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Elastic interactions between topological defects in chiral nematic shells
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We present a self-consistent and robust theoretical model to investigate elastic interactions between topological
defects in liquid crystal shells. Accounting for the nonconcentric nature of the shell in a simple manner, we are
able to successfully and accurately explain and predict the positions of the defects, most relevant in the context
of colloidal self-assembly. We calibrate and test our model on existing experimental data and extend it to all
observed defects configurations in chiral nematic shells. We perform experiments to check further and confirm
the validity of the present model. Moreover, we are able to obtain quantitative estimates of the energies of +1
or +3/2 disclination lines in cholesterics, whose intricate nature was only reported recently [A. Darmon, et al.
Proc. Natl. Acad. Sci. USA 113, 9469 (2016)].
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Topological defects are a common feature of many forms
of condensed matter [1,2]. They are notably encountered in
solids, for which they provide very specific electrical and
mechanical properties [3]. Topological defects are also crucial
in other fields such as magnetism [4] or cosmology [5].
Although the underlying physics is in each case different,
the mathematical framework is universal: The defects are
defined as singularities in the order parameter field. One of the
most common occurrences of topological defects in condensed
matter is in liquid crystals [6–8], where they have been widely
studied since Lehmann’s first description of liquid crystalline
mesophases [9].

One of the simplest ways to stabilize defects in liquid
crystals is to induce topological constraints [10]. When a
two-dimensional nematic phase is coated onto the surface of
a sphere, frustrations in the orientational order necessarily
stem from curvature and result in the presence of topological
defects. In this context, an original idea, proposed by Nelson
[11], was to use spherical nematic particles as mesoscopic
atoms. The defects could, once functionalized, act as sticky
patches able to induce directional bonds between particles.
These anisotropic building blocks are then expected to
reproduce crystalline structures at the mesoscale via self-
assembly. Good control over the valence, i.e., the number
of defects, and the bond directionality, i.e., the position of
the defects, is thus crucial in this context. Since Nelson’s
seminal paper, many experimental studies focused on nematic
shells have demonstrated the applicability of such concepts
[12–15]. In addition, unexpected symmetries and valences
have been recently reported in cholesteric shells [16,17],
in which there is a spontaneous helical arrangement of the
director field. Remarkably, it is possible to achieve good
control over the equilibrium defect positions by tuning the shell
thickness heterogeneity [13,16,18]. This feature could then be
further exploited to produce shells with a variable bonding
directionality. Although numerical studies have been able to
capture this idea at the qualitative level [18–21], no theoretical
model is yet able to predict the equilibrium defect positions
quantitatively, despite the potential interest for applications.
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l’Université, 75007 Paris, France.

In this paper we present a robust and self-consistent
approach to compute and predict defect positions in eccentric
cholesteric shells (see Fig. 1). Minimizing the free energy,
which we write as surface energy terms multiplied by carefully
chosen shell thicknesses, we derive the angular positions
of the defects as a function of the shell geometry for all
possible defect configurations. We first compare our model
to available experimental data on the tetravalent configuration,
which notably allows us to set the value of the adjustable
parameter of our model, namely, the minimum shell thick-
ness. We then successively address all other defect config-
urations together with experimental data. After performing
self-consistency checks, we use our model to estimate the
energies of recently reported nontrivial defect structures.
[16,17,22].

On a sphere, a two-dimensional in-plane director field
must fulfill the topological requirements of the Poincaré-Hopf
theorem [23–25]. The latter can be written as

∑
i mi = +2,

where mi is the charge or winding number, quantifying the
amount of rotation of the director field around defect i. Hence,
an overall charge of +2 needs to be distributed over one
or several defects, whose winding numbers are integers or
half-integers, consistent with the twofold symmetry of the
nematic phase. Theoretical calculations have shown that the
ground state of such a system is tetravalent, composed of four
+1/2 defects located at the vertices of a regular tetrahedron
[26]. Interestingly, this configuration has been experimentally
found in nematic and cholesteric shells [12,17]. Besides, four
additional configurations with the following defect charges
have been recently reported in chiral nematic shells [17]: (i)
two +1 defects, (ii) one +1 defect and two +1/2 defects,
(iii) one +3/2 defect and one +1/2 defect, and (iv) one +2
defect. In the following, we investigate each of the above
configurations in the stated order for reasons that will become
clear later in this paper.

Thickness heterogeneities in the shell are due to a density
mismatch between the inner phase and the liquid crystal
phase [see Fig. 1(a)]. As suggested in Refs. [13,20], we
here quantitatively argue that the equilibrium positions of
the defects result from a balance of two forces: (i) an elastic
repulsion that drives defects away from each other and (ii) an
attractive thickness gradient arising from the nonconcentricity
of the shells (see Fig. 1). As a result, topological defects tend
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FIG. 1. (a) and (b) Side view optical microscopy pictures of an
eccentric cholesteric liquid crystal shell. The scale bar is 10 μm. (c)
Side view schematics of an eccentric shell. The concentric cholesteric
layers are represented by thin solid gray lines. The thick gray line on
the inner sphere signifies the region where the director field becomes
slightly distorted to satisfy the tangential anchoring. (d) Schematics
of defects on the outer sphere.

to regroup in the thinnest part of the shell. Figures 1(a) and
1(b) display a side imaging of a typical cholesteric shell. The
uncompressed cholesteric layers are arranged as concentric
spheres, starting from the outer surface of the shell, and the
observed helical periodicity in the shell matches the actual
pitch of the chiral solution, meaning that there is no frustration
of the spontaneous cholesteric twist. Due to the presence of
the inner droplet and the eccentric nature of the shell, each
layer ends at a different position on the inner surface, as
indicated by the arrows in Fig. 1(b). Note that this arrange-
ment is, a priori, not compatible with a planar degenerate
anchoring on the inner surface, suggesting the existence of
a small region around the inner sphere where the director
field becomes slightly distorted to overcome this issue [see
Figs. 1(b) and 1(c)]. However, this surface contribution is a
priori small compared to the other elastic costs in the system.

In cholesteric shells, the arrangement of the director field
can thus be described as concentric layers with a helical
twist matching the actual pitch of the cholesteric solution.
Remarkably, if such a director field is introduced in the
Frank-Oseen free-energy density, the twist term vanishes [27].
Theoretically, it was even shown that for cholesteric droplets,
this director field minimizes the free energy of the system [27].
It is precisely the spontaneous cholesteric twist that makes
the twist contribution null in these spherical systems. At the
first level of approximation, we can thus ignore the details of
the molecular ordering. In particular, since the spontaneous
helical pitch is everywhere satisfied in this geometry, we
consider the global cholesteric arrangement as a superposition
of two-dimensional nematic layers. Interestingly, the above-
mentioned onionlike arrangement ensured by the spontaneous

twist is not necessarily present in nematic shells where the
director field can have a non-negligible radial component
[20,28]. For this reason, cholesteric shells are more adapted to
our approach than their nematic counterparts.

In the one elastic constant approximation, the surface free
energy E of a two-dimensional in-plane director field with
topological defects interacting on a sphere can be written as
[11]

E = πK

(∑
i

E0
i +

∑
i<j

Uij

)
, (1)

where K is the elastic constant, E0
i the dimensionless energy of

defect i, and Uij the dimensionless interaction energy between
defects i and j , with

E0
i = m2

i log(R/rc,i), (2a)

Uij = −mimj log(1 − cos βij ), (2b)

where R is the sphere radius, rc,i the defect core radius, and
βij the central angle between defects i and j [see Fig. 1(d)].
For small angles, Eq. (2b) reduces to

Uij = −2mimj log(βij /
√

2). (3)

In order to compute the total free energy of the system and
account for the eccentric nature of the shell, we proceed as
follows. Rather than performing a highly nontrivial integration
of the energy over the nonconcentric system, we aim at
capturing the essence of the interaction in a simple effective
way. To do so, we multiply the different terms in the two-
dimensional free energy of Eq. (1) by local shell thicknesses
taken according to the physical grounds provided below. In
the following, these thicknesses are expressed in units of the
outer radius of the shell R. For the self-energy E0

i , we simply
use the local thickness of the shell at defect i, denoted hi . For
the interaction energy, we use the minimal thickness along the
geodesic path between defects i and j on the outer sphere,
denoted hmin

ij . The reason is as follows. As mentioned above,
the inner water droplet does not compress the cholesteric
layers, which, on the contrary, are interrupted at its boundary
[see Figs. 1(a) and 1(b)]. We thus assume that the defect
interaction is mostly mediated by the elastic energy associated
to the layers that are not disrupted by the inner droplet, the
extension of those layers being proportional to hmin

ij . The
total dimensionless free energy F = E/πKR of the eccentric
liquid crystal shell can then be written as

F =
∑

i

E0
i hi +

∑
i<j

Uijh
min
ij . (4)

Multiplying by local thicknesses is at the core of the present
model and corresponds to the simplest approach where
the attractive thickness gradient is taken into account. The
approach is thus expected to be most accurate when the defects
are close to each other.

Due to the azimuthal symmetry of the eccentric shell, the
local thickness of the shell denoted by h is a function of the
polar angle θ only [see Fig. 1(d)]. As a result, the thicknesses
involved in Eq. (4) are such that hi = h(θi), where θi denotes
the polar angle of defect i, and hmin

ij = h(θmin
ij ), where θmin

ij is
the polar angle where h is minimal along the geodesic path
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FIG. 2. Configuration with four +1/2 defects. Shown on the
top left is the top view image between crossed polarizers of a
4[+1/2] nematic shell. The bottom left shows the schematics of the
defect arrangement. On the right is the angular distance β between
nearby defects as a function of u. The blue squares correspond to
experimental data from [13] and the solid red line is the result of the
minimization of the free energy in Eq. (7) with h0 = 0.02.

between i and j . When varying the geometry of the shell, h(θ )
is also an implicit function of two additional dimensionless
parameters: (i) the renormalized minimal thickness h0 and
(ii) u ≡ (R − a)/R, where a denotes the inner radius of the
shell [see Fig. 1(c)]. In our experiments, we observe that h0 is
constant and independent of the shell nature and geometry. On
physical grounds, this can be explained by the fact that it is the
disjoining pressure between the inner and outer interfaces that
sets the value of h0 [16] (see [18] for a recent numerical study
on the effects of varying h0). Hence, we are only left with the
parameter u, which actually measures the thickness gradient
within the shell, and thus rigorously write h(θ ; u) for the local
thickness. Finally, for each of the defect configurations, we
minimize the total free energy F [see Eq. (4)] with respect to
the angular positions and obtain the equilibrium angles as a
function of u only. In the small-angle approximation, one can
easily show using purely geometrical considerations that the
local thickness h(θ ; u) reads

h(θ ; u) = h0 + g(u)
θ2

2
+ o(θ2), (5)

where g is a dimensionless function of u only, reading

g(u) = (1 − h0)(u − h0)

1 − u
. (6)

Let us start with the tetravalent 4[+1/2] configuration. To
confront our model, we use experimental data of nematic shells
from Ref. [13]. The reasons for such a choice are twofold.
First, all defects in this configuration are singular lines such
that the arrangement of the director field remains essentially
two dimensional. As mentioned above, this feature is crucial
in our approach. Second, the exact structure of those lines is
well known, which, as we will see below, is not always the case
in cholesterics. This configuration is thus the best candidate
to check the validity of the present model. It is notably
characterized by four outer defects located at the vertices of a
folded rhombus (see Fig. 2). The experimental central angle β

between two nearby defects, identical for each pair of defects
and taken from Ref. [13], is plotted as a function of u. Noting
that θ1 = θ3, θ2 = θ4, and h(θmin

13 ; u) = h(θmin
24 ; u) = h0, the

free energy of the 4[+1/2] configuration reads

F4[+1/2](θ1,θ2; u) = 4U12h
(
θmin

12 ; u
) + (U13 + U24)h0

+ 2E0
1[h(θ1; u) + h(θ2; u)], (7)

where the interaction energies read

U12(θ1,θ2) = −1

4
log

(
θ2

1 + θ2
2

2

)
, (8a)

U13(θ1) = −1

2
log(θ1

√
2), (8b)

U24(θ2) = −1

2
log(θ2

√
2), (8c)

and the angle θmin
12 in Eq. (7) is given by

θmin
12 = θ1θ2√

θ2
1 + θ2

2

. (9)

The two parameters θ1 and θ2 fully characterize the positions of
the defects. We set rc,1/2 ∼ 10 nm ∼ 10−4R for R = 100 μm,
consistently with reported values [8,29]. Minimizing the free
energy with respect to θ1 and θ2 and noting that β =

√
θ2

1 + θ2
2 ,

we obtain the equilibrium curve β(u) (see Fig. 2). Fitting the
experimental data to β(u) with respect to h0 yields excellent
agreement for h0 = 0.02. The latter value of h0, equal to 1 μm
when R = 50 μm, is consistent with the current and previous
experimental studies [13,16]. This first result can be seen as a
calibration of the model and we will use the above value of h0

as a reference throughout the following.
We now look into the configuration consisting of two +1

disclination lines. In Fig. 3 we report data obtained from
a previous study [16], measured for shells with different
cholesteric pitches p = 9.3, 6, and 3.6 μm (see green squares
in Fig. 3). Noting that θ1 = θ2 ≡ θ and h(θmin

12 ; u) = h0, the
free energy of the 2[+1] configuration reads

F2[+1](θ ; u) = U12h0 + 2E0
1h(θ ; u), (10)

where the interaction energy reads

U12(θ ) = −2 log(θ
√

2). (11)
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FIG. 3. Configuration with two +1 defects. Shown on the top
left is the top view image between crossed polarizers of a 2[+1]
cholesteric shell. The bottom left shows the schematics of defect
arrangement. On the right is the angular position θ as a function of
u. Green squares show the experimental data from [16] for which a
rolling average was performed. The inset displays a picture of the
intricate structure of the +1 disclination in a cholesteric shell.
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FIG. 4. Configuration with one +1 and two +1/2 defects. Shown
on the left are angular positions θi as a function of u. The inset
displays the vertex angle α of the isosceles triangle as a function
of u (experimental results are shown as gray squares). The top right
is top view image between crossed polarizers of a [+1] + 2[+1/2]
cholesteric shell with a zoom-in on the defects (inset). The bottom
right shows the schematics of the defect arrangement.

For this configuration as well as for the following, the core
radii are set according to the reference value rc,1/2 through
rc,i = (mi/mj )rc,j [29]. Minimization with respect to θ yields
the red dashed line in Fig. 3, which does not quantitatively
capture the experimental behavior. The reason is that +1 lines
in cholesteric shells are actually not simple singular lines.
Our recent experiments and numerical simulations [16] have
shown that this structure is actually composed of a stack of
disclination rings (see the inset of Fig. 3), with a director field
escaping between each ring. The energy of such a defect is thus
expected to be different from that of a purely singular line. The
proper self-energy will then be written as γ1E

0
1 , where γ1 is

a scalar that is a priori unknown. It is worth emphasizing
here that only the self-energy of the defect is altered. Indeed,
although the structure of the defect is intricate, it can still be
seen as a +1 disclination when looking sufficiently far off.
Hence, since the interaction energy is far field, it should not
be affected by the details of the defect structure. The best fit is
obtained for γ1 = 0.28, displayed as a solid red line in Fig. 3.
Note that we obtain γ1 < 1, which is fully consistent with the
escaped nature of the disclination. It is worth mentioning that
this approach, which we will self-consistently validate below,
actually represents a method to experimentally estimate the
energy of this intricate structure.

Having addressed configurations made of +1/2 and +1
defects only, the next logical step consists in studying a config-
uration containing both, namely, the triangular configuration
[+1] + 2[+1/2]. To fully parametrize the positions of the
defects on the outer sphere, three independent parameters,
namely, θ1, θ2(= θ3), and α, which is the vertex angle of
the isosceles triangle, must be considered (see Fig. 4). The
dimensionless free energy can be written as

Ftriangle(θ1,θ2,α; u) = 2U12h
(
θmin

12 ; u
) + U23h

(
θmin

23 ; u
)

+ γ1E
0
1h(θ1; u) + 2E0

2h(θ2; u), (12)

where the interaction energies in Eq. (12) read

U12(θ1,θ2,α) = − log

(
β12√

2

)
, (13)

U13(θ1,θ2,α) = −1

2
log

(
β23√

2

)
, (14)

with central angles reading

β12 = θ1 cos
(α

2

)
+

√
θ2

2 − θ2
1 sin2

(α

2

)
, (15)

β23 = 2 sin
(α

2

)[
θ1 cos

(α

2

)
+

√
θ2

2 − θ2
1 sin2

(α

2

)]
, (16)

and the angles θmin
12 and θmin

32 in Eq. (12) reading

θmin
12 = cos

(α

2

)[
θ1 cos

(α

2

)
+

√
θ2

2 − θ2
1 sin2

(α

2

)]
− θ1,

(17)

θmin
23 = 1

2
tan

(α

2

)[
θ1 cos

(α

2

)
+

√
θ2

2 − θ2
1 sin2

(α

2

)]
.

(18)

We note that the self-energy of the +1 defect has naturally been
set to γ1E

0
1 , consistent with the 2[+1] case, and E0

2 denotes the
self-energy of the +1/2 defects. The equilibrium solutions θ1

and θ2 are displayed in Fig. 4, for both γ1 = 1 (dashed lines)
and γ1 = 0.28 (solid lines). Most importantly, when plotting
the vertex angle α as a function of u (see the inset of Fig.
4), we see that this angle is actually much larger for γ1 =
1 than for γ1 = 0.28. To compare this theoretical prediction
of the vertex angle to experimental data, we have generated
cholesteric shells using microfluidics [12,30] and measured
α for different cholesteric shells (see the gray squares in the
inset of Fig. 4). One can see that the model with γ1 = 0.28
is clearly better than with γ1 = 1. The results on the triangle
configuration constitute a self-consistency check that validates
the model and confirms the estimate of the energy found for
the intricate +1 disclination in cholesteric shells.

Let us finally investigate the last configuration, composed
of two defects of nonequal charges +3/2 and +1/2 [17]. In
the following, the indices 1 and 2, respectively, correspond to
the +3/2 and +1/2 defects (see Fig. 5). In this configuration,
the dimensionless free energy reads

F[+3/2]+[+1/2](θ1,θ2; u) = U12h0 + E0
1h(θ1; u)

+E0
2h(θ2; u), (19)

where the interaction energy reads

U12(θ1,θ2) = −3

2
log

(
θ1 + θ2√

2

)
. (20)

The equilibrium angles θ1 and θ2 are plotted as a function
of u in Fig. 5 (dashed lines). As expected, since E0

1 is much
larger than E0

2 , θ1 is much smaller than θ2 for all u. However,
our experiments reveal that θ1,expt � θ2,expt for all u, meaning
that the true energy of the +3/2 line should be very much
comparable to that of the +1/2. Hence, the energy of the +3/2
disclination must be corrected by a factor denoted by γ3/2.
This necessary correction is, here as well, consistent with the
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FIG. 5. Configuration with one +3/2 defect and one +1/2 defect.
Shown on the left are angular positions θi as a function of u. The top
right is the top view image between crossed polarizers of a [+3/2] +
[+1/2] cholesteric shell. The bottom right shows the schematics of
the defect arrangement.

intricate structure of the nonregular +3/2 defect line, actually
made of a nonsingular disclination wound around another
singular line [17]. To match the experimental observations,
the energy of the real +3/2 line must naturally be equal to that

of the +1/2 line; one finds γ3/2 = E0
2/E

0
1 � 0.13 (see the solid

blue line in Fig. 5). Finally, the single +2 defect equilibrium
configuration is trivial, as there is no interaction term Uij ; it is
naturally always located at θ = 0.

We have shown that our self-consistent model is able to
successfully explain and predict defect positions in chiral
nematic shells. In the context of colloidal self-assembly,
fine-tuning of defect positions is of crucial importance as it
controls the bond directionality of these superatom candidates
[11,13]. Moreover and equally important, our model allows
us to estimate the energies of the recently reported highly
nontrivial structures displayed by cholesterics in spherical
geometries. More generally, the framework developed in this
paper opens the way to a method to measure unknown energies
of defect cores.

We thank A. Fernandez-Nieves for fruitful discussions. We
acknowledge support from Institut Pierre-Gilles de Gennes
(Laboratoire d’Excellence, Investissements d’Avenir Pro-
grams No. ANR-10-IDEX 0001-02 PSL and No. ANR-10-
EQPX-31) as well as the French National Research Agency
(ANR) through Grant No. 13-JS08-0006-01.

[1] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
[2] D. R. Nelson, Defects and Geometry in Condensed Matter

Physics (Cambridge University Press, Cambridge, 2002).
[3] T. Mura, Micromechanics of Defects in Solids (Springer Science

and Business Media, New York, 2013).
[4] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.

Matsui, N. Nagaosa, and Y. Tokura, Nature (London) 465, 901
(2010).

[5] T. W. B. Kibble, in Topological Defects and the Non-Equilibrium
Dynamics of Symmetry Breaking Phase Transitions, edited by
Y. M. Bunkov and H. Godfrin, NATO Science Series, Series
C: Mathematical and Physical Sciences (Springer Netherlands,
Dordrecht, 2000), Vol. 549.

[6] K. Jänich, Acta Appl. Math 8, 65 (1987).
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