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Liquid crystals, when confined to a spherical shell, offer fascinating
possibilities for producing artificial mesoscopic atoms, which could
then self-assemble into materials structured at a nanoscale, such as
photonic crystals or metamaterials. The spherical curvature of the
shell imposes topological constraints in the molecular ordering of
the liquid crystal, resulting in the formation of defects. Controlling
the number of defects, that is, the shell valency, and their positions,
is a key success factor for the realization of those materials. Liquid
crystals with helical cholesteric order offer a promising, yet un-
explored way of controlling the shell defect configuration. In this
paper, we study cholesteric shells with monovalent and bivalent
defect configurations. By bringing together experiments and nu-
merical simulations, we show that the defects appearing in these
two configurations have a complex inner structure, as recently
reported for simulated droplets. Bivalent shells possess two highly
structured defects, which are composed of a number of smaller
defect rings that pile up through the shell. Monovalent shells have a
single radial defect, which is composed of two nonsingular defect
lines that wind around each other in a double-helix structure. The
stability of the bivalent configuration against the monovalent one is
controlled by c = h/p, where h is the shell thickness and p the
cholesteric helical pitch. By playing with the shell geometry, we
can trigger the transition between the two configurations. This tran-
sition involves a fascinating waltz dynamics, where the two defects
come closer while turning around each other.
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Liquid crystals offer fascinating possibilities for producing mate-
rials that are organized at a mesoscopic scale, such as photonic

crystals or metamaterials (1). In a seminal paper, Nelson (2) pro-
posed to induce valency into simple spherical particles by coating
their surfaces with a nematic liquid crystal shell. In this elegant
approach, the spherical symmetry of the particle is broken by the
presence of topological defects, which stem from frustrations in the
liquid crystal orientational order due to the curvature of the particle
surface. These defects, once functionalized, could act as sticky sur-
face patches inducing directional particle bonding through patch–
patch interactions, which would make possible the fabrication of
complex materials by spontaneous self-assembly. The number of
surface defects would set the valence of the particle, whereas their
position would determine the directionality of the eventual bonds.
The type of defect configuration in the shell, and thus its valence,
results from a very subtle interplay between topological constraints
and elastic free-energy minimization. For a two-dimensional ne-
matic shell, theory predicts a tetravalent configuration where four
defects are organized in a tetrahedral fashion (3). These defects
have a winding number si = 1=2, indicating a π-rotation of n, the
average molecular orientation, around the defect (4). This is
consistent with the Poincaré–Hopf theorem, which states that the
total winding number for any spherical nematic must necessarily
be

P
isi = 2 (5–7).

A beautiful experimental realization of Nelson’s ideas has
been made by using double emulsions of nematic liquid crystal
(8, 9). On the one hand, it has confirmed the existence of the

tetrahedral configuration. On the other hand, it has underlined
the key role of bulk effects in promoting new defect configura-
tions. Cholesteric liquid crystals, where molecular chirality––lack
of mirror symmetry––induces a three-dimensional helical organi-
zation in the system, is expected to provide an excellent play-
ground to study the impact of bulk effects in the shell defect
configuration. Even at the level of simple droplets, it is well known
that molecular chirality can result in intricate defect structures.
For instance, when n is tangent to the drop surface, a sufficiently
strong chirality induces an interesting monovalent configuration
with a single defect that spans the droplet radius (10–12), analogous
to a Dirac monopole (13), whereas achiral nematic droplets display
a simple bivalent configuration, with two surface defects at opposite
poles. However, despite recent numerical simulations showing that
the radial defect has a double-helix structure (14), the cholesteric
organization and the inner structure of the defects emerging in
these droplets remain unclear (11, 14, 15).
In this article, we study monovalent and bivalent cholesteric

shells by means of experiments and simulations. We take advan-
tage of the possibility that liquid crystal shells offer, in terms of
controlling defect positions, to zoom in on the defect cores and get
information about their structures. By bringing together experi-
mental observations and numerical results, we show that (i) biva-
lent shells possess two highly structured defects, which are
composed of smaller disclination rings that pile up through the
shell, whereas (ii) monovalent shells possess a radial defect com-
posed of two distinct disclinations that wind around each other in a
double-helix fashion. We demonstrate that the defect positions are
only controlled by the shell geometry, independently of the cho-
lesteric pitch, and propose a simple model that quantitatively
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captures this behavior. We also show that the transition between
the two configurations is governed by the confinement ratio
c= h=p, where h is the average shell thickness and p is the chole-
steric pitch. Finally, we perform a dynamical study of this transi-
tion, and report a fascinating defect waltz where the defects wind
around each other due to a chemical Lehmann effect (Fig. 1).

Results and Discussion
Our cholesteric liquid crystal shells are double emulsions produced
in an axisymmetric glass capillary device (16). Each shell is com-
posed of an aqueous inner droplet, which is contained inside a
bigger liquid crystalline droplet, in turn dispersed in an aqueous
environment; see schematics in Fig. 2A. The liquid crystalline
phase is composed of a mixture of 4-Cyano-4′-pentylbiphenyl
(5CB), which is nematic at room temperature, and a chiral dopant

(S)-4-Cyano-4′-(2-methylbutyl)biphenyl (CB15). The cholesteric
pitch p is determined by the amount of dopant present in the
solution (17). The two aqueous phases contain 1% wt polyvinyl
alcohol (PVA) to (i) stabilize the double emulsions against
coalescence and (ii) ensure that the liquid crystalline molecules are
anchored parallel to the two surfaces confining the shell (18).
Typical values of the outer radii, R, range from 50 to 100  μm. Due
to a density mismatch between the inner aqueous phase and the
liquid crystalline phase, the inner droplet either sinks or floats
inside the liquid crystal. However, the PVA layer at the two in-
terfaces induces a disjoining pressure that prevents contact be-
tween the two droplets, resulting in a nonzero minimal thickness
denoted h0. Our shells are thus heterogeneous in thickness, with an
average thickness h≡R− a.
The type of defect structure in the produced shells depends on

the cholesteric pitch. Here, we focus on two types of shells:
monovalent shells, characterized by one defect, and bivalent shells,
characterized by two defects.

Bivalent Shells. Bivalent cholesteric shells appear when chirality is
low. They possess two +1 surface defects at each of the shell
boundaries, so that the total winding number on each sphere is
+2, consistent with the topological requirements (5, 6). These
defects appear close to each other, as imaged in Fig. 2B, which is
a cross-polarized picture of the top of the shell. A similar con-
figuration appears on the inner sphere. The director field around
either pair of surface defects is sketched in Fig. 2B (Inset).
Keeping this type of in-plane director field through the shell
thickness would imply the formation of two +1 defect lines or
disclinations spanning the shell. However, the liquid crystalline
structure is free to evolve between the boundaries to minimize its
free energy. In nematic shells, the bulk elastic energy associated
with +1 disclinations is released by allowing n to escape into the

Fig. 1. Cross-polarized image of a cholesteric shell (with p= 3.5  μm) during
the formation of a double-helix structure, where two defect lines wind around
each other to form a metastable braided structure. (Scale bar, 20  μm.)
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Fig. 2. Cholesteric shells with bivalent defect structure. (A) Schematics showing the geometry of experimental shells. (B) Top view of a bivalent experimental
cholesteric shell showing its two outer surface defects. (Inset) Sketch of the director field around those defects. (C) Planar and escaped structures of +1
disclinations in nematics. (D) χ+1-, λ+1=2-, and τ−1=2-disclinations in cholesterics. The nails represent an out-of-plane director field, where the nail heads indicate
the extremity pointing upwardly. (E) Simulated cholesteric droplet with diametrical spherical structure (DSS). Reproduced from ref. 14. (F) Tilted view of a
bivalent experimental cholesteric shell, where the position of the defects is indicated by arrows and the inner structure of one of the two defects is zoomed in
on. (G) Simulated cholesteric shell with DSS. (H) Number of disclination rings as a function of b2h=pc in a DSS structure, from numerical predictions (blue) and
observations (red). B and F are cross-polarized images. (Scale bar, 20  μm.)
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third dimension, as schematically represented in Fig. 2C, which
shows a local cross-section of a nematic shell made by a plane
containing the defects (19). In contrast, three types of dis-
clinations are allowed by the symmetry of cholesterics: χ, τ, and λ
(20). The χ- and τ-lines are singular in the sense that their cores
correspond to a discontinuity in the order parameter, whereas
λ-lines have no singular core. To investigate the bulk structure of
the +1 defects appearing in our cholesteric shells, we induce a
slight rotation in the double emulsions by gently moving the
sample, which allows us to obtain a side view of the shell (Fig.
2F). Instead of a smooth optical texture (escaped structure) or a
solid line (singular disclination), we observe an alternation of
bright and dark parallel short lines when imaging the sample
between cross-polarizers. This texture, zoomed in on in Fig. 2F
(Left) remains unaltered after a rotation of the sample, or when
removing the polarizers from the optical path, revealing the ex-
istence of a sequence of singular bulk defect cores. Our images
show a close resemblance with simulated polarization micrographs
recently reported for cholesteric droplets with diametrical spherical
structure (DSS) (14). These droplets have a diametrical defect with
a highly structured core, in which a number of τ−1=2-disclination
rings pile up, while keeping certain separation distance, to form a
structure that spans the whole droplet diameter, as shown in Fig.
2E, where the rings are represented in red.
We perform numerical simulations by using the Landau–de

Gennes free-energy modeling (Material and Methods) to investigate
the existence of the DSS in shells. We consider a simple geometry
where the two spheres delimiting the shell are concentric. We find
that all of the configurations reported for droplets in ref. 14 also
appear in shells, in particular the DSS, which is shown in Fig. 2G.
However, in the shell geometry, the diametrical defect is truncated
by the inner sphere, producing two independent defects, as we
observe in our experiments. In both Fig. 2 E and G, the cylinders
represent the director field. The defects can be identified by the

blue and yellow isosurfaces, which indicate the regions of large
splay and bend deformations, respectively. The singular rings,
represented in red, are surrounded by regions of large splay elastic
deformation (Fig. 2 E and G, Insets). The structure of rings is pe-
riodically repeated along the defect, leading to an optical texture of
alternating bright and dark spots and two +1 surface defects at the
boundaries, in agreement with our experiments. The total number
of singular rings in the defect is given by N = b2l=pc− 1, where b c
denotes the integer part and l is the length scale of the system (14),
that is, l=R in droplet and l= h in a shell. To compare the structure
that we observe experimentally with the simulated one, we count
the number of rings N in four bivalent shells with different h=p and
plot it as a function of b2h=pc (Fig. 2H). We find the same tendency
as in simulations, apart from an offset. We attribute this offset to
the fact that the experimental shells are heterogeneous in thickness,
and thus, the average shell thickness, h≡R− a, is not the real shell
thickness at the defect sites, hdef . Actually, in our shells, h is typically
larger than hdef , because defects have a tendency to regroup in the
thinnest part of the shell (9), which explains the shift of the ex-
perimental curve toward larger values of b2h=pc. All these results
suggest that the observed structure indeed corresponds to the
numerically predicted one.

Monovalent Shells.Monovalent cholesteric shells appear at higher
chirality. They display an optical texture that is reminiscent of
the spherulitic or Frank-Pryce texture (Fig. 3A), widely reported
for droplets (11). This configuration is characterized by a radial
defect of charge +2. Although initially considered as a singular
disclination, the nature of this radial defect is still an open
question (11, 14, 21). Recent numerical studies on cholesteric
droplets have actually suggested that it is a nonsingular defect
with double-helix structure (14). Our simulations in a shell-like
geometry lead to the same conclusion, as shown in Fig. 3A,
where the yellow isosurfaces correspond to two λ+1-disclinations
winding around each other. The ends of the λ+1-lines produce
two pairs of close +1 surface defects at the bounding spheres.
Remarkably, experiments on shells seem to reveal the existence
of such an intricate structure. Fig. 3C shows a top view of an
experimental monovalent shell. The eight color brushes (pink
and yellow) emerging from the center of the shell indicate a
global topological charge of +2. However, a close view of the
central defect (Fig. 3C, Inset) reveals that it is actually composed
of two +1 surface defects. Interestingly, the distance between the
two surface defects becomes larger with p. By making this dis-
tance sufficiently large, we are able to optically distinguish two
lines winding around each other (Fig. 3D). Note that although
λ+1-lines are not singular, they provoke a strong distortion in the
nearby director field, which explains why we see micrometer-
thick lines under the microscope (22). By playing with the focal
plane, we can see that the two lines keep winding around each
other deeper down the shell. These experimental results are in
accordance with the numerical simulations, supporting the idea
that the radial defect is indeed composed of two distinct dis-
clinations organized in a double helix structure.

Controlling the Number and Position of Defects. The results men-
tioned above strongly suggest that the cholesteric pitch, p, has a
determinant role in the type of defect configuration displayed by
the shell. To find the exact parameters controlling the type of
defect configuration in the shell, we consider all of the relevant
length scales of our system, which are p, R, and h. We can assume
that the minimum thickness of the shell, h0, is the same for all of
the shells. This assumption seems reasonable because h0 is a
small distance that results from the disjoining pressure appearing
when the PVA layers coating the inner and outer droplets of the
double emulsion get very close. Experimental measurements of
h0 indicate that this value is at the limit of resolution of the
optical microscope, that is, ∼ 1  μm. Therefore, we investigate the
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Fig. 3. Cholesteric shells with monovalent defect structure. (A, C, and D) Cross-
polarized images of experimental shells with different helical pitch p: 2.7, 3.5,
and 9.3  μm, respectively. (Scale bar, 20  μm.)A is a side view of the shell, showing
a radial defect spanning the shell, whereas B and C are top views of the shell,
showing the two disclinations composing the radial defect. The arrows point to
the ends of the disclinations, which wind around each other deeper down the
shell. (B) Simulated cholesteric shell with radial spherical structure (RSS).
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effect of h=R and p=R, which are the two dimensionless param-
eters that can be built if R is chosen as reference length scale.
We characterize the type of defect configuration by the param-

eter Δθ, which is the angular distance between defects at the
outermost surface of the shell. Positive values of Δθ correspond to
bivalent shells, where the two defects are separated by a certain
nonzero angular distance, whereas Δθ= 0 is ascribed to mono-
valent shells, where we consider that the two defects are fused into
a single entity. We first plot Δθ as a function of u= h=R for dif-
ferent values of the cholesteric pitch (Fig. 4). Each point on this
plot refers to a different shell, at equilibrium, with its specific ge-
ometry. Different symbols/colors correspond to different values of
p, namely 9.3, 6, and 3.6 μm. The nematic case, corresponding to
p→∞, is also included in the plot and represented by filled squares
(9). Because h0 is a constant, u is a measure of the shell thickness
gradient: u= ðh0 + hmaxÞ=2R, where hmax is the larger local thick-
ness of the shell. For the shells considered in Fig. 4, hmax varies
between 1  μm for low u values, and 100  μm for high u values.
As a general trend, we observe that Δθ decreases when in-

creasing u, first rapidly and then slowly. This tendency is the same
for all of the values of p, including p→∞, which indicates that in
bivalent shells, the angular distance between defects only depends
on the geometry of the shell. Interestingly, we observe that above
a certain critical value upbm, which depends on p, Δθ drops to zero.
This corresponds to the experimental fact that, above upbm, we do
not observe any shell with bivalent configuration. Conversely,
below a critical value upmb, which is smaller than upbm and also
dependent on p, the monovalent configuration disappears. The
discontinuity in Δθ is represented by descending and ascending
dashed lines in Fig. 4. If we now plot the critical values upbm and
upmb as a function of the second dimensionless parameter, p=R, we
observe a linear behavior, as shown in Fig. 4 (Inset). The slopes of
these curves set two critical values of the confinement ratio, de-
fined as c= h=p, at which discontinuous transitions between
configurations are expected. Those values are cbm = 3.1 for the
bivalent–monovalent transition, and cmb = 1.3 for the mono-
valent–bivalent transition, indicating the existence of hysteresis.
From these results, we conclude that the transition between the

bivalent and monovalent configurations is controlled by c. The
regions of exclusive existence of each of the configurations, as
well as the zone of coexistence, are indicated in Fig. 4 (Inset).
The above-mentioned continuous decrease of Δθ as a function

of u has also been observed in previous experimental (9) and
numerical (23) works dealing with bivalent nematic shells. The
equilibrium value of Δθ has been thought to result from the
balance of two opposing forces: (i) a repulsive defect interaction
of elastic nature and (ii) an attractive force due to the shell
thickness gradient, which tends to bring the defects to the thin-
nest part of the shell. To test this hypothesis with our experimental
results, we develop a simple model that allows us to obtain an
estimative expression of these forces. Because Δθ seems to be in-
dependent of the nematic or cholesteric nature of the system (Fig.
4), we ignore the details of the molecular ordering in the system
and consider the global cholesteric arrangement in the shell as a
superposition of two-dimensional nematic layers. Actually, the
value of p measured in experimental and simulated bivalent shells
is very close to the spontaneous pitch of the liquid crystal, revealing
a sort of layer organization in the shell (14). Although this ap-
proach means a great simplification of the problem, it captures
its underlying physics, as shown thereafter.
We start from the surface energy E=u.l. associated with two +1

defects interacting on a sphere of radius R (2). For small angles Δθ,
it becomes E=u.l. = 2E0 − 2πK logðθ= ffiffiffi

2
p Þ, where K is the single

elastic constant, 2θ=Δθ, E0 = πK logðR=rcÞ is the energy per unit
length of each defect, and rc is the radius of the defect core (2, 3).
We take rc ’ 0.01R, corresponding to the average thickness of the
DSS lines that we measured (’ 1  μm). At the first level of ap-
proximation, we write the integrated free energy of the eccentric
shell as E=E=u.l.hðθ, uÞ, where hðθ, uÞ is the length of the defect
lines calculated by a conformal mapping technique for non-
concentric shells (23). The latter technique uses an electrostatic
analogy to map the equipotential lines to the inner and outer
surfaces of the shell, and the electric field to the defect lines. We
find that at small angles θ, hðθ, uÞ= h0 + gðuÞ  θ2=2+ oðθ2Þ, where
g is a function of u only. The force f between defect lines, derived
from the free energy through f =−∂θE=R, then reads

f =
2πK
R

�
h0
θ
+
gðuÞ  θ

2

�
1+ 2 log

�
θffiffiffi
2

p
�
−
2E0

πK

��
. [1]

The equilibrium position of the disclination lines is thus obtained
by solving f = 0, which yields Δθth =Fðu, h0Þ. Fig. 4 displays the
obtained Δθth as a function of u for different values of h0, ranging
from 0.01R to 0.05R (solid lines). We obtain a very good agree-
ment with the experimental data for h0 = 0.03R ’ 2  μm, which is
a reasonable value for our system. The very good agreement
between the experimental data and our model, together with
the reasonable values obtained for the fitting parameter, shows
that our simple approach captures the physics controlling the
position of defects in bivalent experimental shells.

Transitions Between Configurations. Finally, we take advantage of
the fine control that we can achieve on u to force the transition
between the monovalent and bivalent defect configurations. We
consider a shell that initially has a bivalent defect configuration
(Fig. 5A) where the two +1 outer surface defects are clearly
visible. Then, we add an aqueous solution of CaCl2 to the outer
phase, which imposes a difference in osmotic pressure between
the inner droplet and the outer continuous phase. Because the
5CB–CB15 mixture is slightly permeable to water, it acts as a
membrane that allows the inner droplet to deswell. In this way, the
inner radius of the shell a progressively decreases, and therefore u
increases (10). We calculate the typical ratio of the viscous to
elastic forces, namely the Ericksen number Er= ηvL=K, asso-
ciated with this deswelling experiment. In our case, η and K are,

Fig. 4. Evolution ofΔθ as a function of u=h=R for different cholesteric mixtures
of 5CB and CB15. Each point corresponds to a different experimental shell with a
given geometry u, and each symbol/color corresponds to a different value of
p (p= 9.3, 6, or 3.6 μm). The data for p→∞ (nematic) have been taken from ref. 9.
The solid lines represent the theoretical curves, for different values of the
minimal shell thickness h0, obtained from solving f = 0 in Eq. 1. The dashed lines
containing down arrows indicate the critical values of u, denoted ubm

* , above
which no bivalent shells are found. The dashed lines containing up arrows in-
dicate the critical values of u, denoted ubm

* , belowwhich nomonovalent shells are
found. To facilitate the reading of the image, we have plotted these lines only for
the blue and red symbols. (Inset) Evolution of ubm

* and ubm
* as a function of p=R.

The gray region corresponds to the zone where the two configurations coexist.

9472 | www.pnas.org/cgi/doi/10.1073/pnas.1525059113 Darmon et al.

www.pnas.org/cgi/doi/10.1073/pnas.1525059113


respectively, the viscosity and average elastic constant of the
5CB–CB15 mixture, v∼Δh=Δt is the fluid velocity, where Δh is
the typical thickness variation over the time of the experiment
Δt, and L∼Δh is the relevant length scale of the system. We
find that Er ’ 10−4, showing that our experiment can be con-
sidered as quasi-static. The continuous variation of u during the
experiment has an impact on the shell defect configuration. As u
increases, the two defects get progressively closer, as shown in the
sequence of images of Fig. 5. Interestingly, the defects do not ap-
proach each other by following the shorter path––a geodesic––but
by turning around each other (Movie S1). This fascinating defect
waltz leads to the trajectories plotted in Fig. 5E, where each
defect is represented by a different symbol and the progressive
color variation indicates temporal evolution. Eventually, at a
certain critical angular distance Δθcrit, the two defects jump to-
gether toward the center of the shell and assemble to form a single
defect of total winding number +2 (Fig. 5D). In rare cases, the
system can get trapped in intermediate metastable states (Fig. 1),
which allows us to get information on the structure of the +2 defect
during its formation. The dynamics of the transition, where the two
defects rotate around each other, together with the braided meta-
stable structures that we observe, suggests that the final defect has a
double-helix structure, as our numerical simulations suggest. Re-
markably, the transition between the bivalent and monovalent de-
fect configurations turns out to be reversible. When salt is added to
the inner phase, so that the inner droplet swells and u progressively
decreases, we observe that the +2 defect splits out into two in-
dependent +1 defects, which subsequently move away from each
other by following the same type of waltz dynamics mentioned above.
The intricate rotational dynamics of the transition seems to be

related to the chiral nature of our liquid crystal. A natural ex-
planation for this rotation could be the so-called Lehmann effect
(19, 24), and more specifically, its overlooked chemical version
(25, 26). According to the latter, a current of matter, J, in the
direction of the cholesteric helix can provoke a rotation of the di-
rector field. Due to the absence of mirror symmetry of the mole-
cules, the current induces a torque Γ on the liquid crystal molecules,
resulting in a global rotation of the director field. The torque is
linearly related to the current through Γ=−νJ, where ν is called the
Lehmann coefficient. In our geometry, the outward current J of
water molecules, which diffuse through the liquid crystal, is quasi-
radial and directed along the helical axis, and therefore might lead
to a Lehmann effect. To test this hypothesis, we compare the di-
rection of rotation of the liquid crystal in swelling and deswelling
experiments, where J has opposite signs. Consistently with a
Lehmann effect, we observe that changing the sign of J provokes a
change in the direction of rotation of the liquid crystal. In addition,
we always find that Γ · J > 0 (Fig. 5E), which is expected for a right-

handed cholesteric liquid crystal, where ν< 0. Chirality therefore
induces one main effect in the dynamics, namely the winding tra-
jectory of the defects, clearly visible in Fig. 5E.

Conclusions
We have investigated cholesteric shells displaying bivalent and
monovalent configurations. Our experiments were performed along
with numerical simulations to reveal the intricacy of the observed
defect textures. Our results suggest that bivalent shells are charac-
terized by two highly structured defects, each of them composed of
several disclination rings that pile up through the shell, whereas
monovalent shells display a radial defect composed by two close
disclination lines that wind around each other in a double-helix
fashion. The stability of the bivalent configuration against the
monovalent one is controlled by c= h=p, that is, the number of
helical turns that can be accommodated in the shell thickness. The
position of the defects in the bivalent configuration is controlled by
the shell thickness gradient, which is well captured by a simple
theoretical model. We have also shown that by continuously varying
the shell geometry, it is possible to induce a transition between the
two configurations. The transition involves a fascinating waltz dy-
namics, which seems to stem from a chemical Lehmann effect.
Our study on monovalent and bivalent cholesteric shells has

highlighted the complexity of cholesteric structures in shell-like
geometries. This complexity disappears at infinitely high chole-
steric pitch, that is, in the nematic limit, where other types of
defects have been reported (8, 9). Future research might con-
sider cholesteric shells with very large helical pitch, because they
are expected to display novel defect configurations, hybrid between
those observed in nematics and highly chiral cholesterics (27).

Materials and Methods
Simulations were performed using the Landau–de Gennes (LdG) free-energy
minimization on a finite-difference grid. As in the previous simulations in
droplets (14), the following LdG free energy for the tensorial order pa-
rameter Qij is used:

F =
Z
bulk

�
A
2
QijQji +

B
3
QijQjkQki +

C
4

�
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The first two contributions account for the phase transition and bulk elas-
ticity, whereas the last one ensures planar degenerate anchoring. The aux-
iliary tensors ~Qij and ~Q

⊥
ij , respectively, denote the Q tensor with added trace

and its projection to the surface, as defined by Fournier and Galatola (28),
and q0 = 2π=p is the intrinsic wave number of the cholesteric pitch.

A B C D E

Fig. 5. Dynamical transition from a bivalent shell into a monovalent shell. (A–D) Top-view pictures of the shell taken during the transition. In this experiment,
the disclinations are located at the bottom of the shell, where it is thinnest. (E) Renormalized trajectories of the outer surface defects obtained from plotting
Ydef = ðydef − ycentÞ=Rinit versus Xdef = ðxdef − xcentÞ=Rinit, where Rinit and ðxcent, ycentÞ, respectively, designate the initial outer radius and the ðx, yÞ coordinates of
the center of mass of the trajectory. The progressive color variation indicates the temporal evolution of the system, from the beginning (blue) to the end (red)
of the deswelling experiment. Each symbol––star or square––is associated with one defect. (A–D) Cross-polarized images. (Scale bar, 20  μm.)
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Movie S1. Top view of a cholesteric shell undergoing a topological transition where two defects merge into a single defect. During the transition, the defects
turn around each other in an intriguing “defect waltz.”

Movie S1
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