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Kelvin wake pattern at large Froude numbers
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Gravity waves generated by an object moving at constant speed at the water surface
form a specific pattern commonly known as the Kelvin wake. It was proved by
Lord Kelvin that such a wake is delimited by a constant angle '19.47◦. However
a recent study by Rabaud and Moisy based on the observation of airborne images
showed that the wake angle seems to decrease as the Froude number Fr increases,
scaling as Fr−1 for large Froude numbers. To explain such observations they make
the strong hypothesis that an object of size b cannot generate wavelengths larger than
b. Without the need of such an assumption and modelling the moving object by an
axisymmetric pressure field, we analytically show that the angle corresponding to the
maximum amplitude of the waves scales as Fr−1 for large Froude numbers, whereas
the angle delimiting the wake region outside which the surface is essentially flat
remains constant and equal to the Kelvin angle for all Fr.
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1. Introduction

Simply by looking at a duck swimming in a pond or a cargo ship moving on a
calm sea, one can clearly tell that there is something common about their wakes:
they both display a familiar V-shaped pattern which only differ from each other by
their dimensions. In 1887, Lord Kelvin (Kelvin 1887) proved that the wake created
by an object moving at a uniform pace is always delimited by an angle equal
to arcsin 1/3 = 19.47◦. This theory, based on stationary phase arguments, is widely
used both at theoretical and technical levels (Lighthill 1978; Lamb 1993; Parnell &
Kofoed-Hansen 2001; Darrigol 2005). Since Lord Kelvin, other studies have shown
that two sets of waves can be distinguished in the wake: the so-called transverse waves
and diverging waves (Crawford 1984; Nakos & Sclavounos 1990). Their amplitudes
directly depend on the hull Froude number Fr = V/

√
gb, where V is the speed of

the moving object, b its typical size and g is the acceleration due to gravity. It has
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been observed that as the Froude number increases, so does the amplitude of the
diverging waves; but that of the transverse waves decreases rapidly and seems to
vanish for sufficiently high Froude numbers (Lighthill 1978). Speedboats, whose range
of reachable Froude number is large, typically up to Fr ' 3, experience different
regimes as the Froude number is increased, eventually entering the so-called planing
regime in which their drag is significantly decreased as they displace less water
(Cumbertach 1958; Casling 1978; Lai & Troesch 1995). The understanding of the
wave drag is of great practical importance in the ship industry for the hull design
(Suzuki et al. 1997; Tuck, Scullen & Lazauskas 2002; Rabaud & Moisy 2013b).
At smaller scales, the wave drag for capillary–gravity waves has also been studied
extensively (Benzaquen, Chevy & Raphaël 2011; Le Merrer et al. 2011; Benzaquen &
Raphaël 2012) and is notably of interest for insect locomotion (Chepelianskii, Chevy
& Raphaël 2008; Voise & Casas 2010).

Recent experimental observations by Rabaud and Moisy have challenged the
commonly accepted theory of Lord Kelvin (Rabaud & Moisy 2013a). Based on
airborne observations of ship wakes, they show that the wake angle seems to decrease
as the Froude number is increased, scaling as Fr−1 for large Froude numbers. To
explain their observations, they make the strong hypothesis that an object of size
b cannot generate wavelengths greater than b. Even though this assumption leads
to consistent results regarding the experimental findings, it has not been firmly
established and is open to questioning.

We here propose an explanation of such observations without the need of the above-
mentioned maximum-wavelength argument. We first perform a numerical evaluation of
the surface displacement induced by a moving pressure field of typical size b above
the surface of water and show that two angles can be highlighted in the wake: the
outer angle delimiting the wake, shown to be constant and equal to the Kelvin angle,
and an inner angle corresponding to the maximum amplitude of the waves. We then
analytically prove that the latter is not constant and scales as Fr−1 at large Froude
numbers.

2. Surface displacement

In the pure gravity waves limit, the surface displacement generated by a pressure
field p(x, y) moving in the −x direction with constant speed V can be written in the
frame of reference of the moving perturbation as (Havelock 1908, 1919; Raphaël & de
Gennes 1996):

ζ(x, y)=− lim
ε→0

∫∫
dk dθ
4π2ρ

p̂(k, θ) exp[−ik(cos θ x− sin θ y)]
c(k)2 − V2cos2θ + 2iεV cos θ/k

, (2.1)

where p̂(k, θ) is the Fourier transform of p(x, y) in cylindrical coordinates, ρ is the
water density and c(k) = (g/k)1/2 is the phase speed for pure gravity waves. Let us
now non-dimensionalize the problem through:

Z = 4π2ζ

b
, X = x

b
, Y = y

b
, K = kb, P̂= p̂

ρgb3
, ε̃ = ε√

g/b
, (2.2)

where b is the typical size of the pressure field p(x, y). Equation (2.1) together with
(2.2) becomes:

Z(X,Y)=
∫ π/2
−π/2

dθ F(θ,X,Y), (2.3)
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where:

F(θ,X,Y)=− lim
ε̃→0

∫ ∞
0

K dK
P̂(K, θ) exp[−iK (cos θ X − sin θ Y)]

1− Fr2 K cos2θ + 2i ε̃ Fr cos θ
. (2.4)

Using the Sokhotski–Plemelj formula (see e.g. Appel 2007), one can write:

F(θ,X,Y)= iπΦ(K0, θ,X,Y)+ G(θ,X,Y), (2.5)

where:

Φ(K, θ,X,Y)= K P̂(K, θ) exp[−iK (cos θ X − sin θ Y)]
Fr2cos2θ

, (2.6)

K0(θ)= 1
Fr2cos2θ

, (2.7)

and
∫

dθ G(θ,X,Y) is a rapidly decreasing function with the distance from the
perturbation. According to (2.3), (2.5), (2.6) and (2.7), and sufficiently far from the
perturbation, the surface displacement is well approximated by:

Z(X,Y)' iπ
∫ π/2
−π/2

dθ
P̂(K0(θ), θ) exp[−i(cos θ X − sin θ Y)/(Fr2cos2θ)]

Fr4cos4θ
. (2.8)

For a given pressure distribution one can thus obtain the surface displacement by
numerically evaluating the integral in (2.8).

3. Numerical evaluation

Consider a Gaussian pressure field of typical size b, symmetrical around the origin,
with corresponding Fourier transform of the form:

P̂(K)= exp[−K2/(4π2)]. (3.1)

Equation (2.8) yields the profiles displayed in figure 1. Figure 1(a) shows relief
plots of the surface displacement computed using (2.8) for different Froude numbers
as a function of X̃ = X/Λ and Ỹ = Y/Λ where Λ = 2πFr2 is the dimensionless
wavelength. Figure 1(b) displays the normalized angular envelope of the surface
displacement as a function of φ for different Froude numbers where φ is the polar
angle originating at the horizontal axis. The angular envelope was calculated by
interpolating the maxima of the wave amplitudes over one wavelength sufficiently
far from the perturbation. Figure 1(c) displays polar plots of the normalized angular
envelope as defined in (b) for different Froude numbers. In all graphs the maximum
of the angular envelope obtained for φ = φmax is shown with a solid red line and
the Kelvin angle φK = arcsin(1/3) is represented by a dashed black line. The green
coloured region delimits the area in which the amplitude of the waves is above 20 %
of the maximum of the angular envelope. We chose this as an arbitrary criterion for
what the eye can see. It sets the error bars to the angle determined by just looking at a
boat wake on an airborne picture.

First, as one can see, the wake pattern strongly depends on the Froude number.
At Fr = 0.5 one can clearly distinguish two different sets of waves: the so-called
transverse waves that are orthogonal to the trajectory, and the so-called diverging
waves that are located at the edges of the wake. As the Froude number is increased
the relative amplitude of the transverse waves decreases until vanishing, making way

738 R3-3



A
.D

arm
on,M

.B
enzaquen

and
E

.R
aphaël

Fr = 0.3 Fr = 0.5 Fr = 1 Fr = 2 Fr = 3

4

2

0

–2

–4

0.4

0.2

0

–0.2

–0.4

0.4

0.2

0

–0.2

–0.4

0.4

0.2

0

–0.2

–0.4

0.4

0.2

0

–0.2

–0.4

0.4

0.2

0

–0.2

–0.4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

0.4
0.8

0

0.4
0.8

0

0.4
0.8

0

0.4
0.8

0

0.4
0.8

max K

max K

X X X X X

0

m
ax

(a)

(b)

(c)

FIGURE 1. (a) Relief plots of the surface displacement computed using (2.8) for different Froude numbers as a function of X̃ = X/Λ and Ỹ = Y/Λ
where Λ = 2πFr2 is the dimensionless wavelength. (b) Plot of the normalized angular envelope of the surface displacement as a function of φ for
different Froude numbers where φ is the polar angle originating at the horizontal axis. The angular envelope was calculated by interpolating the
maxima of the wave amplitudes over one wavelength sufficiently far from the perturbation. (c) Polar plot of the normalized angular envelope as
defined in (b) for different Froude numbers. In all graphs the maximum of the angular envelope obtained for φ = φmax is shown with a solid red line
and the Kelvin angle φK = arcsin(1/3) is represented by a dashed black line. The green coloured region delimits the area in which the amplitude of
the waves is above 20 % of the maximum of the angular envelope.
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FIGURE 2. Plot of φmax as defined in § 3 as a function of the Froude number (red squares). The
green coloured region delimits the area in which the amplitude of the waves is above 20 % of
the maximum of the angular envelope as defined in § 3. The dashed black line shows the Kelvin
angle φK = arcsin(1/3). The dashed blue line represents the asymptotic theoretical prediction at
large Froude numbers as given by (4.11).

for the diverging waves. Secondly, we are interested in the evolution of φmax as the
Froude number increases. Figure 2 displays φmax as a function of the Froude number
(red squares). The green coloured region has the same meaning as that of figure 1.
The dashed black line shows the Kelvin angle φK = arcsin(1/3). The dashed blue line
represents the asymptotic scaling Fr−1. At Fr = 0.3 and below, the maximum of the
wake angular envelope is located on the central line φ = 0. A continuous transition
in which the maximum is displaced to the edges of the wake φmax ' φK is observed
at Fr ' 0.31. The angle φmax then remains constant until Fr ' 0.7 before it starts to
decrease, eventually scaling as Fr−1. As one can see in figure 2 the green beam also
scales as Fr−1 for large Froude numbers thus explaining the observations of Rabaud
& Moisy (2013a). Thirdly, the waves are always confined within the Kelvin wake
and always reach its outer boundary (see figure 1), even though the relatively small
amplitude around this region can make it difficult to see on photographs as it might be
diluted in the noise of the open sea. For a clear photograph where both the maximum
amplitude angle and the Kelvin angle can be clearly identified see p. 96 of Falkovich
(2011).

4. High Froude numbers

In the following we demonstrate analytically the φmax ∼ Fr−1 scaling for large
Froude numbers. Surface displacement as given by (2.8) can be expressed in polar
coordinates X = R cosφ, Y = R sinφ as:

Z̆(R, φ)' iπ
∫ π
−π

dθ
P̂(K0(θ), θ) exp[−iR cos(θ + φ)/(Fr2cos2θ)]

Fr4cos4θ
. (4.1)

The integral in (4.1) is of the form
∫

dθ f (θ)eig(θ) and may be approximated through
the method of the steepest descent (Appel 2007). For R/Fr2 > 1, the integrand
oscillates rapidly and there are two stationary points given by g′(θ)= 0:

θ1(φ)= 1
2(arcsin(3 sinφ)− φ), (4.2a)

θ2(φ)= 1
2(π− arcsin(3 sinφ)− φ). (4.2b)
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Note that at the Kelvin angle φ = φK = arcsin(1/3), the two points θ1 and θ2 coalesce
and thus the saddle-point method will not be accurate in the vicinity of φ = φK . The
calculation for two coalescing saddle points (Johnson 1997) will not be developed here
as our aim is to study the behaviour of φmax at large Froude numbers for which a
priori φmax is far below φK . In this range both saddle points can safely be considered
independently. Hence, far below φK one can write:

Z̆(R, φ)' iπ
(
Z̆1(R, φ)+ Z̆2(R, φ)

)
, (4.3)

where:

Z̆j(R, φ)=
√

2π∣∣∂2
θ g(R, θj, φ)

∣∣ f (θj) exp
[
i
(
g(R, θj, φ)+ (π/4)

)]
, (4.4)

where θj, j ∈ {1, 2}, are implicit function of φ as defined through (4.2) and where:

f (θ)= P̂(K0(θ), θ)

Fr4cos4θ
, (4.5)

g(R, θ, φ)=−R cos(θ + φ)
Fr2cos2θ

. (4.6)

One can easily check that far below φK the function Z̆1 exclusively defines the
transverse waves whereas Z̆2 exclusively defines the diverging waves. Let us again take
the Gaussian pressure field of (3.1). As an effect of the normalization of the pressure
field, both functions decrease as the Froude number is increased. Yet, the amplitude of
the Z̆1 waves scales as Fr−4 whereas the amplitude of the Z̆2 waves scales as Fr−3/2

thus decreasing more slowly. This explains why the transverse waves vanish compared
to the diverging waves for large Froude numbers. Let us now thus focus on the Z̆2

function. At a given R, the angular envelope function of Z̆2 is given by:

h(R, φ)=
√

2π
|∂2
θ g(R, θ2, φ)| f (θ2), (4.7)

where θ2 and g are defined through (4.2) and (4.6). Figure 3 displays Z̆2(R = 10Λ,φ)
as given by (4.4) as a function of φ for different Froude numbers. Their angular
envelopes given by (4.7) are shown with a solid black line. For small angles φ, (4.7)
reduces to:

h(R, φ)'
√
π

16R

1
Fr3φ5/2

P̂

(
1

4Fr2φ2
,
π

2
− 2φ

)
. (4.8)

The angle φmax corresponding to the maximum of the amplitude is obtained by solving
∂φh= 0. In the case of an axisymmetric pressure field, this yields:

5P̂(u)+ 4u P̂′(u)= 0, (4.9)

where u = 1/(2Fr φ)2. The solution u∗ of (4.9) being a pure number, the angle φmax

scales as:

φmax ∼ 1
Fr
, (4.10)
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FIGURE 3. Plot of Z̆2(R = 10Λ,φ) as given by (4.4) with the Gaussian pressure field of (3.1),
where Λ = 2πFr2, as a function of φ for different Froude numbers. Their angular envelopes
given by (4.7) are shown with a solid black line.

since u∗ = 1/(2Fr φmax)
2. In the particular case of the Gaussian pressure field

introduced in (3.1), one has:

φmax = 1
401/4
√
π

1
Fr
. (4.11)

As one can see on figure 2, this prediction (blue line) fits perfectly the numerical
results at large Froude numbers.

5. Conclusion

In this paper we performed a theoretical study of the Kelvin wake pattern generated
by a moving perturbation and focused on the large Froude number regime. We showed
that the angle delimiting the wake region outside which the surface is unperturbed
remains constant and equal to the Kelvin angle for all Froude numbers. However, a
different angle corresponding to the maximum of the amplitude of the waves can be
identified. Considering an axisymmetric pressure field, we analytically showed that this
angle scales as Fr−1 for large Froude numbers thus behaving as a Mach angle, as
highlighted by Rabaud & Moisy (2013a) in their observations of real ships.
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