The second aspect is that we
are entering an era where economic and financial data
become of such quality that theoretical ideas can be tested
with standards comparable to those of natural sciences.
The data were purchased by Imperial College from

the company ANcerno Ltd. (formerly the Abel Noser
Corporation), which is a widely recognized consulting
firm that works with institutional investors to monitor their
equity trading costs. See Ref. [22] for details.
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