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Abstract. Empirical data reveals that the liquidity flow into the order book
(limit orders, cancellations and market orders) is influenced by past price changes.
In particular, we show that liquidity tends to decrease with the amplitude of
past volatility and price trends. Such a feedback mechanism in turn increases the
volatility, possibly leading to a liquidity crisis. Accounting for such effects within a
stylized order book model, we demonstrate numerically that there exists a second
order phase transition between a stable regime for weak feedback to an unstable
regime for strong feedback, in which liquidity crises arise with probability one. We
characterize the critical exponents, which appear to belong to a new universality
class. We then propose a simpler model for spread dynamics that maps onto a
linear Hawkes process which also exhibits liquidity crises. If relevant for the real
markets, such a phase transition scenario requires the system to sit below, but
very close to the instability threshold (self-organised criticality), or else that the
feedback intensity is itself time dependent and occasionally visits the unstable
region. An alternative scenario is provided by a class of non-linear Hawkes process
that show occasional ‘activated’ liquidity crises, without having to be poised at
the edge of instability.
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1. Introduction

Why are financial markets so prone to liquidity crises and crashes? It is now well estab-
lished that market volatility is too high to be explained by fluctuations of fundamental
value. In particular, a large fraction of large price jumps (say, 4-σ events at the 1 min
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time scale [1], or major daily moves [2, 3]) cannot be explained by significant news.
These jumps seem to be rather the result of endogenous feedback loops that lead to liq-
uidity seizures. The memory of most spectacular ones is still vivid, such as the infamous
S & P500 flash crash of May 6, 2010 [4], or the Treasury bond flash crash of October 15,
2014.

These recent events have triggered a large amount of controversy, in particu-
lar in the general press, pointing fingers at electronic markets and high frequency
traders. However, financial markets have always been unstable. For example on May
28, 1962, the US stock market suffered a flash crash of severity similar to the that
of May 6, 2010 [5]. This happened with good old market makers and, obviously,
no HFT. Upon closer scrutiny one finds that the frequency of large price moves
is remarkably stable over time, once rescaled by volatility, see e.g. [6].5 It is found
to decay as a power-law of the amplitude of the price move—the so-called ‘inverse
cubic-law’ [9].

A plausible general scenario is that of destabilising feedback loops resulting in liquid-
ity breakdown. Consider for example the classic Glosten–Milgrom model [10] relating
liquidity to adverse selection. When liquidity providers believe that the quantity of infor-
mation revealed by trades exceeds some threshold, there is no longer any value of the
bid–ask spread that allows them to break even—liquidity vanishes (see e.g. [6], chapter
16). Whether real or perceived, the risk of adverse selection is detrimental to liquidity.
This creates a clear amplification channel that can lead to liquidity crises6. To illus-
trate this point, imagine that the price has recently experienced a burst of volatility.
This creates anxiety for liquidity providers, who fear that some information about the
future price, unbeknownst to them, is the underlying reason for the recent price changes.
The consequence is an increased reluctance to provide liquidity: such liquidity providers
become more likely to cancel their existing limit orders and less likely to refill the limit
order book with new limit orders. Less liquidity is likely to amplify the future price
moves, thereby creating an unstable feedback loop which might result in a runaway
trajectory.

The present paper attempts to capture such feedback effects both empirically and
through stylized models for the dynamics of order books. In section 2, we empirically
show that event rates in the limit order book are indeed affected by past volatility. Using
tick-by-tick order book data from the EURO STOXX contract, we calibrate a generalisa-
tion of the self-exciting Hawkes processes [12, 13]—nowadays commonly used in finance
but initially introduced to reproduce seismic activity. In particular, we show that market
orders and cancellations tend to increase when recent price changes are large, in turn
diminishing the available liquidity, much as argued above. We then turn to the mod-
elling part. In section 3, to study the aggregate outcomes of such feedback in a minimal
setting, we consider an extended version of the Santa Fe order book model [14–16].7

5 Note however that the frequency of co-jumps has escalated in the past decades bearing witness of a significant increase of the level
of synchronization of large price movements across assets, see [7, 8].
6 For an alternative/complementary view on liquidity crises see also [11], where we have shown that liquidity dry outs may also be
understood as the result of lag effects on latent liquidity revealing.
7 The Santa Fe model stands among the first zero intelligence order book models reproducing some statistical properties, such as
the mean bid–ask spread and mean volume profiles near the best quotes. Note however that the model is too simple to account for
volatility levels, volume profile queues far from the best, or to solve the diffusivity puzzle [6].
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The original model consists in a collection of N queues that evolve with
constant additive limit order and market order arrival probability rates, and a
constant cancellation rate per existing limit order. We introduce, in a minimal fash-
ion, the effect of interest to us by letting past prices changes feed back into the event
rates. Our numerical results strongly suggest the existence of a genuine phase transition
from a stable regime to an unstable regime in which liquidity crises arise, as feedback
intensity is increased. We perform a finite size scaling and determine the corresponding
critical exponents. In section 4 we present a simpler model, more prone to analytical
treatment, setting aside the dynamics of the order book, and restricting our attention
to the dynamics of the spread. We argue that phase transition scenario can be rather
generic, but require markets to sit very close to the instability threshold. Another possi-
bility is that the feedback parameter itself is time dependent and occasionally visits the
unstable phase. In section 5, we explore an alternative scenario (activation), in which
occasional liquidity crises arise without having to be poised at the edge of instability or
having a time dependent feedback parameter. In section 6, we conclude.

2. Destabilizing feedback effects: empirical analysis

In this section, we provide an empirical analysis of feedback effects within order book
dynamics. Consider an electronic market with three event types only: limit order
deposition (LO), limit order cancellation (C) and market orders (MO).

It is already well documented that these events strongly interact with one another. A
very useful framework to describe these interactions is provided by Hawkes self-exciting
point processes [17], which have already been applied to order book events in [12, 13,
18–20]. Here we want to extend these studies to account not only for activity feedback
but for price feedback as well, in the spirit of the quadratic Hawkes (Q-Hawkes) model
of Blanc et al [21].8

2.1. Average event rates

Figure 1 displays the average order size, frequency of events and order rate ( = order
size × frequency) as function of the rescaled volume at best for each event type, on the
EURO STOXX contract between 2016/09/12 and 2017/04/28. The volume at best has
been rescaled by the average limit order size in the same time bin, in order to eliminate
intra-day seasonalities. In terms of time scales, we find that for EURO STOXX the
average time between two events is τ e = 0.03s, whereas the average time between two
price changes is τ p = 7s. In addition to the expected bid–ask symmetry, figure 1(c)
reveals that the total rate of cancellations and market orders are roughly proportional
to the size of the queue, whereas limit order posting does not show any appreciable
dependence on the volume at best. This observation motivates the specification of the
Q-Hawkes model that we calibrate below.

8 See also [22] for a recent analysis of the complex interplay between intraday volatility spikes and negative stock market jumps.
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Figure 1. Average order size, frequency of events and order rate ( = order size ×
frequency) as function of volume at best rescaled by the average limit order size,
on the EURO STOXX contract between 2016/09/12 and 2017/04/28.

2.2. A generalized Q-Hawkes model

For the sake of simplicity, we focus on events (LO, C, MO) at the best quotes only, bid
(b) and ask (a) (we do not distinguish between placing limit orders at the current best
or inside the spread). We therefore introduce the following six-dimensional process that
counts all such events:

Nt =
(
NC,b

t , NLO,b
t , NMO,b

t , NMO,a
t , NLO,a

t , NC,a
t

)
.

We further assume that the time dependent intensities λt of these six processes follow
the following Q-Hawkes dynamics:

λt = Qt

(
α0 +

∫ t

0

φ(t − s)dNs +

∫ t

0

L(t − s)dPs +

∫ t

0

∫ t

0

K(t − s, t − u)dPsdPu

)

+

,

(1)

where dPs is the price change at time s in tick units, Qt = diag
(
Qb

t, 1, Qb
t, Q

a
t , 1, Qa

t

)
with

Qb/a
t the volume at the best bid/ask in units of average limit order size. Equation (1)

assumes that cancellations and market orders are multiplicative while limit order event
types are additive, as mentioned above. Note that all kernels L,K are six-dimensional
vectors and φ a six-dimensional matrix.

The first term on the RHS of equation (1) accounts for a stationary exogenous inten-
sity α0 and the second is the classical Hawkes kernel accounting for event interactions9.
The third and fourth terms were introduced in [21] and are new in the context
of limit order book modelling. The third term is a linear feedback term from past
price changes, modelling the fact that up or down price moves directly impact the
rate of cancellations, market orders and limit orders. The fourth is a quadratic feed-
back term on the rate of order book events, which does not depend on the sign of
past price changes. In [21], it was proposed to write the kernel as K (t − s, t − u) =
K dψ(t − s)δ(s − u) + K 1Z(t − s)Z(t − u), with:

9 Whereas the Hawkes contribution is not the focus of the present paper, including it is essential to obtain a reasonable explanatory
power (see below).
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• a diagonal (in time) contribution ψ(t − s) with weights K d, which represents the
feedback of past volatility on current activity, since it can be written in terms of:

Σ2(t) =

∫ t

0

ψ(t − s)(dPs)
2,

• a rank-one contribution, with weights K 1, which amounts to coupling the square of
past trends, as measured by:

R(t) =

∫ t

0

Z(t − s)dPs.

This is the so-called Zumbach effect: past trends, independently of their sign, lead
to an increase in future activity.

In the following we will choose ψ(s) = Z(s) = e−βs.10 One of the main empirical find-
ings of the present study is that these two effects (volatility feedback and Zumbach
effect) are indeed present and large, and capture the destabilizing feedback loop

trends &volatility → lower liquidity → more trends &volatility

as surmised in the introduction.

2.3. Calibration strategy

The Hawkes contribution αH =
∫
φ(s)ds has been studied in several papers in the past

(see e.g. [23]) and is now rather well understood. We first calibrate a Hawkes process
without the price feedback term, i.e. setting L and K to zero in equation (1). We use
the non-parametric technique introduced in [12, 24], expecting bid/ask symmetry. This
means that the coefficients Qα̃0 only depend on the type of events (and not their ‘sign’),
and that the matrix QαH has a block-symmetry: the couplings of b → b are equal to
those of a → a, and that b → a is equivalent to a → b. Our results are qualitatively
similar to those reported in the literature [12, 13, 23, 24]. The matrix structure of the
norm of the Hawkes feedback kernel is shown in figure 2 for the EURO STOXX contract.

Reintroducing the quadratic coupling term K leads to a much more complicated
structure for the nonparametric calibration problem (see [21]), in particular in the
present multidimensional setting. We have not yet been able to implement satisfac-
torily such a scheme, so we devised a simplified protocol to get some partial information
on the structure of the price feedback terms. The idea is to capture the effect of local
trends on the liquidity of the order book. Hence we define the net flux of orders at the
bid x = b or at the ask x = a as:

dJx
t := dNLO,x

t − dNMO,x
t − dNC,x

t .

From this we define the total flux and the signed flux as:

dIb+a
t = dJa

t + dJb
t , dIb−a

t = dJb
t − dJa

t .

10 We assume for the sake of simplicity that the memory of trends is the same as that of volatility.
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Figure 2. Fitting parameters resulting from the Hawkes non-parametric calibration
on the EURO STOXX futures contract between 2016/09/12 and 2017/04/28. Qα̃0

stands for the exogenous intensity from the non-parametric Hawkes fit.

We also introduce the forward realized flux and the forward Hawkes flux on time scale
β ′−1:

F x
β ′(t) =

∫ +∞

t

e−β ′(s−t)dIx
s , Hx

β ′(t) =

∫ +∞

t

e−β ′(s−t)λH,x
s ds,

where x = (b + a, b− a) and λH,x
s is the expected future activity, as predicted by the

Hawkes contribution11. In the absence of other feedback mechanisms, one would expect
any conditional expectation of F x

β ′(t) should simply be Hx
β ′(t).

This is what we test now, by considering two conditioning variables suggested by
the Q-Hawkes formalism, namely past trends and past realised volatility, as measured
by the following exponential moving averages:

Rβ(t) :=

∫ t

0

e−β(t−s)dPs

︸ ︷︷ ︸
past trend

, Σ2
β(t) :=

∫ t

0

e−2β(t−s)(dPs)
2

︸ ︷︷ ︸
past volatility

.

By symmetry, we expect that the conditional expectations of F b−a
β ′ (t) and F b+a

β ′ (t) write:

Ec[β
′F b+a

β ′ (t)|R,Σ, H] =C0 + 2βC1R
2
β(t) + 2βC2Σ

2
β(t) + β′Hb+a

β ′ (t) (2)

Ec[β
′F b−a

β ′ (t)|R,Σ, H] =
√
βC3Rβ + β′Hb−a

β ′ (t), (3)

i.e. the asymmetric part of the liquidity flow depends on the sign of the past trend,
whereas the symmetric part of the flow depends both on the past volatility and on the

11 More explicitly, λH,x
t :=λH,LO,x

t − λH,MO,x
t − λH,C,x

t , where λH is the Hawkes intensity process calibrated above. In order to speed up
the computation of F x

β′ , we approximate the non-parametric Hawkes kernels by sums of exponentials.
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Figure 3. Correlation between the trend and the total liquidity flux (left) and signed
liquidity flux (right) in the plane β,β ′ for the EURO STOXX futures contract
between 2016/09/12 and 2017/04/28. Note that the color scale is not the same in
the left and in the right graph: the directional effect is weaker than the impact on
the total (unsigned) liquidity.

past trend squared (i.e. the Zumbach effect). C0, C1, C2 and C3 are numerical constants.
The normalisation factor β comes from the fact that Rβ ∼ β−1/2 and Σ2

β ∼ β−1. Note
that the regression coefficients in front of the calibrated Hawkes contribution are fixed
to unity, as they should be for consistency.

2.4. Results

We determine β and β ′ by looking at the maximum absolute correlations of F b+a
β ′ with

R2
β, see figure 3 and appendix A. We find β = 0.001 and β ′ = 0.02, corresponding to

a negative correlation ≈ −0.3, indicating that trends indeed reduce liquidity . Note that
the correlations between F b−a

β ′ with Rβ are one order of magnitude smaller, and in fact
change sign depending on the time scales: the short time response to an up trend is
adding liquidity at the ask, but the long time response is in fact removal of liquidity at
the ask. This could reflect the behaviour of different actors in the market (high frequency
traders/market makers vs longer term traders).

Fixing β = 10−3 (i.e. trends measured over 1000 s, similar to the time scale found
in [21]) and β ′ = 0.02 (market response over the next 50 s), we find the regression
coefficients Ci given in table 1 for several futures contracts, again using the period
between 12/09/2016 and 28/04/2017. The quality of the regressions in the case of the
EURO STOXX is illustrated in figure 4 (similar plots are obtained for the BUND, BOBL
and SCHATZ, not shown). We see that both the trend (Zumbach) effect, parameterised
by C1 and the volatility effect, parameterised by C2, are both important to reproduce

https://doi.org/10.1088/1742-5468/ab7c64 8

https://doi.org/10.1088/1742-5468/ab7c64


J.S
tat.M

ech.
(2020)063401

Endogenous liquidity crises

Table 1. Values of the coefficients C0,C1,C2 for the symmetric part of the liquidity
flow and C3 for the antisymmetric part, as defined in equations (2) and (3). We
fixed β = 10−3 and β′ = 2 × 10−2.

C0(10−2) C1 C2 C3

EUROSTOXX 78 −8.9 −6.7 −0.03
BUND 72 −1.7 −2.8 0.16
BOBL 13 −4.0 −0.29 0.29
SCHATZ 0.42 −2.5 0.001 0.50

Figure 4. Regressions of the incoming flux with the trend and the volatility on
the EURO STOXX futures contract between 2016/09/12 and 2017/04/28. The red
curves correspond to the in-sample prediction of the linear regression. Each empiri-
cal point has a weight computed from the fraction of time spent in the corresponding
state.

the future liquidity flow. The directional effect, measured by C3, is much weaker, as
indeed suggested by figure 3, so we will neglect it in the following.

The conclusions of this calibration exercise are that:

• large recent price trend and volatility indeed tend to increase the rate of market
orders and cancellations and lead to a decrease in liquidity. This is the main take-
away message of this section;

• the quadratic feedback terms K in equation (1) is the dominant effect; in the
following section we will thus neglect the linear term and set L = 0.

The question is now whether such a quadratic feedback is enough to induce self-
generated liquidity crises, i.e. an unstable feedback loop that wipes out all the volume
in the order book and leads to crash. We explore this question in the next sections
by analyzing different models, starting from the zero-intelligence order book model
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proposed by the Farmer and collaborators [14–16], and ending by much simpler models
amenable to some analytical predictions.

3. An agent-based model for liquidity crises

The so-called Santa Fe model [14–16] stands among the first purely stochastic order
book models, where zero-intelligence agents place their orders at random (see also [18,
25]). It was shown that this model is able to reproduce some empirical properties of
order books, such as the mean bid–ask spread and mean volume profiles near the best
quotes. However the model fails to account for the empirical relation between spread
and volatility (see [26, 27], and [6], chapter 8); in fact prices are found to be strongly
mean reverting, partly because of the absence of long-range correlations in the flow of
market orders in the model—see the detailed discussion of this point in [6, 28, 29].

In spite of these shortcomings, the Santa Fe model is an interesting starting point
for modelling order book dynamics. It consists in a collection of queues that evolve
with constant additive limit and market order arrival Poisson rates, and a constant
cancellation rate per existing limit order. Note that while real data is not fully consistent
with additive depositions and multiplicative cancellations (see figure 1), this simplifying
hypothesis allows for easier analytical treatment, and leads to a well defined steady state
order book where queues are neither empty nor of infinite size.

Here, we present an extension of the Santa Fe model where the feedback of past
price changes on event rates is taken into account. As suggested by the empirical results
of the previous section, we only retain, for simplicity, the quadratic feedback term on
cancellations, neglecting all others. We also keep the initial Santa Fe specification of
an additive (rather than multiplicative) rate for market orders. Numerical simulations
suggest that this brings no qualitative changes to our main conclusions, which are as
follows.

(a) There exists a critical value of the feedback parameter αK such that for αK < α∗,
an infinite size order book never empties , while for αK > α∗ such infinite size order
book empties with probability 1.

(b) The transition appears to be of second order nature, which means that as the
transition point is approached some scaling behaviour is observed. For example,
the average time τ̄ needed for the liquidity crisis to appear in an infinite order
book diverges as (αK − α∗)−ζ with ζ ≈ 3 when αK ↓ α∗. For a book of finite size N,
this time is always finite, but diverges as N η with η ≈ 3 when αK = α∗.

3.1. The Santa Fe model with feedback

Consider a grid of prices with unit tick size, with all orders of unit size12. This grid is
divided into three parts: the bid side Bt = {p ! bt}, the ask side At = {p " at} and the
spread St = {bt < p < at} where bt and at respectively denote the best bid and the best

12 One could introduce a distribution of order size at the expense of extra complexity. We expect that if this distribution is broad
enough, the character of the phase transition could change.
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ask. Market orders can only fall at the best bid and best ask; they do so with total rate
2µ, with probability 1/2 to fall on the bid and 1/2 to fall on the ask.

Bid limit orders fall uniformly with rate λ per tick size in B+
t =

{p ! min(bt + 1, at − 1)} and ask limit orders uniformly with the same rate λ in
A+

t = {p " max(at − 1, bt + 1)}. Orders cannot be placed inside the spread at a distance
higher than one tick of the best prices.

Cancellations occur with a rate νt per outstanding limit order, which means that the
probability that a given queue loses one order is proportional to the size of the queue.
We assume that νt is given by a Q-Hawkes process of the type we considered in the
previous section, where we retain only the Zumbach term, i.e.

νt = ν0 + αK

(∫ t

0

√
2βe−β(t−s)dPs

)2

. (4)

The case αK = 0 recovers the Santa Fe specification. Note that the dynamics of the
different price levels are independent from one another, but described by the same
parameters λ for the deposition rate and νt for the cancellation rate. In other words,
the speed-up of cancellations when the price is trending affects all price levels.

3.2. Numerical simulations

To simulate the model, we take a price grid of size N ticks, and as initial condition, the
equilibrium order book provided by the Santa Fe model with αK = 0. Then, to make
the system evolve one can notice that, conditioned to the past, the system follows a
multidimensional, non-homogeneous Poisson process, which is well known and easy to
implement. Furthermore, for computing the integral

∫ t

0 e−β(t−s)dPs =
∑

Tn!te
−β(t−Tn)∆PTn

efficiently, we use the usual recursive formula to speed up the algorithm, see
[30].

Figure 5 displays typical results in the stable phase. Note that at some point the
spread opens and triggers a cascade of cancellations that empties the order book. At
some point in time denoted τ c a liquidity crisis arises, that is here defined as the first
time one side of the order book is completely empty.

3.3. Phase transition and finite size scaling

Exploring the parameter space (αK, β) reveals that for αK # αm(β) liquidity crises arise
with high probability. Figure 6 displays the crisis probability, defined as P[τc ! T ], as
function of αK and β for Tν0 = 200 and N = 280. As expected, large feedback intensities
αK lead to unstable markets. The crossover value αm(β) decreases as β increases, i.e.
when the time scale over which trends are considered as dangerous by liquidity providers
gets shorter. As expected, longer integration timescales β−1 lead to more stable order
book, or in other terms, longer memory is a stabilising factor.

Although suggestive, figure 6 cannot be used to conclude on the existence of a true
phase transition in the model, between a phase where liquidity crises never happen
from a phase where liquidity crises always happen, provided one waits long enough.
Mathematically, the question is about the behaviour of P[τc ! T ] in the double limit
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Figure 5. Properties of trajectories close to, but below the instability transition
(λ = 10, ν0 = 0.5 and µ = 20, and αK = 0.2, β = 1, T = 2000, N = 1000). (a) One
trajectory of the volatility exhibiting a cluster of high volatility. (b) Average max-
imum of the spread S as a function of time and its fit by a power-law t1/η with
η = 3 for t " 100. (c) The spread trajectory corresponding to (a). (d) The spread
survival function (sf), also called complementary cumulative probability distribu-
tion, decays as a power law S−κ, with a cut-off that diverges as one approaches the
transition α∗. The dotted line corresponds to κ = 0.74.

Figure 6. Stability map: crisis probability P[τc ! T ] for T = 200, N = 280, λ = 10,
ν0 = 1 and µ = 20. The blue region correspond to a stable order book, whereas
the red region corresponds to liquidity crises. The crossover line αm(β) is the white
sliver between the two.

N →∞ and T →∞. Clearly, for finite N, there is always a nonzero probability (perhaps
very small) that the order book completely empties if one waits long enough, even when
αK = 0. Hence:
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lim
N→∞

lim
T→∞

PN [τc ! T ,αK ] = 1, ∀αK.

If one the other hand the limit N →∞ is taken first, one may be in a situation where,
for a fixed value of β

lim
T→∞

lim
N→∞

PN [τc ! T ,αK ] =

{
1, when αK > α∗,

0, when αK < α∗,
(5)

where α∗ depends on the parameters of the model, in particular β.
Since numerical simulations can only be done for finite N and T, a common strategy

is to use finite size scaling to extrapolate to infinite sizes and waiting times. If a genuine,
continuous phase transition occurs at some αK = α∗, one expects the following behaviour
to hold for large enough N and T:

PN [τc ! T ,αK ] = F
(
T (αK − αm(T , N))ζ

)
; αm(T , N) = α∗ − 1

T 1/ζ
g

(
N η

T

)
, (6)

with F(u) a monotonic regular function going from 0 for u →−∞ to 1 for u → +∞, and
g(v) another function that goes to a constant g∞ when v →∞ and to +∞ as v → 0.
This scaling form has the following interpretation:

• when 1 + T + N η, αm ≈ α∗. As αK increases, PN [τc ! T ,αK ] evolves from 0 (no
crises) to 1 (crises) in a region of width T−1/ζ around α∗;

• when T , N η, αm becomes negative, meaning that PN [τc ! T ,αK ] is close to 1 for
any αK if one waits long enough.

The comparison between T and N η has the following interpretation: for T + N η,
the system cannot ‘feel’ the boundaries of the order book because the spread has never
grown so large: S(T) + N. For T , N η on the other hand, it is highly probable that
the spread S has been as large as size of the order book N, meaning that a liquidity
crisis has taken place. This suggests a direct way to measure η, from the dynamics of
the spread that behaves as a power-law of time (see figure 5), with an exponent which
should equal 1/η for consistency. This gives η ≈ 3, which is compatible with the finite
size scaling analysis reported in figure 7 (left inset).

A convenient method to pin down the values of α∗ and the exponent ζ is to study
the variance of the first crisis time, defined as

χ(αK , T , N) = V [min(τc, T )]

for a fixed value of β and different values of αK, T and N. This quantity is expected to
peak close to the phase transition, since for small αK, τ c is nearly always larger than T
and χ→ 0, whereas for large αK, τ c is small and χ is also small. The finite size scaling
assumption for this quantity amounts to:

χ(αK , T , N) = T γG
(
T (αK − αm(T , N))ζ

)
, (7)

where αm is given by equation (6) with α∗ ≈ 0.06 and G(u) is a humped function that
goes to zero for u → ±∞. The details and justification of this procedure to find the
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Figure 7. Left: rescaling of PN [τc ! T ,αK ] according to equation (6), for β = 0.5,
λ = 10, ν0 = 1, µ = 20, N = Nmax = 240, and with ζ = 3 and η = 3. Inset: numeri-
cal determination of g(v), also well described by our scaling hypothesis with η = 3,
giving α∗ ≈ 0.063 and g∞ = lim+∞g ≈ −1.8. Right: finite size scaling of χ, with
αm(T,Nmax) := argmaxαχ(αK,T,Nmax). Inset: average pairwise distance between
the different curves as a function of 1/ζ, showing a minimum for ζ ≈ 3 for both
quantities P and χ.

different exponents is described in appendix B. We find γ ≈ 2 and ζ ≈ η ≈ 313. Figure 7
shows how all the different curves collapse on top of each other when these parameters
are fixed. We also show the quality of this rescaling as a function of ζ in the inset of
figure 7 (right), clearly favouring the value ζ = 3.

We note that to the best of our knowledge, the numerical value of the exponents ζ, η
do not seem to relate to an identified phase transition. It would be very interesting to
explore further the nature of this transition and (if possible) compute analytically the
value of these exponents.

3.4. Discussion

Although not perfect, we consider the rescaling sufficiently convincing to support our
interpretation that the observed liquidity transition is a second order phase transition.
This interpretation is further supported by the fact that a similar finite size scaling
with the same value of the exponents ζ, η (but different values of α∗) holds for different
values of the time scale β and rates λ, ν0 and µ, and is also robust against changes in
the specification of the model. This universality is a landmark of second order phase
transitions.

Although our numerical evidence for such a phase transition is satisfactory, we have
not found a way to bolster our results by a rigorous mathematical analysis. Indeed, even
if highly stylized, the Santa Fe model with feedback is in fact quite complex. Hence, the

13 Note that the value γ = 2 is not unreasonable since for αK = α∗ one expects that τ c is larger than T with some probability
p ∈] 0, 1 [ , leading to V [min(τc,T )] ∝ T 2.
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existence of this phase transition, and its second-order nature, can only be considered as
conjectures at this stage. In order to make some progress, we have studied even simpler
models, where the existence of a phase transition can be ascertained mathematically.
This is what we discuss in the following sections.

4. A state-dependent Hawkes model for spread dynamics

In this section we introduce and discuss a family of simple models for which the liquidity
crisis transition observed within the Santa Fe model can be analyzed in more details.
This however comes at the price of setting aside the dynamics of the order book, and
restrict our attention to the dynamics of the spread.

4.1. A simple model

The simplest class of models consist in retaining the feedback of the spread dynamics
on itself, forgetting about the price dynamics which is the main driver of the instability
in the context of the Santa Fe model. Hence we also move away from the quadratic
Hawkes model we calibrated on real data in section 2. The destabilizing mechanism
we imagine is that spread opening events are likely to lead to more spread opening
events. A simplified model reinstating the price feedback mechanism is presented in
appendix D.

We consider an order book filled with limit orders of size unity that can be can-
celled or executed only at the best. As soon as a price slot is filled, no further limit
order can be placed. Limit orders can thus only be placed in front of the best (inside
the spread) provided the spread is open, i.e. St := at − bt " 2. Note that with such sim-
plifying hypotheses, there is no gap in the order book (apart from the spread itself)
and market orders play the exact same role as cancellations. The model can thus be
entirely characterized by the spread dynamics. We assume that the event intensities
read:

λ+
t = λ+

0 + α

∫ t

0

βe−β(t−s)dS+
s (8a)

λ−
t = !{St"2}λ

−
0 (8b)

where λ+ is the intensity of events that increase the spread, i.e. orders that are cancelled
or executed by a market order and λ− is the rate of limit orders reducing St by falling
inside the spread. Only spread opening events contribute to the feedback on λ+, i.e.
dS+

t := max(dSt, 0). This highly stylized model has the advantage of being analytically
tractable, while giving valuable insights on the possible phase transitions that can take
place in order book models with feedback.

For α < 1, using linear Hawkes theory, one can show (see e.g. [24]) that there exists
a martingale process Mt such that:

https://doi.org/10.1088/1742-5468/ab7c64 15

https://doi.org/10.1088/1742-5468/ab7c64


J.S
tat.M

ech.
(2020)063401

Endogenous liquidity crises

St = S0 +

∫ t

0

[(
1 − αe−(1−α)βs

) λ+
0

1 − α
− !{Ss"2}λ

−
0

]
ds + Mt. (9)

Introducing the parameter αc = 1 − λ+
0 /λ−

0 one can distinguish between the different
regimes14:

• 0 ! α < αc—the system is Hawkes-stable and the spread has a stationary distribu-
tion.

• αc < α < α∗ = 1—the system is Hawkes-stable but the spread increases on average
linearly with t.

• α " α∗ = 1—the system is Hawkes-unstable, or ‘explosive’.

The terminology Hawkes-(un)stable refers to the stability transition of a linear
Hawkes process, that is, the transition between a regime where the intensities reach
a stationary state from a regime where the number of events grows exponentially with
time.

4.2. The stable regime

Let us first discuss the stable regime α < αc. In the stationary state, we can prove that
the probability for the spread to be open is given by:

P [S " 2] =
1 − αc

1 − α
,

which goes to 1 as α ↑ αc. This result reproduces very well our numerical data. Although
we have not been able to prove the result mathematically, numerical simulations also
suggest that the full distribution of the spread is exactly geometric in this model:

P [S = n] =
1 − αc

1 − α
(1 − r)rn−2 ; n " 2,

where r depends of α and β, see figure 8 (left). This result should in principle follow
from the following equation that describes the evolution of the two-dimensional density

function ρt

(
St, Xt =

∫ t
0 βe−β(t−s)dS+

s

)
:

∂tρt = [λ+
0 + α(x − β)]ρt(S − 1, x − β)!{S"2,x"β} − [λ+

0 + αx]ρt(S, x)

+ λ−
0 ρt(S + 1, x) − λ−

0 !{S"2}ρt(S, x) + β∂x(xρt(S, x)), (10)

see appendix C. Setting the left-hand side to zero gives the stationary joint distribu-
tion of S and X. However, we have not been able to make much analytical progress,
except in the limit β → 0 where a geometric distribution for S indeed follows with
r = (1 − αc)/(1 − α). Unfortunately, this approximation does not hold for β ∼ 1 but
works well for small β. Note that in the presence of a price feedback mechanism, the
spread distribution acquires a power-law tail as we observed within the extended Santa
Fe model (see appendix D).

14 These results are general to any Hawkes kernel φ provided ‖φ‖ = α < 1.
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Figure 8. Properties of the spread in the linear model for α < αc, using a set of
parameters λ+

0 = 1, λ−
0 = 0.5 and β = 1. (a) Plot of α 1→ r(α,β) with β = 1 and the

theoretical results of the limit β → 0. (b) Log survival function (sf) of the spread
for different values of α, suggesting an exact geometrical distribution for all α. The
black curve corresponds to the theoretical equilibrium distribution when α = 0.

4.3. Linear spread growth

In the interesting regime αc < α < α∗ = 1 phase, one finds that the spread grows on
average linearly in time, with a drift V that vanishes when α ↓ αc:

lim
t→∞

1

t
E[St] = V ; V :=λ+

0

α− αc

(1 − α)(1 − αc)
.

On top of this average drift, the spread has diffusive fluctuations with some diffusion
constant D defined as:

D(α) := lim
t→∞

1

t

[
E[S2

t ] − E[St]
2
]

= λ−
0 +

λ+
0

(1 − α)3
.

One can thus compute the probability that the spread exceeds some threshold N before
time T, corresponding to an empty book in the Santa Fe model. Using standard first
passage time results for the one dimensional Brownian motion [31], one has, for large N
and T (and keeping the same notation as in section 3):

PN [τc ! T ,α] =

∫ T

0

du
N√

2πD(α)u3
e−

(N+V u)2

2D(α)u . (11)

While the spread will eventually exceed N for large enough time, it is easy to see that:

lim
T→∞

lim
N→∞

PN [τc ! T ,α] = 0,

for all α < α∗ = 1. In other words, the second order transition observed in the Santa Fe
model with feedback is absent in the present setting. While a linear increase of the spread
is interesting, it can hardly be called a liquidity ‘crisis’. Similarly the susceptibility χ
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can be easily computed using equation (11) and one finds:

χ(α, T , N) = V [min(τc, T )] =

∫ T

0

du
N(T − u)2e−

(N+V u)2

2D(α)u

√
2πD(α)u3

−




∫ T

0

du
N(T − u)e−

(N+V u)2

2D(α)u

√
2πD(α)u3




2

.

(12)

This gives us the same result as above:

lim
T→∞

lim
N→∞

χ(α, T , N) = 0,

i.e. no liquidity ‘crisis’. Nevertheless, it is interesting to notice that χ can be written
exactly in the scaling form that we used to analyze the Sante Fe model. Indeed, the
result of equation (12) can be transformed into:

χ(α, T , N) = T γG
(
NT−1/η, T 1/ζ(α− αc)

)
,

with:

G(x, y) = x

∫ 1

0

du(1 − u)2

√
2πD(αc)u3

exp

(

− [x + uyΛ]2

2D(αc)u

)

−
(

x

∫ 1

0

du(1 − u)√
2πD(αc)u3

exp

(
− [x + uyΛ]2

2D(αc)u

))2

,

Λ := λ+
0 (1 − αc)−2 and γ = η = ζ = 2. These exponents should be compared with the

values found numerically for the generalized Santa Fe model: γ ≈ 2, η ≈ ζ ≈ 3.

4.4. The explosive regime

When α > α∗ = 1, the model becomes Hawkes unstable, which means in the present
context that the spread increases exponentially with time. Although formally the spread
never diverges in finite time, in practice there is a ‘liquidity crisis’ as soon as T(α− α∗) ∝
logN, i.e. when the spread reaches the boundary of the order book. This would look
numerically akin to a second order phase transition with exponents ζ = 1 and η = 0,
quite far from the results reported for the Santa-Fe model.

4.5. A stabilizing mechanism

One could expect some stabilizing mechanisms to arise when the spread becomes too
large. A way to include the latter in our simple setting by substituting equation (8b)
with:

λ−
t = λ−

0 (St − 1), (13)

meaning that there is an increased probability to introduce limit orders inside the
spread when it is large. The model remains analytically tractable; the bottom line is
that the Hawkes stable regime αc < α < 1 disappears: our specification is indeed able
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to stabilise the spread in the whole region α < 1. The Hawkes unstable regime α > 1
of course subsists and is associated to liquidity crises in an otherwise stable market
(α < 1).

5. Non-linear Hawkes models and metastability

We have studied in the previous section a simple spread dynamics model that maps
onto a linear Hawkes process. In these models, the spread becomes unstable and grows
linearly in time before the Hawkes process (i.e. the activity of the process) becomes
itself explosive. One can stabilize the spread dynamics, as in the last subsection above,
such that sudden liquidity crises in this model are associated to the Hawkes explosive
transition.

For this picture to be correct, however, real financial markets must sit below, but
very close to the Hawkes instability threshold α∗, or else one must argue that α itself
is time dependent, and occasionally visits the explosive region α > α∗ before decreasing
back below α∗, allowing the market to re-stabilise. The same remark in fact applies to the
generalised Santa Fe model studied in section 3: if liquidity crises are indeed related to
the existence of a second order phase transition, one must argue that financial markets
are for some reason close to the critical point—a phenomenon called ‘self-organized
criticality’ [32]—or that the parameters fluctuate over time and occasionally push the
system in the unstable phase.

Although many models in mathematical finance are tweaked such that their param-
eters become time dependent, we feel that this common procedure might in fact hide
the inadequacy of such models. In this section, we want to explore an alternative sce-
nario. We introduce a class of non-linear Hawkes process that show occasional liquidity
crises without either being poised at the edge of instability (α ↑ α∗) or having a time
dependent feedback parameter α.

5.1. A model with quadratic feedback

Let us consider again the simplified framework of section 4.1 and generalize the feedback
on spread opening events as:

λ+
t = λ+

0 + αXt + εX2
t
; Xt :=

∫ t

0

βe−β(t−s)dS+
s . (14)

When ε = 0, this Hawkes process is non-explosive provided α < α∗ = 1. But as soon
as ε > 0, the process has a non zero probability to explode, even when α < α∗.
However, interestingly, these ‘liquidity crises’ only happen with a rate that is
exponentially small in 1/ε, and therefore interrupt very long periods of appar-
ent market stability—a phenomenon called ‘metastability’ in the physics litera-
ture. This is confirmed by direct numerical simulations of the model equation (14)
in figure D1. In the following section, we give an analytical description of this
phenomenon.
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5.2. A continuous time description

In the ‘slow’ limit β → 0 one can write an approximate SDE for Xt. Start from the
exact expression dXt = −βXtdt + βdS+

t . When β is small, λ+
t is slowly varying and one

can approximate dS+
t by λ+

t dt +
√

λ+
t dBt, where Bt is a Brownian motion (for more

rigorous statements, see [33]). Hence:

dXt = β
[
λ+

0 − (1 − α)Xt + εX2
t

]
dt + β

√
λ+

t (Xt)dBt. (15)

Let us write the deterministic part of this equation as minus the derivative of some
‘potential’ V(X), to wit:

V(X) =
β(1 − α)

2

(
X − λ+

0

1 − α

)2

− βε

3
X3. (16)

Such a potential is drawn for α < 1, ε = 0 and α < 1, ε > 0 in figure 9. One sees clearly
that for ε = 0 the equilibrium Xeq = λ+

0 /(1 − α) (that corresponds to the average inten-
sity of the Hawkes process) is stable. But as soon as ε > 0 the potential reaches a
maximum for some value X∗ beyond which it plunges towards −∞. In the limit ε→ 0,
one finds that X∗ is given by:

X∗ ≈ 1 − α

ε
,

corresponding to:

V(X∗) ≈ β(1 − α)3

6ε2
,

which diverges when ε→ 0. This picture allows one to describe the dynamics of the
model for ε > 0 in intuitive terms: for a very long time, Xt will oscillate around its
equilibrium value Xeq until some rare fluctuation of the Brownian noise dBt is able to
bring Xt close to the top of the high barrier X∗. In such rare circumstances, Xt escapes
the stable valley and runs all the way to +∞ in finite time, corresponding to a ‘liquidity
crisis’.

The theory of high barrier crossing under the influence of noise is very well under-
stood. In the present case, the final formula for the average first escape time τ c

(corresponding to the ‘emptying of the book’ as in section 3) is given by [6, 34]:

E[τc] ≈ 2π

(
D(Xeq)/D(X∗)

|V ′′(X∗)V ′′(Xeq)|

)1/2

× exp

(∫ X∗

Xeq

dx
V ′(x)

D(x)

)
, (17)

with D(X) := β2

2

(
λ+

0 + αX + εX2
)
. The expansion to second order in ε gives:

log E[τc] ≈
ε→0






− 2

β

[
1 − α + logα

ε
+

λ+
0

α2
log

1

ε

]
− 1

2
log

1

ε
if α > 0

1

βε

(
log

1

ελ+
0

− 2

)
if α = 0.

(18)
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Figure 9. Plots of the potential as given by equation (16) with λ+
0 = 1 and α = 0.

Figure 10. Properties of the time of metastability when α = 0 and ε > 0. (a) Sur-
vival function (sf) of the time before explosion for ε = 0.2, which is found to be
exponential. (b) Evolution of the average metastability time with ε. The dotted red
curve is the continuous time prediction given by equation (18). The plain red curve
is obtained by multiplying the term in the exponential by an empirical factor 2.5.
(c) Typical metastable trajectory. The set of parameters is the same that in (a):
λ+

0 = 1, λ−
0 = 0.5, β = 1 and ε = 0.2.

Hence, as announced, the time before a crisis is exponentially large in ε−1, with loga-
rithmic corrections for α = 0. Another prediction of this approach is that in the limit
ε→ 0, the time-to-crisis becomes a Poisson variable with mean E[τc], as indeed found
numerically (see figure 10(a)).

Our analytical result compares well with our numerical results in terms of the overall
dependence on ε, but the numerical prefactor inside the exponential is off by a factor
∼ 2.5. This can be traced to the fact that our numerical simulations are in a regime
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where β/λ+
0 = O(1), whereas the theoretical analysis is done in a regime where β/λ+

0 → 0
(see [35], and [6], section 5.4, where a similar phenomenon is present).

6. Conclusion

Let us summarise what we have achieved in this study. Using tick-by-tick order book
data on futures contracts, we were able to show that event rates are strongly affected
by past price moves. In particular, large price trend and/or volatility tends to increase
the rate of market orders and cancellations, which subsequently leads to a decrease
in liquidity. This, in turn, contributes to increasing volatility, which may lead to a
destabilising feedback loop and a liquidity dry-out.

Let us stress that the work presented in this paper is relevant for both effects,
explaining ‘regular’ excess volatility and understanding extreme endogenous price jumps
such as flash crashes. Building on such empirical evidence, we introduced an extension
of the stylized Santa Fe model which accounts for the feedback of past price changes
on event rates. Numerical simulations of our model revealed the existence of a second
order phase transition, and more precisely a critical value of the feedback parameter
below which an infinite size order book never empties, and above which it empties with
probability one. We performed a finite size scaling analysis in order to determine the
critical exponents, which to the best of our understanding do not appear to be in any
of the known universality classes for 1D phase transitions.

In order to bolster our results with analytical arguments, we then considered an even
simpler model, where the existence of a phase transition can be verified mathematically.
Setting aside the dynamics of the order book, and focusing our attention to the dynamics
of the spread, we presented a model which can be mapped onto a linear Hawkes process
in which spread opening events are likely to lead to more spread opening events. We
exhibited three dynamic spread regimes as function of feedback intensity: stable, linearly
increasing, and exploding spread. We argued that the second regime could be stabilised
and that in such a case, and within some parameter range, a phase transition from stable
to unstable spread exists, much like in the extended Santa Fe model presented before,
but with major quantitative differences.

We then pointed out that for this picture to be relevant, real financial markets would
have to sit below, but very close to the critical point, consistent with the idea of self-
organised criticality (SOC), a concept first introduced in [32] and developed by many
in the context of game theory [36] and financial markets [37–39]. Another option would
be for the feedback parameter to be itself time dependent and occasionally visit the
unstable phase.

Finally, we presented an alternative scenario which needs no a priori proximity to
the instability threshold, nor a time dependent feedback parameter. The model is a non-
linear Hawkes process for which liquidity crises are ‘activated’ events within a metastable
phase. A continuous time description allowed us to derive the typical crisis frequency as
function of the model’s parameters, and show that this time can be much longer than
the microscopic time of the model. It is quite likely that both effects (proximity of a
transition and metastability) do actually coexist in financial markets.
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Several improvements/extensions of this work would be of interest. In particu-
lar, achieving proper calibration of the Q-Hawkes model presented in equation (1)
in section 2, perhaps through a non-parametric procedure, would help buttress our
empirical results. A deeper mathematical analysis aimed at deriving the critical
exponents of the extended Santa Fe model presented in section 3 would be highly
valuable to ascertain the new universality class we exhibited numerically. For the
sake of completeness, it would naturally also be of interest to couple our second
order phase transition scenario to a mechanism that draws the systems towards
the critical point, building on ideas inspired e.g. by the minority game, see [36].
Research should probably also be devoted to thinking about which empirical test
could help discriminating between the second order phase transition and activation
scenario.

An important point on which we decided not to insist too much in the present
study is the effect of memory timescales, apart from the empirical section in which we
thoroughly analyzed the intensity of the response functions as function of forward and
backward memory timescales. Indeed, as shown for example in [11], lag effects can be
extremely important destabilising factors that must be taken into account. Including
these lag effects within the present framework is certainly a relevant extension worth
investigating.
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Appendix A. Empirical data

We used tick-by-tick (or event-by-event) data for four futures contracts (EUROSTOXX,
BUND, BOBL & SCHATZ) over around 160 trading days provided by CFM. We have
chosen these assets because of their high liquidity and because they are all large tick
(the spread is equal to its minimal value of 1 tick more than 99% of the time). Before
doing any specific inference on the data, we preprocess it in the following way.

• We load data from 9 am to 4 pm.

• Separate events displaying the same timestamps are shuffled within the millisecond
without breaking causality.

• We restrict to the best queues only.

• We use the mid-price changes in tick units.

The number of events after cleaning is of the order of one million per day for the
most liquid asset, and 50 000 for the least liquid. First, we perform a non-parametric
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Hawkes calibration that gives the parameters Qα̃0 and Qφ, as defined in equation (1).
Then, we turn to the contribution of the trend and the volatility. To do so, we compute
β′F b+a

β ′ , β′Hb+a
β ′ , β′F b−a

β ′ , β′Hb−a
β ′ , Rβ and Σ2

β , as defined in section 2.3. For practical
reasons, we approximate the kernels with a sum of three exponentials, in the spirit of
[40], which allows for a fast algorithm thanks to the recursivity of the exponentially
weighted moving averages. We associate a weight to each of these quantities that is the
fraction of inter-event time, and bin the data in 100 × 100 × 100-sized windows for
F b+a
β ′ with Hb+a

β ′ , Rβ, Σ
2
β and F b−a

β ′ with Hb−a
β ′ , Rβ, Σ

2
β. We aggregate the weights to get a

weight for each bin, and perform the regressions given in equations (2) and (3) using a
very standard generalised least square method [41]. We take the values of β and β ′ that
maximise the absolute correlation Cor(F b+a

β ′ , R2
β).

Appendix B. Finite size scaling method

Here, we discuss the method used to do the finite size scaling in section 3.3. First,
let us recall the framework. The susceptibility writes:

χ(αK , T , N) = T γG
(
T (αK − αm(T , N))ζ

)
= T γG

(
NT−1/η, T 1/ζ (αK − α∗)

)
,

(B1)

where the function G satisfies:

• lim|y|→+∞G(x, y) = 0

• ∀x, y 1→ G(x, y) has a unique maximum, denoted y∗(x).

First, we determine γ. We introduce αm(T , N) = argmaxαK
χ(αK , T , N) and we

assume that limT,N→∞αm(T, N) = α∗. The idea is to look at maxαKχ(αK , T , N) =
χ(αm(T , N), T , N):

χ(αm(T , N), T , N) = T γmax
y

G(NT−1/η, y) →
N→+∞

T γ lim
x→+∞

max
y

G(x, y). (B2)

If N η
max , T , then χ(αm(T , Nmax), T , Nmax) ≈ T γ lim

x→+∞
maxyG(x, y) on our range of T.

Note that we validity of such a hypothesis depends on the value of η, which we shall
determine and self-consistently validate below. Then we compute the value of γ ≈ 2
from a linear regression of logχ(αm(T, Nmax), T, Nmax) vs logT.

Then we determine ζ. If T, Nmax are large enough that N η
max ,

T , then T 1/ζ (αK − αm(T , Nmax)) ≈ T 1/ζ (αK − α∗) and χ(αK , T , Nmax) ≈
T γlimx→+∞G(x, T 1/ζ(αK − α∗)). So we plot χ(αK, T, Nmax) as a function of
T 1/ζ (αK − αm(T , Nmax)) for different values of T and α and we tune the expo-
nent ζ to make all the curves collapse together, see figure 7. We can do this experiment
numerically by minimising the distance between the curves as a function of ζ. Adding
the fact that we expect regular rational values we deduce the most likely exponent,
ζ = 3, see right inset of figure 7.
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Finally we compute α∗ and η. By definition of αm(T, N), one has T1/ζ(αm(T, N) −
α∗) = y∗(NT−1/η). Thus, if one plots T1/ζ(αm(T, N) − α∗) as a function of NT−1/η for
different values of T and N, one should find a set of parameters η and α∗ such that all the
curves collapse together. This leads to α∗ ≈ 6.3 × 10−2 and η ≈ 3, which is compatible
with the direct result on the spread dynamics shown in figure 5, where one observes that
S(t) ∼ t1/3. But since the finite size-finite time crossover should occur when S(T) ∼ N,
one finds that T1/3 ∼ N, again leading to η ≈ 3.

Appendix C. More on the linear spread model

Here, we focus on the linear case (ε = 0), see equation (D3). In order to remain very
general we rewrite the equation as λ+

t = λ+
0 + (φ ∗ dS+)t = λ+

0 +
∫ t

0 φ(t − s)dS+
s . Point

process theory teaches us that there exists two independent martingales M−
t and M+

t

such that S±
t = λ±

t dt + dM±
t . One can write:

λ+
t = λ+

0 + (φ ∗ λ+)t + (φ ∗ dM+)t. (C1)

Assuming that ‖φ‖ < 1 one can define the resolvent φR =
∑

n"1φ
∗n, with φ∗(n+1) = φ ∗

φ∗n. Note that (δ + φR) ∗ φ = φR with δ the Dirac function. This enable to invert the
above equation and obtain:

λ+
t =

(
1 +

∫ t

0

φR(s)ds

)
λ+

0 + (φR ∗ dM+)t. (C2)

Combining the previous equations and introducing the martingale Mt with dMt =
dM+

t − dM−
t + (φR ∗ dM+)tdt, one gets:

St = S0 +

∫ t

0

[(
1 +

∫ s

0

φR(u)du

)
λ+

0 − !{Ss"2}λ
−
0

]
ds + Mt. (C3)

Equation (9) is the particular case with φ(t) = αβe−βt. Choosing such a kernel one can
derive the Fokker–Planck equation for the joint distribution of the variables (St, Xt =
β
∫ t

0 e−β(t−s)dS+
t ) given in equation (10). While we did not manage to solve this equation,

we can compute the Laplace transform of the variable Xt at equilibrium:

E
[
e−uX

]
=

∫

R+

ρst
X(x)e−uxdx = exp

(∫ u

0

λ+
0

(
1 − e−βv

)

α (1 − e−βv) − βv
dv

)
, (C4)

from which we can get the cumulants. In particular, one has: E[X ] = λ+
0 /(1 − α) and

V[X ] = βλ+
0 /(2(1 − α)2). Interestingly, we can get the full stationary solution ρst in two

simple limit:

• α = 0: ρst(S, x) = (1 − r)rSρst
X(x) with r = λ+

0 /λ−
0 .

• β → 0: ρst(S, x) = δ

(
x − λ+

0
1−α

)
(1 − r)rS with r = 1−αc

1−α .

Note that the spread is geometrically distributed in both cases.
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Appendix D. A model with price feedback on the spread

The model presented in section 4 displays a very simple destabilizing mechanism in the
midprice reference frame, in which spread opening events trigger more spread opening
events. Here, we re-introduce price dynamics to illustrate the effects of ‘volatility’ in the
spread opening mechanism, bringing the model one step closer to the empirical study
presented in section 2 and the Santa Fe model of section 3. In order to do so, we write
the intensity of cancellations/market orders as:

λ+
t = λ+

0 + α

(∫ t

0

√
2βe−β(t−s)dPs

)2

(D1a)

λ−
t = λ−

0 !{St"2}. (D1b)

Each event takes place with equal probability at the bid bt or the ask at. The dynamics
of the bid and ask are thus such that

E [dat|dat > 0, Ft] = −E [dbt|dbt < 0, Ft] = λ+
t dt/2

and

E [dat|dat < 0, Ft] = −E [dbt|dbt > 0, Ft] = −λ−
t dt/2.

Using the formalism introduced in [C1] we are able to solve the dynamics of the system
and show that there exists a martingale Mt such that:

St = S0 +

∫ t

0

[(
2 − αe−(2−α)βs

) λ+
0

2 − α
− !{Ss"2}

2 − α
λ−

0

×
(

2 − 2α− αe−(2−α)β(t−s)

)]
ds + Mt. (D2)

Calling again αc = 1 − λ+
0 /λ−

0 , one obtains the same regimes as in section 4.1 only
replacing α∗ = 1 by α∗ = 2:

• 0 ! α < αc—the system is non-explosive and the spread has a stationary distribu-
tion.

• αc < α < 2—the system is non-explosive but the spread increases on average linearly
with t.

• 2 ! α—the system is explosive.

Note that this transition is similar to the Z-Hawkes transition that was presented in
[C1]. In the αc < α < 2 phase, the spread grows again linearly with time:

E[St] ∼ V t, V := 2λ+
0

α− αc

(1 − αc)(2 − α)
.

In the α < αc phase, one finds again P [S " 2] = (1 − αc)/(1 − α). Interestingly how-
ever, simulating numerically equation (D1a) we observe that the spread distribution is
asymptotically fat tailed instead of geometric (see figure D1a). Such a power law tail is
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also observed in our extended Santa Fe model close to the critical point.We note that
the mid-price Pt = (at + bt)/2 behaves like a diffusion in the two phases, with an average
diffusivity DP:

DP := lim
t→∞

1

t
E
[
∑

s<t

(∆Ps)
2

]
=

λ−
0 P [S " 2] + λ+

0

2 − α
,

One can also show that joint the probability density function

ρ
(
t, St, Xt =

∫ t
0

√
2βe−β(t−s)dPs

)
now solves:

∂tρ =

[
λ+

0 + α
(
x − β̂

)2
]
ρ
(
t, S − 1, x − β̂

)
+

[
λ+

0 + α
(
x + β̂

)2
]
ρ
(
t, S − 1, x + β̂

)

+ λ−
0

[
ρ
(
t, S + 1, x − β̂

)
+ ρ

(
t, S + 1, x + β̂

)]
− 2

[
λ+

0 + αx2

+ λ−
0

]
ρ(t, S, x) + β∂x (xρ) , (D3)

where β̂ =
√

β/2 and with the boundary condition ∀S < 1, ρ(t, S, x) = 0. The proof of
such results uses the same techniques as in the previous appendix but is slightly more
complex. First of all, there exits four martingales M−,b

t , M+,b
t , M−,a

t and M+,a
t such that:

db±
t = λ±

t dt/2 + dM±,b
t , da±

t = λ±
t dt/2 + dM±,a

t (D4)

Note that we have:

dSt = da+
t + db+

t − da−
t + db−t

dPt =
(
da+

t − da−
t + db−t − db+

t

)
/2 (D5)

d[P ]t = (dPt)
2 =

(
da+

t + da−
t + db−t + db+

t

)
/4.

We then use equation (D1(a)) in a more general framework:

λ+
t = λ+

0 +

∫ t

0

∫ t

0

K(t − s, t − u)dPsdPu, (D6)

where K is symmetric. Calling α = TrK =
∫ +∞

0 K(t, t)dt, one can rewrite:

λ+ = λ+
0 +

∫ t

0

K(t − s, t − s)d[P ]s + MP
t = λ+

0 + (φ ∗ (λ+ + λ−))t

+
1

2
(φ ∗ (M+ + M−))t + MP

t , (D7)

where φ(t) = K(t, t)/2, M±
t = M±,a

t + M±,b
t and MP

t =
∫ t

0

(∫ s−
0 K(t − s, t − u)dPu

)
dPs,

that is a martingale. Introducing the resolvent φR =
∑

n"1φ
∗n and the martingale:

dMt =
[
(φR ∗ (M+ + M−))t/2 +

(
(δ + φR) ∗ MP

)
t

]
dt,
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Figure D1. Properties of the spread for α < αc and β = 1, λ+
0 = 1, λ−

0 = 0.5. (a)
Survival function (sf) of the spread. The black curve corresponds to the theoreti-
cal equilibrium distribution when α = 0. For large α, the survival function decays
asymptotically as a power-law S−κ. (b) Tail exponent κ of the survival function, as
a function of α. κ appears to saturate around 2 when α→ αc.

we solve the equation:

λ+
t =

(
1 +

∫ t

0

φR(s)ds

)
λ+

0 + (φR ∗ λ−)t + dMt, (D8)

and deduce the dynamics of the spread:

St = S0 +

∫ t

0

[
λ+

0

(
1 +

∫ s

0

φR(u)du

)
− λ−

0 !{Ss"2} ×
(

1 −
∫ t−s

0

φR(u)du

)]
ds + Mt.

(D9)

This gives the condition of stability: if α < αc then P[S " 2] = (1 − αc)/(1 − α). Then
we get the diffusivity of the price:

lim
t→+∞

1

t
E[[P ]t] = lim

t→+∞

1

2

(
E[λ+

t + λ−
t ]
)

=
λ+

0 + λ−
0 P[S " 2]

2(1 − ‖φ‖)

One can check that ‖φ‖ = α/2.
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