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We revisit the trading invariance hypothesis recently proposed by Kyle, A.S. and Obizhaeva, A.A.
[‘Market microstructure invariance: Empirical hypotheses.’ Econometrica, 2016, 84(4), 1345–1404]
by empirically investigating a large dataset of metaorders provided by ANcerno. The hypothesis
predicts that the quantity I := W/N3/2, where W is the daily exchanged risk (volatility × volume
× price) and N is the daily number of metaorders, is invariant, either in distribution or in expectation.
We find that the 3/2 scaling between W and N works well and is robust against changes of year,
market capitalisation and economic sector. However our analysis shows that I is not invariant, and
we find a very high correlation (R2 > 0.8) between I and the trading cost (spread + market impact
costs) of the metaorder. Guided by these results we propose new invariants defined as a ratio of I
to the aforementioned trading costs and find a large decrease in variance. We show that the small
dispersion of the new invariants is mainly driven by (i) the scaling of the spread with the volatility
per transaction, (ii) the near invariance, across stocks, of the shape of the distribution of metaorder
size and of the volume and number of metaorders normalised to market volume and number of
trades, respectively.

Keywords: Trading invariance; Metaorders; Trading costs; Stocks

1. Introduction

Finding universal scaling laws between trading variables is
highly valuable to make progress in our understanding of
financial markets and market microstructure. Indeed, statis-
tical physics has taught us that scaling laws between physical
variables most often reflect the dynamics of complex scale-
invariant systems, by that giving precious insights about
the mechanisms underlying the phenomena at hand. Benoit
Mandelbrot was the first to propose the idea of scaling in
a financial and economic context (Mandelbrot and Golden-
feld 1998), and ever since many have capitalised on his
ideas, for a review see Gabaix (2009). Relevant to this study,

*Corresponding author. Email: michael.benzaquen@polytech-nique.
edu

examples of universal laws between trading variables include
the square root impact law of meta-orders (Tóth et al. 2011)
or the relation between spread and volatility per trade (Wyart
et al. 2008). Recently, Kyle and Obizhaeva posited an intrigu-
ing trading invariance principle that must be valid for a bet,
theoretically defined as a sequence of orders with a fixed
direction (buy or sell) belonging to a single trading idea (Kyle
and Obizhaeva 2016, 2017, 2019). This principle supports
the existence of a universal invariant quantity I—expressed
in dollars, independent of the asset and constant over time—
which represents the average cost of a single bet, or dollar risk
transfer in the words of the authors. In particular, taking the
share price P (in dollars per share), the square daily volatility
σ 2

d (in %2 per day), the total daily amount traded with bets V
(shares per day) and the average volume of an individual bet
Q (in shares) as relevant variables, dimensional analysis (see
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e.g. Buckingham 1914, Pohl et al. 2017) suggests a relation
of the form:

PQ

I
= f

(
σ 2

d
Q

V

)
, (1)

where f is a dimensionless function. Invoking the Modigliani–
Miller capital structure irrelevance principle, which notably
states that capital restructuring might impact the vari-
ables P and σd , while not affecting the product P × σd

and the other variables, yields f (x) ∼ x−1/2 (see Miller
and Modigliani 1958, Kyle and Obizhaeva 2017). From
equation (1) follows, up to a numerical factor, the 3/2-law:

I = σdPQ3/2

V 1/2
:= W

N3/2
, (2)

where W := σdPV measures the total dollar amount of risk
traded per day (also referred to as total exchanged risk or
trading activity) while N := V/Q represents the number of
daily bets for a given financial instrument. The above equation
can be tested at different levels. First, I is a random variable
associated to each day and stock. The original (strong form
of) trading invariance states that I has invariant distribution
across different stocks and time. A weaker, and more easily
testable, form states that only the mean value of I is invariant.
Clearly, if this second form is violated (as shown empirically
below), a fortiori the stronger form is violated. A second, yet
related, testing approach investigates the level of universal-
ity of the 3/2 scaling of equation (2). Specifically, Benzaquen
et al. (2016) distinguishes: no universality (the 3/2-law holds
for some financial instruments only), weak universality (the
3/2-law holds but with a non-universal value of I), and strong
universality (the 3/2-law holds and I is constant across assets
and time).†

Let us stress that identifying an elementary bet in the mar-
ket is not a straightforward task. Theoretically, a bet is defined
as a trading idea typically executed in the market as many
trades over one or several days. As suggested by Kyle and
Obizhaeva in their original work (Kyle and Obizhaeva 2016),
metaorders, i.e. a bundle of orders corresponding to a sin-
gle trading decision typically traded incrementally through a
sequence of child orders, can be considered a proxy of these
bets.‡ Beyond the subtleties in the bet’s definition, there has
been in the past few years empirical evidence that the scal-
ing law discussed above matches patterns in financial data, at
least approximately. The 3/2-law was empirically confirmed
by Kyle and Obizhaeva using portfolio transition data related
to rebalancing decisions made by institutional investors and
executed by brokers (Kyle and Obizhaeva 2016). Andersen
et al. (2016) reformulated suitably the trading invariance
hypothesis at the single-trade level and showed that the equiv-
alent version of equation (1) in such a setting holds remark-
ably well using public trade-by-trade data relative to the
E-mini S&P 500 futures contracts. Benzaquen et al. (2016)
substantially extended these empirical results showing that
the 3/2-law holds very precisely across 12 futures contracts

† Note that here we only explore the daily level, time does not mean
the same thing as in Benzaquen et al. (2016) where we varied the
time intervals over which the variables were computed.
‡ In the following we will make use of such an approximation and
use the words ‘metaorder’ instead of ‘bet’.

and 300 single US stocks, and across a wide range of time
scales. Amongst others, Bowe et al. (2017) examined mar-
ket microstructure invariance relationships for equity markets
using a subset of 25 equities from the FTSE 100 stocks trad-
ing on the London Stock Exchange, and Pohl et al. (2018)
provided additional empirical evidence that the intriguing 3/2-
law holds on trades data from the NASDAQ stock exchange.
See also Kyle et al. (2016), Bae et al. (2016).

Notwithstanding, empirical data at the single transaction
scale—see in particular (Benzaquen et al. 2016)—revealed
that while the 3/2-law is very robust, the invariant I is actu-
ally quite far from invariant, as it varies from one asset to
the other and across time, thus in favour of the weak uni-
versality degree. Note that this is consistent with the idea
that a universal invariant with dollar units would be quite
incongruous, given that the value of the dollar is itself stochas-
tically time-dependent.§ Benzaquen et al. (2016) showed that
a more suitable candidate for an invariant was actually the
dimensionless I := I/C where C denotes the spread trading
costs.

Yet, single transactions are typically not the same as single
bets. Large and medium sized orders are typically split in mul-
tiple transactions and traded incrementally over long periods
of time. Public market data do not allow to infer the trading
decision and to link different transactions to a single execu-
tion.¶ In order to test the trading invariance hypothesis at the
metaorder level and its relation with trading costs, it is neces-
sary to have a dataset of market-wide (i.e. not from a single
institution) metaorders.

This is precisely the aim of the present paper, which lever-
ages on a heterogeneous dataset of metaorders extracted from
the ANcerno database.‖ Although from a preliminary research
Kyle and Fong found that proxies for bets in ANcerno data
have size patterns consistent with the proposed invariance
hypothesis (Kyle and Obizhaeva 2016, 2017), to our knowl-
edge such a thorough analysis at the metaorder level for a
wide range of assets is still lacking.

Our main finding is that, while the scaling law W ∼ N3/2

works surprisingly well independently of the chosen asset,
the quantity I is not invariant, as pointed out in Benzaquen
et al. (2016) at the trade-by-trade level. In other words, for
a given asset the 3/2-law equation (2) holds, but the invari-
ance principle implying that I is the same for all assets does
not. We show that the latter quantity is strongly correlated
with transaction costs, including spread and impact costs.

§ Note that Kyle and Obizhaeva commented on how to modify their
invariance principle in an international context. In particular they
suggested that ‘invariance relationships can also be applied to an
international context in which markets have different currencies or
different real exchange rates’ by scaling to ‘the nominal cost of
financial services calculated from the productivity-adjusted wages of
finance professionals in the local currency of the given market during
the given time period’ (Kyle and Obizhaeva 2017).
¶ In fact, for example, Kyle and Obizhaeva tackled this problem
investigating a proprietary dataset of portfolio transitions (Kyle and
Obizhaeva 2016).
‖ ANcerno Ltd. (formerly the Abel Noser Corporation) is a widely
recognised consulting firm that works with institutional investors to
monitor their equity trading costs. Its clients include many pension
funds and asset managers. In Kyle and Obizhaeva (2016) the authors
claim that the ANcerno database includes more orders than the data
set of portfolio transitions they used in their work.
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This leads us to introduce new invariants, obtained by divid-
ing I by the trading costs, and which appear to fluctuate
very little across stocks. Finally we show that the observed
small dispersion of the new invariants can be connected with
three microstructural properties: (i) the linear relation between
spread and volatility per transaction; (ii) the near invariance
of the metaorder size distribution, and (iii) of the total volume
and number fractions of the bets across different stocks.

The paper is organised as follows. In Section 2 we
describe the dataset collecting trading decisions of insti-
tutional investors operating in the US equity market. In
Section 3 we show that the 3/2-law holds surprisingly well
at the daily level independently of the time period, of the mar-
ket capitalisation and of the economic sector. In Section 4
we compute the invariant I and we argue in favour of weak
universality. We propose a more natural definition for a trad-
ing invariant that accounts both for the spread and the market
impact costs; and we exhibit the microstructural origin of its
small dispersion. Some conclusions and open questions are
presented in Section 5.

2. Data

Our analysis relies on a database made available by
ANcerno, a leading transaction-cost analysis provider
(www.ancerno.com). Our dataset counts heterogeneous
institutional investors placing large buy or sell orders exe-
cuted by a broker as a succession of smaller orders belonging
to the same trading decision of a single investor (for full
details see Zarinelli et al. 2015, Bucci et al. 2019, Bucci
et al. 2020). Our sample includes the period January 2007–
June 2010 for a total of 880 trading days. Only metaorders
completed within at most a single trading day are held. Fur-
ther, we select stocks belonging to the Russell 3000 index,
thereby retaining ∼ 8 million metaorders distributed quite
uniformly in time and representing ∼ 5% of the total reported
market volume, regardless of market capitalisation (large, mid
and small) and economical sectors (basic materials, communi-
cations, consumer cyclical and non-cyclical, energy, financial,
industrial, technology and utilities). As can be seen in Bucci
et al. (2019), Bucci et al. (2020) and Zarinelli et al. (2015),
which use very similar filtering of the dataset, the distribu-
tion of metaorder duration, traded volume, and participation
rate are very heterogeneous, spanning several orders of mag-
nitude. When considering the number N of metaorders of a
stock traded in a day, left panel of the figure in Appendix 1
shows a quite heterogeneous distribution spanning from 1
to 102 and on average approximately five metaorders are
executed per day in each asset.

3. The 3/2-law

Here we investigate the trading invariance hypothesis at the
daily level. The daily timescale choice avoids an elaborate
analysis of when precisely each metaorder starts and ends,
thereby averaging out all the non-trivial problems related to

the daily simultaneous metaorders executed on the same asset
(Zarinelli et al. 2015).

3.1. Exchanged risk

From the metaorders executed on the same stock during the
same day we compute the total exchanged volume in dol-
lars:

∑N
i=1 PiQi, where N is the number of daily metaorders

per asset in the ANcerno database, Qi and Pi are respectively
the number of shares and the volume weighted average price
(vwap) of the ith available metaorder. We then define the total
daily exchanged ANcerno risk per asset as:

W :=
N∑

i=1

Wi, with Wi = σdQiPi, (3)

and where σd denotes the daily volatility per asset, computed
as σd = (Phigh − Plow)/Popen from the high, low, and open
daily prices only.† The statistical properties of the bets, in
terms of their associated risk Wi and of their total daily num-
ber N per asset are discussed in Appendix 1. The distribution
of Wi and W span almost eight orders of magnitudes. This
is important because a careful testing of the scaling relation
predicted by the trading invariance hypothesis requires large
variability of the considered variables. Thus the ANcerno
database is ideal for this testing exercise.

3.2. Empirical evidence

We introduce the mean daily exchanged risk conditional to the
number of metaorders N per day and asset, E[W|N]. This is
empirically estimated by the quantity:

〈W〉N :=
∑

j:N (j)=N W (j)∑
j:N (j)=N 1

, (4)

where for each day j the total daily exchanged risk is given by
W (j) := ∑N(j)

i=1 W (j)
i with N (j) the number of daily metaorders

per asset and W (j)
i = σ

(j)
d Q(j)

i P(j)
i . To test the 3/2-law we bin

the data (one observation per stock per day) depending on N
and we plot it against 〈W〉N in log-log scale. We consider
different subsets of stocks, depending on market cap, eco-
nomic sector, investigated period, and we perform the linear
regression of log〈W〉N versus log N .

As shown in the first three panels of figure 1 the scaling
〈W〉N ∼ N3/2 holds well independently of the conditioning to
market capitalisation, economic sector, and time period. The
insets show the estimated exponent which always quite close
to 3/2. Slight deviations may have different origins but can
mostly be attributed to the heterogeneous sample’s composi-
tion in terms of stocks for each bucket in N. The 3/2-law is

† We checked that the results discussed in the present work are still
valid using other definitions of the daily volatility and of the price
in analogy to what done for example in Kyle and Obizhaeva (2016).
Specifically, the results are still valid when computing σd with the
Rogers-Satchell volatility estimator (Rogers and Satchell 1991, Ben-
zaquen et al. 2016) or as the monthly averaged daily volatility, i.e.
σ̄d = ∑25

m=1 σd,m and/or defining the price Pi as the closing price of
the day before the metaorder’s execution.
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Figure 1. Mean daily exchanged risk 〈W〉N conditional on the daily number N of metaorders per asset for different market capitalisation (top
left panel), economic sector (top right panel), and time period (bottom left panel). The insets show the slopes obtained from linear regression
of the data, firstly averaged with respect to N and secondly log-transformed. The bottom right panel shows a plot of 〈W〉N as function of
N for a subset of 10 stocks chosen randomly from the pool of around three thousand US stocks: the two insets represent respectively the
empirical distribution of the slopes and of the y-intercept obtained from linear regression of a larger sub-sample of 200 stocks randomly
chosen, firstly averaged with respect to N and secondly log-transformed considering each stock separately.

also valid for individual stocks, as shown in the bottom right
panel of figure 1, where data from 10 randomly chosen stocks
are displayed. We perform the above regression on each of the
approximately three thousand stocks and the histogram of the
slopes (exponents), shown in the bottom left inset is well cen-
tred around the 3/2-value. This shows that the 3/2 exponent
works very well in describing the scaling relation between
〈W〉N ∼ N3/2 and N.

The bottom right inset in the bottom right panel of figure 1
shows the histogram of the intercept 〈I〉 of the regression
log〈W〉 = log〈I〉 + β log N of the fits for individual stocks of
the binned data as shown in the main panel. It is evident that
there is a very large dispersion (the abscissa is in log scale),
which indicates that I in equation (2) is not constant across
different stocks. More empirical insights on the origin of the
3/2-law are presented in Appendix 2.

4. The trading invariant

The conjecture that the quantity 〈I〉 is invariant across dif-
ferent contracts is clearly rejected by the empirical analysis
performed in the previous section. Indeed, the quantity 〈I〉
varies by at least one order of magnitude across different

stocks. This result goes against the strong universality ver-
sion of the trading invariance hypothesis which states that
both the average value 〈I〉 and the full probability distribution
of I = W/N3/2 should be invariant across products. Dimen-
sionally I is a cost (i.e. it is measured in dollars) and indeed
the trading invariance hypothesis posits that the cost of a
metaorder is invariant. Using the identification of metaorders
and bets we can use the ANcerno dataset to estimate the trad-
ing cost, including a spread and a market impact component.
Below, we show that I and the trading costs are highly cor-
related, and therefore propose new invariants based on their
ratio.

4.1. Trading costs and trading invariants

Trading costs are typically divided into fees/commissions,
spread, and market impact. For large orders, like those inves-
tigated here, fees/commissions typically account for a very
small fraction and therefore we will neglect them. We shall
however take into consideration both the spread cost (as was
done at the single-trade level in Benzaquen et al. 2016) and
the market impact cost as computed from the well established
square root law (see e.g. Torre and Ferrari 1998, Almgren
et al. 2005, Engle et al. 2006, Tóth et al. 2011, Zarinelli et
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Figure 2. (Left) Empirical distributions of the KO invariant I = W/N3/2, of the daily average metaorder’s total trading cost C (using
Yspd = 3.5 and Yimp = 1.5 in equation (5)), and of the dimensionless invariant I := I/C. (Right) Empirical distributions in log-log scale of
the KO invariant I rescaled respectively by the total daily average cost C, by the spread cost Cspd and by the market impact cost Cimp.

al. 2015, Brokmann et al. 2015, Bucci et al. 2019, Bucci et
al. 2020), which states that the price impact of a metaorder of
size Q is

� log P ∝ εσd

√
Q

Vd
,

where ε = ±1 is the sign of the trade and Vd is the total daily
market volume. We thus define the average daily metaorder’s
trading cost as:

C = Cspd + Cimp = Yspd × 1

N

N∑
i=1

SQi + Yimp × 1

N

N∑
i=1

σdQiPi

×
√

Qi

Vd
:= Yspd × C0

spd + Yimp × C0
imp, (5)

with S the average daily spread,† and Yspd, Yimp two con-
stants to be determined. The factor Yspd depends, among other
things, on the fraction of trades of the metaorder executed
with market orders, whereas Yimp only weakly depends on
the execution algorithm and is typically estimated to be close
to unity (Tóth et al. 2011, Zarinelli et al. 2015, Bouchaud et
al. 2018). Thus, while Cimp is a quite faithful estimation of
the impact cost of the metaorders in a day and stock, Cspd is
an upper bound, reached if all the considered metaorders are
executed with market orders.

The empirical properties of C0
spd and C0

imp and the rel-
ative importance of the two terms as a function of the
metaorder size are presented in Appendix 3. As expected, at
the single metaorder level, spread cost is dominant for small
metaorders, while impact cost is dominant for large ones. At
the aggregated level, the average daily market impact cost
Cimp accounts on average for approximately half of the total
daily trading average cost.

To determine Yspd and Yimp we perform an ordinary least
square regression of the KO invariant I with respect to the

† The daily spread is not provided in the ANcerno dataset. We com-
puted it as the time average spread across the day using publicly
available market data.

daily average cost C defined for each asset by equation (5). We
obtain Yspd � 3.5 ± 0.2, Yimp � 1.5 ± 0.1 and a coefficient of
determination R2 � 0.8. These results show that the original
KO invariant is indeed strongly correlated with the trading
cost. Since these costs have no a priori reason to be universal,
this explains why I is not invariant.

Guided by such results and by the fact that a market
microstructure invariant, if any, should be dimensionless, we
define new invariants by dividing the original KO invariant I
by the cost of trading. Therefore, we consider three different
specifications, namely:

I = I

C , Ispd = I

Cspd
, Iimp = I

Cimp
. (6)

The left panel of figure 2 shows the empirical distribution of
the original KO invariant I together with that of I, and of
the cost C. It is visually quite clear that rescaling by the cost
dramatically reduces the dispersion, and that the distribution
of I is very similar to that of C, despite some deviation for
small values. The right panel compares the distribution of I
with that of the other two new invariants. A quantitative com-
parison is provided in table 1, which reports the mean, the
standard deviation, the coefficient of variation‡ (CV) of I and
of the three new invariants. It is clear that, due to the corre-
lation between I and C, the new invariants Ispd and Iimp have
a much smaller CV than I. Since the distributions have clear
fat tails, we also implemented the Gini coefficient, as in Pohl
et al. (2018). The table indicates that also in this case the new
invariants are much more peaked than I.

4.2. Origin of the small dispersion of the new invariants

Here we investigate the origin of the small dispersion of the
new invariants. Let us first consider the market impact cost
normalisation only and rewrite Iimp with the approximation
of Pi � P for all the metaorders executed in a day and on the

‡ The coefficient of variation is the ratio of standard deviation and
mean, an indicator of distribution ‘peakedness’.
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Table 1. Statistics of the different invariants, namely
the original KO invariant I (left), and the three new ones

rescaled by cost (right).

I · 103 ($) I Ispd Iimp

Mean 6.33 2.20 4.70 7.8
Std. dev. 11 1.84 3.11 12.2
CV 1.74 0.84 0.66 1.56
Gini Coefficient 0.77 0.33 0.39 0.65

Note: CV stands for coefficient of variation.

same stock as:

Iimp = N
∑N

i=1 σdPiQi

YimpN3/2(σd
∑N

i=1 PiQi

√
Qi/Vd)

= 1

Yimp
√

η

[Q]3/2

[Q 3/2]
= 1

Yimpm
√

η
, (7)

where η := V/Vd with V := ∑N
i=1 Qi the total ANcerno

metaorder volume, [•] a daily average operation per stock, i.e.
[x] := 1/N

∑N
i=1 xi, and m > 1 the normalised 3/2th moment

of the number of shares of a metaorder, which depends on the
shape of the distribution of metaorder size. We have checked
that m as well as η are, to a first approximation, independent
of the stock (see left and central panels in figure 3) indicat-
ing that the distribution of metaorder size is, to a large degree,
universal and that the ANcerno database is representative of
the trading across all stocks. These observations explains why
Iimp is also, to a large degree, stock independent.

For the total cost normalisation, our understanding of the
invariance property relies on the following empirical fact.
The average spread is proportional to the volatility per trade,
that is S = cPσd/

√
Nd, where Nd is the total number of daily

transactions per asset and c is a stock independent numeri-
cal constant, see Bouchaud et al. (2018), Wyart et al. (2008).
Indeed, the above arguments taken together show that the
dimensionless quantity I can be written as:

I = 1

Yspdc
√

ξ + Yimpm
√

η
, (8)

where ξ := N/Nd is found to be stock independent (see right
panel in figure 3). Therefore I is also stock independent.

Finally, the fact that the CV of I is less than both that of Ispd

and Iimp suggests that KO’s invariant is commensurate to the
total cost of trading, including both the spread cost and the
impact cost.

5. Conclusions

In this work we empirically investigated the market
microstructure invariance hypothesis recently proposed by
Kyle and Obizhaeva (2016, 2017). Their conjecture is that
the expected dollar cost of executing a bet is constant across
assets and time. The ANcerno dataset provides a unique lab-
oratory to test this intriguing hypothesis through its available
metaorders which can be treated as a proxy for bets, i.e. a deci-
sion to buy or sell a quantity of institutional size generated
by a specific trading idea. Let us summarise what we have
achieved in this paper:

• Using metaorders issued for around three thousand
stocks, we showed that, at the daily timescale inter-
val, the 3/2 scaling law between exchanged risk W
and number of bets, notably resulting from Kyle
and Obizhaeva’s invariance principle, is observed
independently of the year, the economic sector and
the market capitalisation.

• The trading invariant I := W/N3/2 proposed by
Kyle and Obizhaeva is non-universal: both its aver-
age value 〈I〉 and distribution clearly depend on the
considered stocks, in favour of a weak universality
interpretation. Furthermore, this quantity has dol-
lar units which makes its hypothesised invariance
rather implausible.

• On the basis of dimensional and empirical argu-
ments, we propose a dimensionless invariant
defined as a ratio of I and of the metaorder’s total
cost, which includes both spread and market impact
costs. We find a variance reduction of more than
50%, qualitatively traceable to the proportionality
between spread and volatility per trade, and the
near invariance of the distributions of metaorder
size, of the volume fraction and number fraction of
metaorders across stocks.

Figure 3. Empirical distribution of the ratio m = [Q3/2]/[Q]3/2 (left panel), η = V/Vd (central panel) and ξ = N/Nd (right panel), all three
computed at the daily level for each asset: we randomly group the stocks in equally sized samples and for each of them we compute the
empirical distribution respectively of m, η, and ξ finding that they are, to a first approximation, stock independent.
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Our empirical analysis has allowed to show that the trad-
ing invariance hypothesis holds at the metaorder level in
a strong sense provided one considers the exchanged risk
and the total trading cost of the metaorders. This is in the
spirit of Kyle and Obizhaeva’s arguments, but takes into
account the fact that transaction costs are both asset and epoch
dependent. As anticipated in Benzaquen et al. (2016), our
results strongly suggest that trading ‘invariance’ is a con-
sequence of the validity of the square root law for market
impact as well as to the proportionality between spread and
volatility as discussed in Benzaquen et al. (2016), Wyart
et al. (2008), Madhavan (1997). It would actually be quite
interesting to investigate other markets such as bond mar-
kets, currency markets or futures markets, for which the
Modigliani–Miller theorem is totally irrelevant, while trading
invariance still holds—at least at the level of single trades,
see Benzaquen et al. (2016), Andersen et al. (2016). Finally,
note that differences in market structure across countries, such
as execution mechanisms, fees and regulations could also
challenge the validity of the results presented here.
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Appendices

Appendix 1. Statistics of metaorder sample

Here we describe some statistics of the metaorders executed from the
main investments funds and brokerage firms gathered by ANcerno.
The empirical probability distribution of the number of metaorders
N per asset, of the risk Wi exchanged by a metaorder and of the total
daily traded risk W per asset are illustrated in figure A1. It emerges
that both the number of daily metaorders N and the risk measures
typically vary over several orders of magnitude. In particular, as evi-
dent from the left panel in figure A1, there is a significant number
of metaorders active every day, since in average ∼ 5 metaorders are
executed per day for each asset. Furthermore, as shown in the right
panel of figure A1, both the single metaorder’s risk Wi and the total
daily exchanged risk W vary over almost eight decades. Note that
these statistical properties are approximately independent from the
time period and from the economical sector of the asset exchanged
through metaorders.

Appendix 2. The 3/2-law under the microscope

One may rightfully wonder whether it is possible to understand the
3/2-law from the statistical properties of the metaorders. To this pur-
pose we start by investigating the individual metaorder’s risk Wi
distribution properties as a function of N. We find that when rescaling
the metaorder’s risk Wi by the square root of the number N of daily
metaorders per asset one obtains a conditional cumulative distribu-
tion P(Wi/

√
N |N) dependent on N but with a mean 〈Wi/

√
N〉N

invariant on N (see figure A2).† It emerges then that the conditional
average metaorder risk Wi can be predicted from the number N of

† Here 〈·〉 denotes the average over all days and stocks present in the
sample.

daily metaorders per asset since 〈Wi〉N scales as Nγ with γ � 0.5,
that is 〈Wi〉N ∼ √

N .‡ It immediately follows that combining this
empirical result and the linearity property of the mean, one recovers
the 3/2-law 〈W〉N ∼ N3/2, since:

〈W〉N = 〈
N∑

i=1

Wi〉N =
N∑

i=1

〈Wi〉N = N 〈Wi〉N ∼ N
√

N = N3/2.

(A1)
To explain the scaling 〈Wi〉N ∼ √

N through the product 〈σd〉N ×
〈QiPi〉N we need to check for the correlation between the daily
volatility σd and the volume in dollars QiPi of a metaorder, which
is found to be 〈Corr(σd, QiPi)〉 ≈ 3 × 10−2, where the average 〈•〉
is done over all the days and stocks. For each stock we regress
Wi ∼ Nγ , σd ∼ Nν , QiPi ∼ Nδ , and we obtain from the empirical
distributions of the exponents in figure A3 that their average val-
ues read 〈γ 〉 = 0.5, 〈ν〉 = 0.25 and 〈δ〉 = 0.20, thus 〈γ 〉 
= 〈ν〉 + 〈δ〉.
However, by looking at the scatter plot of the estimated exponent γ
as function of the sum ν + δ computed separately for each stock (see
bottom right panel in figure A3) one observes a clear linear relation.

A possible and intuitive explanation of the non null measured cor-
relation between σd and QiPi is that metaorders add up to volume,
generate market impact and thus increase price volatility. In this way
trading volume increases due to both an increase in the number of
bets and in their sizes, and so does volatility from the increased mar-
ket impact as discussed for example in Jones et al. (1994). Note
that this reasoning is valid even if the metaorders only account for a
certain percentage of the total daily market volume V = ∑N

i=1 Qi =
ηVd with η adjusting for the partial view of the ANcerno sample in
terms of volume, and for the non-bet traded by intermediaries: from
our dataset we measure in average 〈η〉 ≈ 5 × 10−2.

Appendix 3. Statistics of trading costs

As expected, we find that, for a single metaorder with unsigned
volume Q, the spread cost cspd = S × Q is dominant for small vol-
umes, while the market impact cost cimp = σd × QP × √

Q/Vd takes
over for large volumes (see left panel of figure A4). Furthermore,
as shown in the right panel of figure A4, the average daily market
impact cost Cimp accounts on average for ≈ 1/2 of the total daily
trading average cost C = Cspd + Cimp, computed using Y0 = 3.5 and
Y = 1.5 in equation (5).

‡ In analogy, the variance 〈W2
i 〉N − 〈W2

i 〉N scales linearly with N,
i.e. 〈W2

i 〉N − 〈W2
i 〉N ≈ 〈Wi〉2

N ∼ N .
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Figure A1. (Left panel) Empirical probability distribution of the daily number N of metaorders per asset: N is broadly distributed over two
decades with an average close to 5. (Right panel) Empirical probability distributions of the exchanged risk per metaorder, i.e Wi := σdQiPi,
and of the total daily risk per day/assets, i.e W := ∑N

i=1 Wi.

Figure A2. Empirical cumulative distribution of the traded metaorder’s risk Wi = σdQiPi without (left panel) and with (right panel) rescaling
by the square root of the daily number N of metaorders per asset. The coloured vertical lines represent the location of the average for each
sample conditional on N. To note that also if the empirical distribution is not an invariant function of N, we observe that 〈Wi/

√
N〉N � const.,

as evident from the vertical lines in the right panel, which is at the origin of the measured 3/2-law. Furthermore, as shown in the inset the
variance 〈W2

i 〉N − 〈W2
i 〉N scales linearly with N, i.e. 〈W2

i 〉N − 〈W2
i 〉N ≈ 〈Wi〉2

N ∼ N .
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Figure A3. (Top left panel) Empirical distribution of the scaling exponent ν computed for each stock regressing σd ∼ Nν : in average
〈ν〉 = 0.25 as shown by the dashed black line. (Top right panel) Empirical distribution of the scaling exponent δ computed for each stock
regressing QiPi ∼ Nδ : in average 〈δ〉 = 0.20 as shown by the dashed black line. (Bottom left panel) Empirical distribution of the scaling
exponent γ computed for each stock regressing Wi ∼ Nγ : in average 〈γ 〉 = 0.5 as shown by the dashed black line. (Bottom right panel)
Signature scatter plot (coloured by density of data) of the coefficients ν + δ and γ respectively estimated conditioning to each stock.

Figure A4. (Left panel) Averaged spread and market impact cost ratios given respectively by cspd/c and cimp/c - with cspd = S × Q (spread
cost), cimp = σd × QP × √

Q/Vd (market impact cost) and c = cspd + cimp (total cost per bet) - as function of the metaorder’s order size
Q/Vd: to note that for a metaorder with small (large) order size the spread (market impact) cost is dominant. (Right panel) Empirical
distributions of the Cspd/C and Cimp/C ratios which give us an idea of the order of magnitude of the different contributions to the total daily
average cost per metaorder C = Cspd + Cimp (computed from equation 5 fixing Yspd = 3.5 and Yimp = 1.5): the dashed vertical lines represent
the location of the mean values equal respectively to 〈Cspd/C〉 = 0.49 and 〈Cimp/C〉 = 0.51.


	1. Introduction
	2. Data
	3. The 3/2-law
	3.1. Exchanged risk
	3.2. Empirical evidence

	4. The trading invariant
	4.1. Trading costs and trading invariants
	4.2. Origin of the small dispersion of the new invariants

	5. Conclusions
	Acknowledgments
	Data availability statement
	Disclosure statement
	Funding
	ORCID
	References

