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The Multivariate Kyle Model: More is Different∗
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Abstract. We reconsider the multivariate Kyle model in a risk-neutral setting with a single, perfectly informed
rational insider and a rational competitive market maker, setting the price of n securities. We prove
the unicity of a symmetric, positive definite solution for the impact matrix and provide insights on its
interpretation. We explore its implications from the perspective of empirical market microstructure
and argue that it provides a sensible inference procedure to cure some pathologies encountered in
recent attempts to calibrate cross-impact matrices. As an illustration, we determine the empirical
cross-impact matrix of US Treasuries and compare the results with recent alternative calibration
methods.
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1. Introduction. Understanding market impact—the mechanism through which trades
tend to push prices—is with no doubt a venture of paramount importance. From the theoret-
ical point of view, market impact lies at the very heart of price formation in financial markets.
From the practitioner’s perspective, market impact is often at the origin of nonnegligible trad-
ing costs that need to be controlled to optimize execution strategies. In the past decades, with
the notable exception of [4], from which our theoretical results stem, most of the literature has
focused on the price impact of single products (for a recent review, see [3]), with no regard to
interasset interactions. However, many market participants trade large portfolios that com-
bine hundreds or thousands of assets. Thus addressing the matter of interasset price impact,
coined cross-impact, is of great interest both fundamentally and practically. Recent empirical
studies show evidence of significant cross-impact effects in stock markets [7, 13, 16, 2]. A
recurrent issue is that of empirical noise when it comes to large matrix estimation. It is thus
important to continue to search for good statistical priors in order to help “clean” these large
dimensional estimators.

What should one expect from theoretical economics on this matter? Which empirical
observations should be considered unusual? Here we focus on how to make sense of the
empirical observations accumulated over the past few years in the most orthodox setting: the
classic Kyle model [9], extended to a multiasset framework. Our aim is to gain insight into
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(i) how information is diffused into prices (cross-sectionally) within the Kyle setting and (ii)
how one can use such results to regularize the very noisy regressions that arise in empirical
cross-impact analysis. The multivariate Kyle model was first considered in [4, 5], in a very
general setting with n assets and m partially informed traders. Here we revisit the problem
with the issue of empirical calibration in mind and we focus on the particular case m = 1. The
equilibrium solution provides an explicit recipe to infer cross impact from (cleaned) order flow
and return correlation matrices, which we compare to other natural recipes, such as maximum
likelihood estimators (MLE) [2] or the recently proposed “EigenLiquidity” Model (ELM) [12].

The paper is organized as follows. In sections 2 and 3 we introduce the multivariate Kyle
model and provide the equilibrium strategies, mostly building upon the work in [4] but also
providing new results. In section 4 we study in detail the mathematical properties of the
solution. In section 5, we introduce an impact estimator based on the equilibrium strategy of
the market maker (MM) and compare it to other usual estimators both from the theoretical
and empirical points of view. Throughout the text we present several examples intended to
provide intuition behind the main results. In particular it is often interesting to confront the
results of the multivariate and univariate models.

In all of the following, bold uppercase symbols denote matrices, bold lowercases denote
vectors, and light lowercases denote scalars.

2. The multivariate Kyle model. In this section, we present in detail the multivariate
Kyle setting, the special case of [4] with m = 1, and define the observables that would allow
one to calibrate the model using empirical observables.

2.1. The model. Consider a single-period economy where three representative agents
trade n instruments. The agents are an informed trader (IT) who has perfect information
about the future prices v, a noise trader (NT) that trades in the absence of any information
due to exogenous reasons, and a competitive market maker that has the role of enforcing price
efficiency. The dynamics of the model is set by the following rules.

1. A fundamental price v is sampled from a Gaussian distribution v ∼ N (p0,Σ0), where
Σ0 is SPD. Only the IT knows the value of v in advance, while p0 and Σ0 are common
knowledge. We denote the price deviation from its mean as ∆v := v − p0.

2. The IT and NT place simultaneously their orders of sizes x an u, respectively. The
bids of the NT u are sampled from a Gaussian distribution u ∼ N (0,Ω) independent
of the fundamental price, where Ω is an invertible matrix.

3. The MM clears the excess demand y at a clearing price p based on the total observed
order imbalance y = x+ u, which allows him/her to form the best estimation of the
fundamental prices. These fundamental prices are then revealed.

The quantity x requested by the risk-neutral IT is such that he maximizes the expectation of
his utility function:

(2.1) UIT (x,p) = x>(v − p) .

Note that UIT does not contain any risk penalty. While the introduction of such a penalty
would affect some of the conclusions below, we decide to leave this interesting issue for future
work. Consistent with the assumption that market making is competitive, the MM sets a
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price that matches in expectation v given the available public information, namely, the total
order imbalance y:

(2.2) p = E[v|y] ,

where E[·] denotes the average with respect to the distribution of v and u.
Clearly, the above setting is highly stylized and, on many counts, unrealistic.1 Still,

this model is able to capture some of the essential ingredients of a reasonable price-formation
process: the information owned by ITs gets encoded into a trading order imbalance x polluted
by a noise u. In a competitive regime, MMs are expected to decode the information contained
in the total order imbalance y = x+u, in order to provide the best possible prediction of the
fundamental price v. This mechanically induces market impact: because the order imbalance
y is correlated with the fundamental price, the traded price p will also display a correlation
with the order imbalance y, thus providing a sensible measure of market impact.

2.2. Observables. In order to gain insight into the implications of this model and in order
to make testable predictions, one is required to provide some metrics that can be compared
against market data. Luckily enough, the Gaussian nature of the setup allows one to only
consider first and second order statistics (means and covariances) of prices and volumes in
order to completely characterize the behavior of the model. Naturally, the fundamental pa-
rameters defining the model (Ω,Σ0) are not directly observable and need to be inferred from
the statistics of trades prices p, and of volumes y, which are the only physical observables of
the model.

Prices. Due to the price efficiency condition (see (2.2)), the average traded price is equal
to the average of the fundamental price, itself equal (for consistency) to the initial price:

(2.3) E[p] = E[v] = p0 .

However, the covariance of the traded price and that of the fundamental price have no reason
to coincide:

Σ = C[p,p] = E[(p− p0)(p− p0)>] ,(2.4)

Σ0 = C[v,v] = E[(v − p0)(v − p0)>] .(2.5)

Further down we show that, at equilibrium, Σ and Σ0 are exactly proportional (see (3.13)).
Volumes. Due to the uninformed nature of the NT, the average order imbalance is fixed

by the bias introduced by the IT, so that

(2.6) E[y] = E[x] := y0 .

The relation between the portion of volume covariance due to the NT and the one due to the
IT is more subtle and is given by

(2.7) Ωd = C[y,y] = C[x,x] + Ω ,

1For example, the order flow in a Kyle setting has no temporal auto-correlations, whereas it is well known
that the empirical order flow has a long memory. See [3] and [2] for a recent discussion in the multivariate
context.
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where we have introduced what we have coined the dressed volume covariance Ωd, which is
the physically observable quantity. Since the IT places the bid without knowing u (he only
knows the statistics of u), C[x,u] = 0 and therefore the bare volume covariance (i.e., not
dressed by the noise contribution Ω) is C[x,x].

Response. Ultimately, we are interested in characterizing the expected price changes con-
ditionally to a given trade imbalance: the response function, directly related to price impact.
Within this model, the physical observables measuring such quantities, which we coin as
dressed responses, are

Rd = E[(p− p0)(y − y0)>] = C[p,y] ,(2.8)

Rd
v = E[(v − p0)(y − y0)>] = C[v,y] .(2.9)

Due to the absence of correlations between the uninformed order imbalance u and v, one can
relate the dressed responses with the responses with respect to x, R and Rv, which we coin
as bare responses, through

R = E[(p− p0)(x− y0)>] = C[p,x] = Rd − C[p,u] ,(2.10)

Rv = E[(v − p0)(x− y0)>] = C[v,x] = Rd
v .(2.11)

Interestingly, while the fundamental prices are insensitive to the level of noise trading, the
traded prices incorporate some degree of mispricing due to the spurious correlations between
the total order imbalance y and the fundamental prices v.

3. Equilibrium strategies. In this section we characterize the equilibrium strategies of
the multivariate Kyle model. Although most of the results can be inferred from the seminal
work of Caballé and Krishnan [4, 5], we believe it is useful to provide a streamlined version
of our own proofs, which we present in a more pedagogical and in some cases more compact
form and within which several theoretical issues and empirical implications can be discussed
explicitly.

3.1. Linear equilibrium.

Definition 3.1 (linear equilibrium). By linear equilibrium, we mean a set of strategies in
which the MM fixes the traded prices p and the IT fixes their bid x by means of linear rules

p = µ+ Λy ,(3.1)

x = α+Bv ,(3.2)

such that the two following conditions are satisfied:
1. Profit maximization: for all alternative strategies with x′ 6= x,

E[UIT(x,p)|v] > E[UIT(x′,p)|v].

2. Price efficiency: The price p satisfies (2.2).
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Based on the assumption of a linear strategy for the MM as given in (3.1), we obtain the
following results. (Proofs are provided in Appendix A.)

Proposition 3.2. Imposing the linear pricing rule (3.1) for the MM implies that a rational
IT will also set the order imbalance x as a linear function of the imbalance, with

(3.3) x =
1

2
Λ−1

S (v − µ) ,

where ΛS denotes the symmetric part of Λ. Furthermore, the profit maximization condition
for the IT’s strategy implies that ΛS has to be positive-definite (PD).

Equation (3.1) shows that Λ plays the role of adjusting the traded price level p propor-
tionally to the imbalance y. Proposition 3.2 shows that Λ also plays the role of setting the
order imbalance from the informed trader x given the knowledge of the fundamental price v.
Moreover, (3.3) together with (3.1) implies that both the order imbalance y and the traded
price p are normally distributed random variables, due to stability of the Gaussian distribution
under convolution. This last property is at the core of the following proposition.

Proposition 3.3. Assuming a linear strategy for the IT as in (3.3) implies that the param-
eters of the pricing rule of (3.1) for the MM are given by

(3.4)
µ = p0 −Λy0 ,

Λ = Rd
v(Ωd)−1.

Note that y0, Rd
v , and Ωd depend on x, and therefore on ΛS. Substituting (3.4) into

(3.3) allows us to close the system and find an equation for Λ. Note, however, that the as
obtained system has many possible solutions. To constrain the latter we must impose the
profit maximization condition introduced in Proposition 3.2.

Proposition 3.4. Assume that there exists a solution to the utility maximization problem of
the IT of the form given by (3.3) and to the pricing rule for the MM given by (3.1) and (3.4).
Then, the profit maximization condition that ΛS has to be PD implies that Λ is symmetric
and satisfies the equation

(3.5)
1

4
Σ0 = ΛΩΛ .

The symmetry of Λ leads to a unique solution that can be expressed in terms of the
parameters of the problem (i.e., Σ0 and Ω). Denoting by

√
Y the unique (see Lemma A.1 in

Appendix A.3) PD solution of the matrix equation XX = Y for a SPD Y we introduce the
following theorem.

Theorem 3.5 (existence and unicity of the linear equilibrium). There exists a unique linear
equilibrium given by the strategies (3.1) and (3.3), where

Λ = 1
2R
−1
√
RΣ0LL−1 ,(3.6)

y0 = 0 ,(3.7)

µ = p0 .(3.8)

Here L,R are a factorization of the matrix Ω = LR satisfying L = R>.
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Note that the existence result is a special case of [4, Proposition 3.1], specialized to the case
of a single IT with perfect information, and the absence of other equilibria with nonsymmetric
Λ is proven in the unpublished preprint [5]. Because the symmetry property of Λ has crucial
consequences on both price formation and pricing (see the discussion in sections 4 and 5),
ruling out the existence of nonsymmetric equilibria is an important step in the analysis of the
multivariate Kyle model.

Example 1 (solution of the univariate Kyle model). The specialization of Theorem 3.5 to
the n = 1 case in which only one asset is traded yields the well-known solution derived in [9]
(light lowercase symbols are scalar versions of the bold uppercase and bold lowercase ones),

(3.9) λ =
1

2

√
σ0

ω
,

indicating that the constant of proportionality between price and imbalances scales with the
amount of price fluctuations

√
σ0 and is inversely proportional to the typical fluctuations of

the noise
√
ω. Intuitively, the larger price deviations the rational MM expects, the more

weight he should give to volume imbalances in order to forecast the fundamental price to the
imbalances. On the other hand, the more noise there is in the system, the less the volume
signal is reliable, so that the traded price is closer to the uninformed prior p0.

It is important to note that (3.5) alone does not imply the symmetry of Λ, as it is necessary
to further impose PDness in order to obtain symmetry. In fact, there are symmetric solutions
to (3.5) that are not PD. These solutions lead to efficient traded prices but they do not
optimize the IT’s utility.

Example 2 (saddle point solutions). Let x be a strategy of the form given in (3.3) and let
µ = p0 and let Λ be a symmetric but not PD solution of (3.5). By construction, the gradient
of E[UIT ] with respect to x at this point is zero, satisfying the first order condition for the IT,
but this does not guarantee that it is a maximum. We now take an arbitrary perturbation of
the strategy x+ δx and compute the difference in utility between the two strategies:

δE[UIT ] = E[UIT ](x+ δx)− E[UIT ](x)

= E[δx>(v − p0)− 2x>Λδx− δx>Λδx]

= −δx>Λδx .

One can see that δE[UIT ] is always negative for arbitrary δx if and only if Λ is PD. Without the
second order condition the IT could find better strategies than x, meaning that the solution
that corresponds to that Λ is not an equilibrium but a saddle point. In fact, when Λ is not
PD, E[UIT ] can be arbitrarily large.

In such a case, the IT would trade arbitrarily large quantities of some linear combinations
of assets, and no equilibrium would be possible. Imposing a PD impact matrix Λ allows the
MM to fix the optimal strategy of the IT, which otherwise would be undetermined—at least
in the absence of a further risk penalty in the IT utility function.

3.2. Price and volume covariances of the equilibrium solution. We now investigate what
are the testable implications of the linear equilibrium described above. Here, we provide the
relations between the observables that one would measure in such a situation.
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Proposition 3.6 (inconspicous equilibrium). In the equilibrium, the expectation of the dressed
order imbalance is equal to

(3.10) y0 = E[y] = E[u] = 0 ,

implying that the IT hides her trades among the noise traders (E[x] = 0). The IT order
imbalance covariance can be expressed as

(3.11) C[x,x] = Ω

and

(3.12) Ωd = 2Ω .

Proof. The results in (3.10) and (3.11) are obtained by directly evaluating the expecta-
tions:

E[x] =
1

2
Λ−1E[v − p0] = 0 ,

C[x,x] =
1

4
Λ−1E[(v − p0)(v − p0)>]Λ−1 =

1

4
Λ−1Σ0Λ

−1 = Ω .

The last result follows trivially from (3.11) and the definition of Ωd.

This result implies that, in addition to matching the trading level of the NT in order to
conceal his information (as obtained in the one-dimensional case), the IT is required to match
the directions in which the NT trades (i.e., the eigenvectors of Ω) such that the trading behav-
ior of the IT is indistinguishable from that of the NT. An even more interesting consequence
of this behavior is given in the next proposition.

Proposition 3.7 (information diffusion). The fundamental price covariance and the traded
price covariance in the equilibrium are related by

(3.13) Σ =
1

2
Σ0 .

Furthermore, the residual information is

C[v,v|p] = C[v,v]− C[v,p]C[p,p]−1C[p,v]

= Σ0 −BΛΣ0Σ
−1Σ0Λ

>B>,(3.14)

which at equilibrium reads

(3.15) C[v,v|p] =
1

2
Σ0.

Proof. The traded price covariance is obtained as

(3.16) Σ = C[p,p] = ΛΩdΛ> = 2ΛΩΛ =
1

2
Σ0 ,
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where the last equality comes from (A.14) in Appendix A.3. To find the residual information
one needs to compute the covariance between traded prices and fundamental prices,

C[v,p] = BΛC[v,v] = BΛΣ0,

and later use the fact that at equilibrium BΛ = 1
2 .

While the fact that the two covariances are related is expected, the fact that they are
proportional to one another is nontrivial. Furthermore (3.16) implies that the role of the im-
pact matrix Λ is to “rotate” the fluctuations of the volume in the direction of the fluctuations
of the fundamental price. The intuition behind this behavior is that due to camouflage the
IT will trade in the same direction as the NT. Hence, a rational MM trying to enforce price
efficiency will be required to convert fluctuations along the principal components of Ω into
forecasts of price fluctuations along the principal components of Σ0, thus matching the ex-
pected covariance Σ0. The fact that the proportionality constant is equal to 1/2 (only half of
the information is revealed) is of minor importance and is a consequence of the single-period
feature of the model. Extending the Kyle framework to multiple time steps would turn the
constant factor 1/2 into a time-varying function expressing the rate at which information is
incorporated into prices. (See the original Kyle paper [9] for the single asset case and [15, 10]
for, respectively, the discrete and continuous multiasset case.)

Finally, it is interesting to characterize the responses in the context of a multivariate Kyle
model.

Proposition 3.8 (responses). The propositions above and (2.10) imply that

(3.17) Rv = Rd
v = Rd = 2R =

1

2
Σ0Λ

−1 ,

so that the responses are uniquely determined by Σ0 and Λ.

Proof. The equilibrium values of the responses are found by plugging the equilibrium
strategies into their definitions:

Rd
v = Rv = E[(v − p0)x>] =

1

2
E[(v − p0)(v − p0)>]Λ−1 =

1

2
Σ0Λ

−1 ,

Rd = E[(p− p0)y>] = ΛE[yy>] = 2ΛΩ =
1

2
Σ0Λ

−1 ,

R = E[(p− p0)x>] = ΛE[xx>] = ΛΩ =
1

4
Σ0Λ

−1 .

In section 5 we will see how this naturally leads to the calibration of an impact model in
which part of the estimation noise can be reduced by imposing the response structure above as
a reasonable prior. Finally, note that while the dressed and bare responses of the fundamental
price coincide, the dressed response of the traded price is a factor 2 larger than the bare
response, due to the spurious correlations between prices and volume transiently introduced
by the NT.
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3.3. Utilities and competitive market making. In this model the utilities of the three
agents are such that they sum to zero:

UIT = −x>(p− v) ,

UNT = −u>(p− v) ,

UMM = (x+ u)>(p− v) .

It is thus interesting to characterize how utilities are transferred from one agent to the other
at equilibrium.

Proposition 3.9 (utilities at equilibrium). The utilities of the three agents at equilibrium
are equal to

E[UIT ] = tr(R) ,(3.18)

E[UNT ] = −tr(R) ,(3.19)

E[UMM ] = 0 .(3.20)

Proof.

E[UIT ] = −E[x>(p− v)] = tr(E[vx>]− E[px>]) = tr(Rv −R) = tr(R) ,

E[UNT ] = −E[u>(p− v)] = tr(E[vu>]− E[pu>]) = tr(0−R) = −tr(R) ,

E[UMM ] = −E[UIT ]− E[UNT ] = 0 .

As in the standard Kyle model, the linear equilibrium of the multivariate Kyle model
is such that wealth is transferred from the NT to the IT, who is able to capitalize on his
informational advantage. The role of the MM is more subtle: we assumed that the MM
enforces an efficient price, and hence by construction he is not optimizing his wealth. However,
as we show in Proposition 3.9, imposing price efficiency through the pricing rule (2.2) results
in a break-even for the MM in the sense that the expectation of his utility is 0. In the
next example we show that the converse is not true: imposing an unconditional break-even
condition for the MM is in general not sufficient to ensure efficient prices, and one needs to
impose a conditional, assetwise condition in order to recover the pricing rule (2.2).

Example 3 (efficient prices and unconditional break-even). Consider the unconditional break-
even condition E[UMM ] = 0. The expected utility of the MM in the univariate model reads

E[UMM ] =
1

2
(µ− p0)2λ−1 + λωd − rd

v = 0.

Imposing µ = p0 rules out the presence of complex solutions regardless of rd
v and ωd and

therefore

λ = rdv/ω
d ,

µ = p0 .

Hence in one dimension a break-even condition for the MM, together with the requirement
µ = p0, is equivalent to imposing price efficiency. This equivalence stems from the low dimen-
sionality of the system because when we impose the break-even condition in one dimension
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we obtain one equation for one parameter. (µ is fixed by imposing that the solution has to
be real for any choice of parameters.)

In the multivariate Kyle model this is not the case. In particular, the unconditional
break-even condition writes

E[UMM ] = tr

(
1

2
(µ− p0)(µ− p0)>Λ−1

S + ΛΩd −Rv

)
= 0 .

In this case we obtain again one equation but we now need to fix ∼ n2 parameters. This means
that there are many ways to break-even while only one is efficient. In a more restrictive setting
where the MM has to break-even for each asset individually, the condition can be written as

(3.21) diag

(
1

2
(µ− p0)(µ− p0)>Λ−1

S + ΛΩd −Rv

)
= 0.

In this case there are n equations, which are still not enough to fix ∼ n2 parameters.

Therefore, in one dimension the condition E[UMM ] = 0 is both a necessary and sufficient
condition for the prices to be efficient. In multiple dimensions, although E[UMM ] = 0 is still
a consequence of price efficiency, the converse is not true, as clarified in the next remark.

Remark 1 (sufficient and necessary conditions for efficiency). The assetwise unconditional
break-even (3.21) can be also written as

(3.22) E[(pi − vi)yi] = 0

for each asset i. Under the assumption µ = p0 and in matrix form, (3.22) leads to

0 = diag(E[(p− v)y>])

= diag(ΛE[yy>]− E[vy>])

= diag(ΛΩd −Rv),

which corresponds to the diagonal of (3.4). Yet, this condition is not strong enough to recover
the pricing rule (2.2) as it allows us to fix n parameters, whereas we would need to fix n2 of
them.

If instead we consider a conditional break-even (that would naturally arise from a Bertrand
type of auction), we recover as expected the martingale condition (2.2):

E[(pi − vi)yi|y] = 0, which implies yiE[(pi − vi)|y] = 0.

Hence, unlike in one dimension (where it is not necessary to assume that the break-even
condition is enforced conditionally), in n dimensions it is required that the MM

(i) breaks even on every asset and
(ii) breaks even regardless of the particular realization of the order imbalance y.

This can be rationalized by noting that an unconditional break-even condition would imply
that for some realizations of y the MM would consistently lose with respect to some assets
and win with respect to others and this would provide an incentive to modify the strategy
on the losing bets. Therefore strategies in which the break-even condition is (i) conditionally
violated or (ii) does not hold on each asset would not be equilibria.
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4. Interpretation. The properties of the linear equilibrium that have been illustrated in
the section above provide some intuition about the phenomenology of the model, but they do
not help in making sense of (3.6) for the impact Λ. The following discussions are meant to
provide a justification of the expression for Λ, so as to shed some light on its structure. As
far as we know, the following arguments have never appeared in the literature before.

4.1. Whitening of prices and volumes. The derivation of the linear equilibrium presented
in Theorem 3.5 relies on the quadratic matrix equation (3.5), which is solved by (see the proof
of Proposition A.2)

(4.1) Λ =
1

2
GOL−1 ,

where we have used a decomposition for the price correlations Σ0 = GD analogous to that of
Ω = LR and O is an orthogonal matrix. The remarkable part of this finding is that, regardless
of Σ0 and Ω, there always exists a unique change of basis O such that Λ is SPD. Hence, the
prediction process operated by the MM that results in the pricing rule ∆v = v − p0 = Λy
can be seen as resulting from the following steps:

1. Apply the whitening transformation L−1 to y, so as to obtain the whitened imbalance
ỹ = 2−1/2L−1y with C[ỹ, ỹ] = I.

2. Apply the rotation O to ỹ, obtaining the whitened fundamental price variations ∆ṽ =
Oỹ. As before, one has in fact C[∆ṽ,∆ṽ] = E[∆ṽ∆ṽ>] = I.

3. Apply the inverse whitening transformation G in order to find the prediction for the
fundamental price variation ∆v = v − p0 = 2−1/2G∆ṽ.

While the first and the third steps of this procedure are intuitive and can be seen as arising
from dimensional analysis only, the nature of the rotation O applied during the second step
is less trivial and will be investigated more closely in the following sections.

Example 4 (degeneracy in the one-dimensional Kyle model). In one dimension (3.5) becomes

σ0

4
= λ2ω ,

leading to the couple of solutions λ = ±1
2

√
σ0/ω. The degeneracy between the solutions is

easily resolved by imposing positive-definiteness of the impact Λ, which selects the positive
solution. In this case we have G =

√
σ0, L =

√
ω, O = 1. Hence, the one-dimensional Kyle

model has too low a dimensionality for anything nontrivial to happen from the point of view
of O: it is only in a higher dimension that one can appreciate its general structure.

4.2. Basis of prices and basis of volumes. As we show in the proof of Proposition A.2,
the rotation O that appears in (4.1) can be expressed as

(4.2) O = (RG)−1
√

(RG)(RG)> .

In order to make some progress in understanding the complex nature of this rotation for n > 1,
it is important to notice that it is completely specified in terms of the matrix RG. Let us
assume that the matrix factorization chosen to compute Ω and Σ0 is the principal component
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decomposition:

Ω = Wdiag(
√
ω)︸ ︷︷ ︸

L

diag(
√
ω)W>︸ ︷︷ ︸
R

,(4.3)

Σ0 = Sdiag(
√
σ0)︸ ︷︷ ︸

G

diag(
√
σ0)S>︸ ︷︷ ︸
D

,(4.4)

where W and S are orthogonal matrices, and where the vectors
√
ω and

√
σ0 have positive

elements. Then we have

(4.5) RG = diag(
√
ω)W>Sdiag(

√
σ0) ,

indicating that, besides the diagonal matrices diag(
√
ω) and diag(

√
σ0) that set the scale of

the fluctuations of fundamental prices and order imbalancees, it is the overlap W>S that
links the eigenvectors of the volumes with that of the fundamental price. In order to obtain
a stronger insight about the structure of O, we shall proceed with some simple examples.

Example 5 (two-dimensional Kyle model). In two dimensions the matrix O can be charac-
terized, without loss of generality, by a single angle θ:2

O =

(
cos θ − sin θ
sin θ cos θ

)
.

Consider a system given by the following correlations:

Σ0 =

(
1 ρ
ρ 1

)
, Ω =

(
ω1 0
0 ω2

)
.

In this case we can calculate O explicitly. In particular one has

G =
1√
2

(√
1 + ρ −

√
1− ρ√

1 + ρ
√

1− ρ

)
, L−1 =

(
ω
−1/2
1 0

0 ω
−1/2
2

)
,

and imposing the symmetry of Λ one can show that

θ = arcsin

(
ω
−1/2
1

√
1 + ρ+ ω

−1/2
2

√
1− ρ√

2∆

)
,

where ∆ =

√
ω1 + ω2 + 2(ω1ω2)1/2

√
1− ρ2. Finally we obtain

(4.6) Λ =
1

2∆

1 +
√

ω2
ω1

√
1− ρ2 ρ

ρ 1 +
√

ω1
ω2

√
1− ρ2

 .

2Indeed, by consistently choosing the factorization of G and L one can fix arbitrarily the determinant of O
to be plus or minus one due to (4.2).
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We can use the results in Example 5 to examine a couple of extreme cases: the one of
extreme illiquidity and the one in which assets are strong correlations.

Example 6 (extreme illiquidity). Let us consider the limit in which ω2 = εω with ε → 0,
whereas ω1 = ω, implying that y2ε

−1/2 is expected to be finite. Then the prediction of the
MM up to first order in ε is

p− p0 =
1

2
√
ω

(
y1

ρy1 +
√

1− ρ2(y2ε
−1/2)

)
,

implying that the efficient price of a liquid instrument is fixed solely by the volume traded
on that same instrument, whereas for illiquid markets it is important to take into account
quantities traded on liquid, correlated markets. On the other hand, the behavior of the IT up
to first order in ε is given by

x =
√
ω

(
∆v1√

ε
1−ρ2 (∆v2 − ρ∆v1)

)
.

Now the IT is encouraged to trade only the liquid asset and furthermore ignore the illiquid
one when placing the bid. Similarly to the previous case, the traded price will remain of order
one because the market orders for the second asset will be order

√
ε.

Price innovation in Example 6 can be interpreted as an indication of how an efficient
market should work: the symmetry of cross-impact implies that the effect of trading one
dollar of a very liquid asset a1 on the price of an iliquid asset a2 is the same as the effect of
trading a dollar of asset a2 on the price of asset a1, but because there are going to be very
few dollars traded on a2 it will not affect significantly the price of a1. Conversely, the price of
a2 will be heavily driven by the traded volume of a1.

Although we only proved the existence of the linear equilibrium for invertible Σ0, we can
study the behavior of Λ in the limiting case in which Σ0 has low rank as in the two following
examples.

Example 7 (strongly correlated prices). Consider ρ = 1 − δ with δ → 0, so that (∆p1 −
∆p2)/

√
δ is finite. According to (4.6) the prediction of the MM up to first order in δ is

p− p0 =
1

2
√
ω1 + ω2

(
y1 + y2

y1 + y2

)
,

implying that when dealing with strongly correlated instruments, the efficient prices can be
built by summing algebraically the volumes traded on each of them before normalizing by the
global liquidity. On the other hand, the bet of the IT up to first order in δ can be written as

x =
1

2

√
1

ω1 + ω2

(
ω1(∆v1 + ∆v2)
ω2(∆v1 + ∆v2)

)
+

√
ω1ω2

2(ω1 + ω2)

(
1√
δ
(∆v1 −∆v2)

1√
δ
(∆v2 −∆v1)

)
.

In this case the IT is encouraged to place orders proportional to either the average price
variation, or orders of finite size proportional to the relative difference, rescaled by the typical
size of the relative price moves

√
δ. Indeed, the IT should bet on price variations inversely

proportional to how common they are.
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The specialization of the result above to the extreme case ρ → ±1 regime is particularly
interesting, because it is a consequence of a more general result that can be applied whenever
Σ0 is rank one, which is shown in the next example.

Example 8 (rank one price covariance). Let us consider the case in which all eigenvalues of
Σ0 except for one tend to 0, and therefore Σ0 tends to a rank 1 matrix. The interest of this
example resides in the fact that Λ displays in this case a particularly illuminating expression,
providing a simple recipe for pooling together volumes belonging to different financial instru-
ments correlated to the same underlying product. Without loss of generality, Σ0 in the rank
one case can be written as Σ0 = sσs>, where s ∈ Rn is a unit vector and σ > 0. It is then
straightforward to verify that the matrix

(4.7) Λ =
1

2
s
( σ

s>Ωs

)1/2
s>

yields the linear equilibrium of the model. The above equation has a very simple interpretation:
• The matrix Λ commutes with Σ0, and its eigenvectors are insensitive to those of Ω

(i.e., the volume fluctuations induced by noise traders).
• The factor σ1/2 sets the scale for the price variations as being that of the only mode

of Σ0 that has nonzero fluctuations.
• By writing the principal component decomposition of Ω as Ω =

∑n
a=1waωaw

>
a , one

can write the denominator as

(4.8) (s>Ωs)1/2 =

(
n∑
a=1

(w>a s)
2ωa

)1/2

.

Such a denominator sets the scaling with volume of the impact Λ. It amounts to a
projection of Ω on the only nonzero mode of Σ0, or equivalently a sum of the individual
volume variances ωa of Ω, weighted by their projections on s.

5. Implications. The expression (3.6) for the impact matrix Λ is of interest beyond the
context of the Kyle model. It provides an insightful inference prescription for cross-impact
models, as opposed to what has been done so far in the context of cross-impact fitting (see [2,
12, 16, 14]). In such a context, one is interested in estimating from empirical data a model to
forecast a price variation ∆p with a predictor of the form

(5.1) ∆̂p = Λ̂y ,

in which it is essential to faithfully model how trading the instrument i will impact the
instrument j. The goal of this section is to establish a link between the Kyle model and
the empirical calibration of (5.1), where the price variations ∆p and the imbalances y are
sampled from empirical data.

5.1. From theory to data: Empirical averages and loss function. First, let us consider
a dataset of T independent and identically distributed efficient price variations and volumes,
{∆p(t)}Tt=1 and {y(t)}Tt=1, sampled from an unknown distribution with bounded variance that
needs not be related to the Kyle model presented in the previous sections of the manuscript.
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Accordingly, with a slight abuse of notation, from now on E[·] denotes the averages taken
with respect to the underlying distribution from which ∆p and y are sampled. In addition,
we introduce an empirical measure 〈·〉 to denote the averages with respect to the empirical
sample under investigation. In particular, simple empirical estimators for the average price
variation and the mean imbalance write

p̂0 = 〈∆p〉 =
1

T

T∑
t=1

∆p(t),(5.2)

ŷ0 = 〈y〉 =
1

T

T∑
t=1

y(t) .(5.3)

Henceforth, we consider that price changes and order flows are shifted by their empirical mean
p̂0 and ŷ0, and therefore we set p̂0 = ŷ0 = 0. The corresponding covariances are then defined
accordingly as

Σ̂ = 〈∆p∆p>〉 ,(5.4)

Ω̂d = 〈yy>〉 ,(5.5)

R̂d = 〈∆py>〉 .(5.6)

As T →∞, the empirical averages converge to the actual means and covariances. Our goal is
to show different recipes for the calibration of the model (5.1), all relying on the estimators
above. We shall compare such estimators with the Kyle estimator Λ̂Kyle, which, as we shall see,
displays several interesting properties. In order to evaluate the quality of different calibrations,
we consider a quadratic loss χ2 defined below.

Definition 5.1 (loss). Given an empirical measure 〈·〉, we define the loss χ2 as the function

(5.7) χ2 =
1

2

〈
(∆̂p−∆p)>M(∆̂p−∆p)

〉
,

where ∆̂p = Λ̂y is a linear predictor of the efficient price variation and M is a SPD matrix.

This definition of the loss implicitly implies that the calibration of the model is very similar
to the task of the MM in the Kyle model: whereas in the latter the job of the MM is to forecast
what the fundamental price variation is on the basis of the order flow imbalance, in this setting
one is required to forecast the efficient (observed) price on the basis of the imbalance. Even
though the two problems are different, they involve extremely similar equations, a fact that
will allow us to leverage the results of the previous sections, valid in principle for a Kyle
MM, in the calibration setting. Hence, under this definition of loss one is only required to
find proxies for the price variations ∆p and the dressed order imbalance y, disregarding in
principle the realizations of the underlying fundamental price v.

5.2. Cross-impact estimators. Here we present three different cross-impact estimators
and discuss their properties. The proofs of the propositions in this section are provided in
Appendix B.
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5.2.1. Maximum likelihood estimation. The simplest estimation recipe that one can
construct in order to estimate the cross-impact matrix Λ is probably the MLE, Λ̂MLE, which
is obtained by minimizing a quadratic loss.

Proposition 5.2. The minimization of the loss χ2 with respect to Λ̂MLE yields

(5.8) Λ̂MLE = R̂d(Ω̂d)−1 ,

independent of M . The loss at the minimum is given by

(5.9) χ2
MLE =

1

2
tr
(
M(Σ̂− Σ̂MLE)

)
,

where Σ̂MLE = R̂d(Ω̂d)−1(R̂d)> is the portion of the covariance of fundamental price varia-
tions explained by the model (5.8).

Note that (5.8) is almost identical to (3.4), which has been obtained by enforcing the
efficient price condition. This is no coincidence, as in a linear equilibrium setting with normally
distributed variables the traded price is exactly a linear function of the order flow imbalance
y. There are though two important differences distinguishing the linear equilibrium of the
Kyle model and the minimization of χ2

MLE:
• An MM in the Kyle setting is actually performing a linear regression of the fundamental

price, whereas here we are interested in regressing the efficient price. This justifies
why (3.4) uses the fundamental price response Rd

v, as opposed to (5.8), which uses the
efficient price Rd.
• In the Kyle setup case, the MM is aware that a part of the order imbalance comes

from the IT who owns information about the fundamental price and is optimizing his
strategy assuming that the MM uses an MLE. This leads to a quadratic equation for
Λ (see (5.16) below) even in the linear equilibrium setting, whereas (5.8) above is a
linear relation for Λ̂MLE.

Remark 2. One could have defined the multivariate Kyle model by replacing the efficient-
price condition (see (2.2)) with a condition on the minimization of χ2 without affecting the
linear equilibrium. Moreover, this approach would do a better job at generalizing the model
to more exotic settings. In fact, (A.5) provides a linear predictor only under the assumption
of normality for prices and volumes: for other distributions, the relation linking y and v is
in general nonlinear. Having an MM that minimizes a loss χ2 is a reasonable assumption if
one thinks that an MM without enough knowledge of the underlying distributions or compu-
tational power to build an efficient price should rely on linear regressions in order to estimate
the latter.

The expression for Λ̂MLE only contains the dressed empirical estimators R̂d and Ω̂d,
allowing one to estimate the impact matrix from real data. In addition, such an estimator
has the benefit of being very simple to implement, as it only requires the solution of a linear
equation for Λ̂MLE. Unfortunately, this estimator lacks several properties that turn out to be
very useful in cases of practical interest:
Symmetry: The matrix Λ̂MLE is symmetric if and only if R̂d and Ω̂d commute.
Positive definiteness: The matrix Λ̂MLE can have negative eigenvalues (see [2]).
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Consistency of correlations: In general, [Σ̂, Σ̂MLE] 6= 0. Hence, the price variations in-
ferred by using the order flow imbalance do not share the eigenvectors of the real price
variations, unless the response R̂d(Ω̂d)−1R̂d commutes with Σ̂.

The first two properties are extremely important in the calibration of cross-impact models,
as shown in [1, 14]: to perform pricing within a cross-impact setup, the matrix Λ should be
SPD in order to ensure the absence of price manipulation. This is not the case for an MLE,
which is thus not suitable for practical purposes.

5.2.2. EigenLiquidity model. In order to cure the lack of symmetry of the MLE, the
idea proposed in [12] is to construct an estimator of cross-impact Λ̂ELM that is symmetric by
construction, by enforcing the relation

(5.10) [Λ̂ELM, Σ̂] = 0 ,

which means that the impact eigendirections coincide with the eigenportfolios (or principal
components of the asset space). This prevents price manipulations that would be induced by
an asymmetric of Λ. Its calibration is explained in the next proposition.

Proposition 5.3. Consider a pricing rule ∆̂p = Λ̂ELMy, in which we impose the commuta-
tion relation (5.10). Then, the MLE obtained under such a constraint takes the form

(5.11) Λ̂ELM =
n∑
a=1

ŝagaŝ
>
a ,

where {ŝa}na=1 are the empirical eigenvectors of Σ̂, and where

(5.12) ga =
ŝ>a R̂

dŝa

ŝ>a Ω̂dŝa
.

Furthermore, the loss at the minimum is given by

(5.13) χ2
ELM =

1

2
tr

[
M

(
Σ̂− R̂d

n∑
a=1

ŝa
ŝ>a R̂

dŝa

ŝ>a Ω̂dŝa
ŝ>a

)]
.

In this case, the properties discussed above become the following:
Symmetry: The matrix Λ̂ELM is symmetric by construction.
Positive definitenes: The matrix Λ̂ELM can still have negative eigenvalues, although em-

pirically the matrix Λ̂ELM has been reported not to display eigenvalues significantly
smaller than zero (see [12]).

Consistency of correlations: Similarly to the MLE case, the price variation covariances
Σ̂ELM = Λ̂ELMΩ̂dΛ̂ELM do not generally commute with Σ̂. It is the case if and only
if [Ω̂d, Σ̂] = 0.

Summarizing, the price to pay in order to have a symmetric estimator is a larger loss function.
Note that if R̂d and Ω̂d commute with Σ̂, then Λ̂ELM = (R̂d)2(Ω̂d)−1 = Λ̂MLE and therefore
the loss is equal to the best possible χ2

ELM = χ2
MLE.

Remark 3 (estimators in one dimension). Since commutation and symmetry are granted in
one dimension, imposing the condition (5.10) does not add any constraints to the minimization

of the loss function and therefore λ̂ELM = λ̂MLE = rd

ωd .
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5.2.3. Kyle estimator. Now, let us provide some intuition on how to construct an impact
estimator inspired by Kyle’s model, Λ̂Kyle, by characterizing the Λ in the Kyle model from
a different perspective. First, take the MM solution equation (3.4) (matching the MLE,
equation (5.8)) and exchange the dressed order imbalancees and responses with those predicted
in the linear equilibrium through equations (3.17) and (3.12):

Rd
v →

1

2
Σ0Λ

−1 ,(5.14)

Ωd → 2Ω .(5.15)

Then, the linear regression of (3.4) becomes a quadratic matrix equation:

(5.16) Λ = Rd
v(Ωd)−1 → Λ =

1

4
Σ0Λ

−1Ω−1 .

After imposing symmetry and positive definiteness of Λ, this is exactly the equation that leads
to the expression of Λ obtained in the Kyle linear equilibrium (see Appendix A.4). By doing
so, one ensures an efficient price variation process whose associated covariance is half that
of the “true” price variations. As alluded to above, in the Kyle setup the MM is implicitly
performing a linear regression and knows that the IT is aware of his/her algorithm, finally
leading to (5.16). We now propose an estimator Λ̂Kyle that exploits these ideas.

Proposition 5.4. Let us consider an estimator ∆̂p := Λ̂Kyley such that

• Λ̂Kyle is SPD,

• the empirical covariance of the associated efficient price variations Σ̂Kyle = 〈∆̂p∆̂p>〉
satisfies

Σ̂Kyle = k2Σ̂

with k ∈ R. Then the unique Λ̂Kyle satisfying these constraints is given by

(5.17) Λ̂Kyle = k(R̂d)−1
√
R̂dΣ̂L̂d(L̂d)−1,

where Ω̂d = L̂dR̂d is a decomposition of Ω̂d such that L̂d = (R̂d)>.
Moreover, the loss at the minimum is

(5.18) χ2
Kyle =

1

2
tr
[
M
(

(1 + k2)Σ̂− 2kR̂d(R̂d)−1
√
R̂dΣ̂L̂d(L̂d)−1

)]
and the value of k that minimizes the loss is given by

k? =
tr(MR̂d(R̂d)−1

√
R̂dΣ̂L̂d(L̂d)−1)

tr(MΣ̂)
.

Note that the complete analogy with the Kyle model is recovered for k = 1. In fact, if the
sample dataset is drawn from an actual multivariate Kyle model with Σ0/2 = Σ = Σ̂ and
2Ω = Ωd = Ω̂d as described in the previous sections, one obtains

E[Λ̂Kyle]
T→∞−−−−→ kΛ .
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The advantage of leaving k as a free parameter is that it allows one to increase or decrease the
loss χ2 of the Kyle estimator without affecting the eigenvectors of the predicted covariance. In
fact, the relationship 2Σ = Σ0 arising in the Kyle model is thought not to be universal, so that
it is more natural to think of it as a phenomenological parameter expressing the informational
content of trades.

The adoption of Λ̂Kyle as an estimator of cross-impact has several interesting advantages

with respect to more customary estimators such as the MLE Λ̂MLE or an impact estimator
based on the EigenLiquidity Model Λ̂ELM.

Symmetry and positive definiteness. The Kyle construction imposes a priori symmetry and
PDness due to the request of optimality of the IT. In fact, the optimality condition (3.3) and
the stability one (PDness of Λ) are exactly the ones that a risk-neutral rational agent, as
considered in [1, 14], would face when trying to optimize his profits.

Consistency of correlations. This construction allows one to recover the empirical correla-
tions Σ̂ for k = 1. For any value of k one has [Σ̂, Σ̂Kyle] = 0.

Loss. An important point concerns the loss function obtained by using Λ̂Kyle. In general
χ2

Kyle is larger than that obtained by doing MLE, which minimizes χ2 by design. Hence,
the price to pay in order to have symmetry, positive semidefiniteness, and consistency of
correlations is in general a worse fit of empirical data with respect to Λ̂MLE (as measured by
the loss χ2). However, if our data behaves as the Kyle model, i.e., if R̂d = Σ̂Λ̂−1

Kyle, then
k? = 1 and

χ2
Kyle = 0 = χ2

MLE ,

implying that Λ is (obviously! ) the best estimator for a market that reproduces the statistics
of the multivariate Kyle model. Moreover, the loss at the minimum is zero because the
efficient price variation ∆p is completely determined by the imbalance. Indeed, the problem
of regressing the fundamental price variation ∆v would have yielded a nonzero loss at the
minimum even for data sampled from an actual Kyle model due to the relation Σ < Σ0.

Remark 4 (ELM and Kyle estimators for rank one Σ̂). As we showed in Example 8, when
the price variation covariance is rank one Λ̂Kyle is proportional to Σ̂. On the other hand,

Λ̂ELM has, by definition, the same eigenbasis as the price variations covariance. Therefore, if
Σ̂ is rank one, then Λ̂ELM is proportional to Λ̂Kyle and Σ̂.

5.3. A comparison of recipes. In order to compare the performance of the estimators we
compute observables that are directly related to the properties discused above:

• Loss: We compute the loss χ2 as given in (5.7).
• Asymmetry: To quantify the degree of symmetry of the estimator we compute the

norm of its antisymmetric part divided by the total norm:

α =
|Λ̂− Λ̂>|

2|Λ̂|
.

The value α = 0 (α = 1) means that the estimator is symmetric (antisymmetric).
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Figure 1. Averaged US Treasury Futures covariances and impact estimators for 2016. Top from
left to right: Daily averaged price variation covariances in untis of risk squared. Unitless daily averaged volume
covariances rescaled with respect to the maximum. To obtain the original volumes Ω̂d has to be multiplied by
$22422. Market response rescaled with respect to the maximal volume in units of risk. To obtain the original
volumes R̂d has to be multiplied by $

√
2242. Bottom from left to right: maximum likelihood impact estimator,

ELM based impact estimator and Kyle model based impact estimator in units of risk. To obtain the estimators
in the right units they have to be divided by $

√
2242.

• Positive definiteness: We compute the lowest real part of the spectrum of the
estimator:

λ? = min
i
<(λ̂i) ,

where {λ̂i}1≥i≥n are the eigenvalues of Λ̂. Positive definiteness is equivalent to λ? > 0.
• Consistency of correlations: We compute the norm of the commutator of Σ̂ and

the covariances of the estimated price variations Σ̂est:

κ =
|Σ̂estΣ̂− Σ̂Σ̂est|
|Σ̂||Σ̂est|

.

Correlations are consistent if κ = 0.

5.3.1. Application to real data. In Figure 1 we show the covariances and estimators for
the 2-year, 5-year, 10-year, and 30-year tenors of the U.S. Treasury Futures traded in the
Chicago Board of Trade (see B.5 for details). In Table 1 we show the values of the observables
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Table 1
Values of the observables for the three estimators for U.S. Treasury Futures and Bonds.

Estimator Loss (χ2) Commutator (κ) PDness (λ?) Asymmetry (α)

Λ̂MLE 1.20 0.038 0.031 0.31

Λ̂ELM 1.26 0.129 0.017 0

Λ̂Kyle 1.32 0 0.386 0

Table 2
Average values of the observables for the three estimators for the six pairs of U.S. Treasury Futures.

Estimator Loss (χ2) Commutator (κ) PDness (λ?) Asymmetry (α)

Λ̂MLE 0.668 0.033 0.318 0.186

Λ̂ELM 0.691 0.108 0.231 0

Λ̂Kyle 0.718 0 0.952 0

corresponding to the 4× 4 system. In Table 2 we show the values of the same observables but
averaged over the six possible combinations of 2×2 systems. As expected, the Kyle procedure
fares slightly worse for the loss function but is much better than other procedures on all other
counts.

5.3.2. Synthetic data. To further explore the effects of price variation and liquidity cor-
relations, in the next two sections we compute the values of the observables described above
on the six sets of synthetic 2× 2 covariance matrices with specific price variation covariances
(Σ̂ρ, Ω̂

d
ρ, R̂

d
ρ) and specific volume covariances (Σ̂ε, Ω̂

d
ε , R̂

d
ε ), respectively, fabricated by modify-

ing the data for U.S. Treasury Futures as explained in B.5 (see Table 2). The idea behind this
construction is to provide a synthetic but realistic set of matrices that are parametrized by
either a liquidity parameter ε or a correlation parameter ρ. By varying those parameters, one
can extrapolate from the reality (recovered for specific values of ε and/or ρ) and a fictitious
world in which assets can be made more or less liquid with respect to reality by varying the
knob ε, and more or less correlated by varying the parameter ρ.

Extreme illiquidity. In order to explore the effect of extreme heterogeneous liquidities we
rescale the 2× 2 covariances as

Ω̂d 7→ Ω̂d
ε =

(
1

√
ε Ω̂d

12√
ε Ω̂d

12 ε

)
.

In Figure 2 we show the value of each of the observables averaged over the six sets of covariances
for ε ranging from 0 to 1. Regarding the loss, the estimator that better performs is Λ̂MLE,
regardless of ε as expected. It is interesting to observe that χ2

MLE does not depend on ε. The
reason is that, by construction, the estimated price variation covariances are invariant under
changes in the volume variances:3

Σ̂MLE = R̂d
ε (Ω̂d

ε )−1(R̂d
ε )> = R̂d(Ω̂d)−1(R̂d)>.

The loss of the other two estimators depends on ε. For small values of ε, χ2
Kyle is lower

than χ2
ELM, suggesting that Λ̂Kyle might be better in the case of markets with heterogeneous

3This is not a particular property of systems in two dimensions; it holds for all dimensions.
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Figure 2. Effect of liquidity. Averaged values (solid lines) and intervals between the maximum and the
minimum (shaded area) of the observables for ε ranging from 0 to 1.
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Ω̂d
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R̂d
ε
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0.47 0.38

Λ̂ELM

0.38 5

0.69 0.38

Λ̂Kyle

Figure 3. Extreme illiquidity. Covariance matrices and estimators with an illiquid asset. The value of
ρ = 0.77 is the empirical correlation of the representative pair 2USNOTES-5USNOTES, whereas the value of
ε = 0.01 is obtained by rescaling the empirical responses and volume covariances of the same pair.

volatilities. For ε & 0.2 the loss distributions for the three estimators have a lot of overlap
and no one is significantly better.

As explained above, κMLE does not depend on ε and κKyle = 0, by construction. On

the other hand, the limit κELM decreases to 0 as ε → 1 because in the limit ε = 1, Ω̂d
ε and

Σ̂ε commute. All estimators are PD, and the only nonsymmetric estimator is Λ̂MLE, whose
antisymmetric part decreases as ε increases (even though it never becomes fully symmetric).
The other two are symmetric by construction.

Reminiscent to what we showed in Example 6, in Figure 3 we display the covariance
matrices and the three corresponding impact estimators in a case where one of the assets’
liquidity is much smaller than the other one. Note that due to the lack of liquidity of the
second asset the second column of R̂d

ε is considerably smaller than the first one while price
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Figure 4. Effect of price variation correlations Averaged values (solid lines) and intervals between the
maximum and the minimum (shaded area) of the observables for ρ ranging from 0 to 1.

covariances are not changed. Let us analyze heuristically the estimators obtained:
• Λ̂MLE: Trading the second asset will have a strong impact on its price and a significant

impact on the price of the first asset (due to the nonnegligible price correlations).
Trading the first asset will have little impact on both prices.
• Λ̂ELM: In this case the impact estimator predicts that trading either asset will have a

similar impact.
• Λ̂Kyle: The main difference between the predictions of the Kyle estimator and Λ̂MLE

is that in this case trading the second asset will strongly modify its price but it will
have very little impact on the first assets’ price. As already emphasized, this is how
efficient markets should work: liquid instruments should not be affected by the order
flow on correlated illiquid instruments; otherwise price manipulation strategies would
be possible.

Extreme correlations. We now look at a linear combinations of two of the assets with price
variation covariances:

Σ̂ 7→ Σ̂ρ =

(
1 ρ
ρ 1

)
.

In Figure 4 we show the value of each of the observables averaged over the six sets of
covariances for ε ranging from 0 to 1. The loss of all estimators decreases as ρ → 1 and as
in the previous case, the distributions have a strong overlap, suggesting again that no one
estimator is significantly better at minimizing the loss.

By construction κKyle=0, and in this case κELM = 0 because Ω̂d
ρ commutes with Σ̂ρ (it

would not be the case if the volume variances were not the same). Also κMLE = 0 for ρ = 0
because in that case Σ̂ρ = I, but for ρ > 0, κMLE > 0. The distributions of λ?ELM and λ?MLE

are essentially the same. λ?Kyle is significantly larger than the other two for all values of ρ.

Asymmetries in Λ̂MLE are amplified as ρ→ 1 because in that limit Ω̂d
ρ becomes singular.

Again, following Example 7 in Figure 5 we show the covariance matrices and the three
corresponding impact estimators for a case where the price variations of the two assets are
strongly correlated. Let us analyze the estimators obtained:

• Λ̂MLE: Small arbitrary fluctuations in R̂d
ρ are amplified due to the strong volume

correlations that result from the transformation. In the example shown in the figure
the impact on the second asset is much larger than on the first one.
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Figure 5. Strong price variation correlations. Covariance matrices and estimators with strongly
correlated price variations (ρ = 0.99).

• Λ̂ELM: Self impact and cross-impact are comparable. Furthermore, self-impact is very
similar for both assets.
• Λ̂Kyle: Self-impact is very similar for both assets and stronger than cross-impact.

6. Conclusion. In the present work we studied a multivariate Kyle model that proved
to be a very interesting setting to understand the fundamental mechanisms underlying cross-
impact. Perhaps more importantly, the multivariate Kyle model suggests a practical recipe
to extract a consistent cross-impact matrix structure from empirical data—a point that does
not seem to have been emphasized before but that becomes crucial when dealing with present
day large dimensional data. We revisited a special case of the Caballé–Krishnan solution at
equilibrium and proved the unicity of the symmetric solution. We provided an interpretation
of the results with regard to the eigen-modes of returns and volumes covariances. We discussed
the implications of the model for pricing, with a particular focus on the SPD property of the
impact matrix. We presented the implications for cross-impact regression of empirical data
and showed that cross-awareness (or in lesser terms “I know that you know”) can be used as
a powerful regularizer with a small loss in predictive power. We confronted our results with
previous empirical cross-impact analyses and identified limiting regimes in which the results
in [2, 12] are reproduced.

From a complementary point of view, our results can be seen as proxies for the behavior of
an idealized market in which prices fully reflect the information encoded in the order flow: for a
manipulation-free market, prices of liquid securities should be insensitive to trading of strongly
illiquid instruments (see Example 6), whereas prices of strongly correlated instruments should
be insensitive to how they are individually traded (Example 7). Measuring how much real
markets violate these principles would be an interesting empirical application of our results,
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which could be used to assist regulators in order to assess the vulnerability of a market to
correlated trading activity.

In spite of all the “good” properties of the Kyle cross-impact estimator, one should keep in
mind that many important aspects are left out of the Kyle framework that may play a crucial
role in practice. First, the empirical order flow is strongly autocorrelated in time, which must
induce a nontrivial lag dependence of the impact function—as found in [2]. Extending the
present theory to predict a lag-dependent impact matrix Λ(τ) would be extremely useful.
Second, impact is nonlinear in traded quantities: it is now well accepted that the impact of
a metaorder has a square-root dependence on volume. How this single asset square-root law
generalizes in a multiasset context is, as far as we are aware, a completely open problem.
Finally, it would be interesting to extend to the multivariate case to some recent extensions
of the Kyle model that account for the inventory risk of the MM [6]. We hope to visit some
of these questions in future work.

Appendix A. Solution of the multivariate Kyle model. The proof of Theorem 3.5 is
split into different results. First, the fact that the equilibrium is linear is a consequence of
Propositions 3.2 and 3.3. Before finding the explicit form of the equilibrium we need to show
that Λ is symmetric. This is a consequence of the second order condition on the minimization
of the IT’s strategy (Proposition 3.2) and is proven in Proposition 3.4. Finally, the explicit
form and proof of uniqueness of Λ is given in Proposition A.2

A.1. Optimality of the informed trader.

Proof of Proposition 3.2. Here, we show the consequences of the first and second order
conditions arising from the requirement that the IT is maximizing locally the average utility
given v, which can be written as

E[UIT |v] = −E[x>(p− v)|v]

= −E[x>(µ+ Λy − v)|v]

= −x>µ− x>Λx+ x>v.

In order to find the optimal strategy, we maximize the utility with respect to x. The first and
seccond order derivatives are

∂E[UIT |v]

∂x
= −µ− 2ΛSx+ v = 0,(A.1)

∂2E[UIT |v]

∂x∂x>
= −2ΛS,(A.2)

where XS (XA) denotes the symmetric (antisymmetric) part of X.
Since UIT is quadratic on x, the profit maximization condition implies that the second

derivative (A.2) has to be strictly negative definite, which in turn implies that both Λ and
ΛS have to be PD. Solving (A.1) for x leads to

(A.3) x = α+Bv,
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where

(A.4)
α = −Bµ,

B =
1

2
Λ−1

S .

Since ΛS has to be PD, it is invertible and B and α are well defined.

As we will show in Appendix A.3, the PDness of Λ together with the efficient-price con-
dition (discussed in Appendix A.2) implies that Λ is symmetric.

A.2. Optimality of the market maker. In this appendix we will state the conditions
stemming from the requirement that the MM fixes a pricing rule p = Λy + µ such that
p = E[v|y] is an efficient price.

Proof of Proposition 3.3. Exploiting the Gaussian nature of v and u and their indepen-
dence, the efficient price as given in (2.2) can be expanded as [11, p. 269]

p = E[v|y] = E[v] + C[v,y]C[y,y]−1(y − E[y])

= p0 +Rd
v(Ωd)−1(y − y0)

= µ+ Λy ,(A.5)

where

µ = p0 −Λy0 ,(A.6)

Λ = Rd
v(Ωd)−1.(A.7)

This analysis provides an explicit form for the MM’s strategy and it might look as if the
MM is doing a linear regression. However, without knowing the strategy of the IT one cannot
estimate Rd

v nor (Ωd)−1, meaning that the MM has to include information about x in his
regression, making it a quadratic problem rather than a linear one. This point is discussed in
more detail in section 5.2.1.

A.3. Symmetry of the linear equilibrium. In order to find the linear equilibrium described
in Theorem 3.5, we first have to prove the Proposition 3.4. To do so we will make use of a
useful lemma [8, Theorem 7.2.6] that will be used in the following derivations.

Lemma A.1 (positive definite square-root). Consider a matrix Y that is symmetric and
positive semidefinite. Then, there exists a unique symmetric, positive semidefinite matrix
X =

√
Y such that XX = Y .

Proof of Proposition 3.4. Let us start by plugging E[y] = y0 = 1
2Λ−1

S (p0 − µ) (derived
from (3.3)) into (3.4). After a bit of algebra we obtain

(A.8) (p0 − µ)

(
I− 1

2
ΛΛ−1

S

)
= 0,
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thus µ = p0 and x = 1
2Λ−1

S (v − p0), which allows us to compute the following quantities:

y0 = 0,(A.9)

Ωd =
1

4
Λ−1

S Σ0Λ
−1
S + Ω,(A.10)

Rd
v =

1

2
Σ0Λ

−1
S .(A.11)

By plugging the results above into (3.4) one obtains a quadratic equation:

(A.12) (ΛΛ−1
S − 2I)

1

4
Σ0 + ΛΩΛS = 0.

Expanding Λ as (ΛA + ΛS) and doing some algebra from (A.12) we obtain

(A.13) ΛA = (I− Γ)(I + Γ)−1ΛS,

where Γ = 4ΛSΩΛSΣ−1
0 . Now, since ΛA = 1

2(Λ−Λ>), we have ΛA = −Λ>A, and therefore

(I− Γ)(I + Γ)−1ΛS = −ΛS(I + Γ>)−1(I− Γ>),

(I + Γ>)Λ−1
S (I− Γ) = −(I− Γ>)Λ−1

S (I + Γ),√
ΛSΓ>Λ−1

S Γ
√

ΛS = I.

Substituting back Γ we get

Y 2 = Z2,

where Y =
√

ΛSΩ
√

ΛS and Z =
√

Λ−1
S

1
4Σ0

√
Λ−1

S . Since ΛS is PD, Y 2 is also SPD and

therefore Y = Z is the unique PD square root of Y 2, which leads to

(A.14)
1

4
Σ0 = ΛSΩΛS,

and substituting these results into (A.13) reveals that ΛA = 0.

With (A.14) we prove that the profit maximization condition on the IT’s cost (i.e., Λ has
to be PD) results in ΛA = 0 and Λ = ΛS. If ΛS was not PD, Y and Z could have different
roots and we would not be able to establish the relationship Y = Z. In that case we would
find many solutions, most of them being saddle points for E[UIT ].

A.4. Explicit form of the linear equilibrium. The last step needed in order to prove the
existence and uniqueness of the linear equilibrium in Theorem 3.5 is to prove that (A.14)
admits a unique symmetric solution, as made explicit below.

Proposition A.2. The unique symmetric PD matrix Λ satisfying (A.14) is

Λ =
1

2
R−1

√
RΣ0LL−1 .
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Proof. Explicit form of Λ: The solution to (A.14) has to be a Λ of the form

(A.15) Λ =
1

2
GOL−1 ,

where G is any factorization of Σ0 of the form GD with G> = D. One is then left with the
equation OO> = I. Such a equation is solved by any matrix O belonging to the orthogonal
groupO(n), which is specified by n(n−1)/2 parameters. It is only by self-consistently imposing
symmetry of Λ that one finds the solution for O,

O = G−1R−1
√
RΣ0L

= (RG)−1
√

(RG)(RG)>.(A.16)

Introducing this value of O in (A.15) we obtain the desired result.
Uniqueness: The decomposition Ω = LR is not unique. Indeed, multiplying L by an

arbitrary rotation OΩ yields another possible decomposition. However, the final value of Λ
does not depend on OΩ. To prove this consider the value of Λ using the decomposition
Ω = LOΩO

>
ΩR:

Λ =
1

2
(O>ΩR)−1

√
O>ΩRΣ0LOΩ(LOΩ)−1

=
1

2
R−1OΩO

>
Ω

√
RΣ0LOΩO

>
ΩL−1

=
1

2
R−1

√
RΣ0LL−1,

where we have used the fact that if
√
Y = X, then

√
O>Y O = O>XO. Since the argument

of the square root is SPD by construction the unique value of Λ is obtained by choosing the
unique SPD root.

Appendix B. Estimation.

B.1. The loss χ2. First, we want to relate the loss (5.7) with the empirical mean and
covariances defined in section 5. Starting from the definition (5.7), one can write

χ2 =
1

2
〈(Λ̂y −∆p)>M(Λ̂y −∆p)〉 ,

=
1

2
〈y>Λ̂>MΛ̂y〉 − 〈y>Λ̂>M∆p〉+

1

2
〈∆p>M∆p〉 .

Then, by plugging the definitions of the empirical covariances one is left with

(B.1) χ2 =
1

2
tr
[
Λ̂>MΛ̂Ω̂d − 2Λ̂>MR̂d +MΣ̂

]
.
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B.2. Maximum likelihood estimator.

Proof of Proposition 5.2. In order to derive the MLE, we differentiate (B.1) with respect
to Λ̂:

0 =
∂χ2

∂Λ̂
= M(Λ̂Ω̂d − R̂d).

It is clear that the optimal value of Λ̂MLE does no depend onM . To find the explicit expression
we equate the derivative to 0 and solve

Λ̂MLE = R̂d(Ω̂d)−1.

To calculate the minimum we can plug this solution into (B.1), obtaining

(B.2) χ2
MLE =

1

2
tr
[
M
(
Σ̂− R̂d(Ω̂d)−1(R̂d)>

)]
.

B.3. EigenLiquidity estimator. The derivation of the EigenLiquidity estimator runs along
the same lines as the previous case.

Proof of Proposition 5.3. We want to find an estimator Λ̂ELM that minimizes χ2 under
the constraint [Λ̂ELM, Σ̂] = 0, which is equivalent to saying that

Λ̂ELM =

n∑
a=1

ŝagaŝ
>
a ,

where {ŝa}na=1 are the eigenvectors of Σ̂. Because of this constraint, the minimization of χ2

has to be done with respect to ga rather than Λ̂,

0 =
∂χ2

∂ga
= tr

(
M(Λ̂Ω̂d − R̂d)ŝaŝ

>
a

)
,

which for arbitrary M implies
ŝ>a (Λ̂Ω̂d − R̂d)ŝa = 0

and therefore

ga =
ŝ>a R̂

dŝa

ŝ>a Ω̂dŝa
.

In order to compute the minimum loss we proceed as in the previous case plugging the
value of Λ̂ELM into (B.1) and obtain

χ2
ELM =

1

2
tr
[
M
(
Σ̂ + (Λ̂ELMΩ̂d − 2R̂d)Λ̂ELM

)]
=

1

2
tr
[
M
(
Σ̂− R̂dΛ̂ELM

)]
=

1

2
tr

[
M

(
Σ̂− R̂d

n∑
a=1

ŝa
ŝ>a R̂

dŝa

ŝ>a Ω̂dŝa
ŝ>a

)]
.
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B.4. Kyle estimator.

Proof of Proposition 5.4. To prove the first statement of the proposition it suffices to com-
pute the covariance of the efficient prices,

Σ̂Kyle =〈∆̂p∆̂p>〉 = Λ̂Kyle〈yy>〉Λ̂>Kyle = Λ̂KyleΩ̂
dΛ̂>Kyle = k2Σ̂ ,

and to use the unicity result for the above equation (proved in Appendix A.4) in order to
recover (5.17).

In order to find the loss at the minimum one has to take into account that the only free
parameter is k, and since Λ̂KyleΩ̂

dΛ̂Kyle = k2Σ̂, the loss is

χ2
Kyle =

1

2
tr
[
M
(
Σ̂ + (Λ̂ELMΩ̂d − 2R̂d)Λ̂Kyle

)]
=

1

2
tr
[
M
(

(1 + k2)Σ̂− 2kR̂d(R̂d)−1
√
R̂dΣ̂L̂d(L̂d)−1

)]
.

Optimizing with respect to k we obtain

∂χ2
Kyle

∂k
= ktr

[
MΣ̂

]
− tr

[
MR̂d(R̂d)−1

√
R̂dΣ̂L̂d(L̂d)−1

]
= 0 .

B.5. Fabricating synthetic covariance matrices inspired from real data. The data set
used to fabricate the synthetic covariance matrices in section 5.3 consists of the averaged price
variations and volumes in 5 minute bins of the 2-year, 5-year, 10-year, and 30-year tenors of
the U.S. Treasury Futures traded in the Chicago Board of Trade during the year 2016.

For each pair of bonds with price variations ∆p(t) and volumes y(t) we define the normal-
ized covariances as

C =

(
Σ̂ (R̂d)>

R̂d Ω̂d

)
= D−1

(
〈∆p∆p>〉 〈y∆p>〉
〈∆py>〉 〈yy>〉

)
D−1,

where we have previously shifted the data by their empirical means and where

D = diag

(√
〈∆p2

1〉,
√
〈∆p2

2〉,
√
〈y2

1〉,
√
〈y2

2〉
)
.

Fixing liquidity. Covariance matrices with the desired liquidity are constructed by rescaling
the rows and columns of C:

Cε =

(
Σ̂ε (R̂d

ε )>

R̂d
ε Ω̂d

ε

)
=


1 0

1
1

0
√
ε

C


1 0
1

1
0

√
ε

 .

Using this recipe, the variance of the volume of the second asset will be ε and consequently
the second column of the response is multiplied by

√
ε. Note that the price variations are

unchanged.
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Fixing correlations. In order to modify the price correlations we have to construct linear
combinations of assets. If Σ̂12 = r , then

Cρ =

(
Σ̂ρ (R̂d

ρ)>

R̂d
ρ Ω̂d

ρ

)
=

(
A 0
0 A

)
C

(
A 0
0 A

)
,

where

A =

(
1 1
1 −1

)√1+ρ
1+r 0,

0
√

1−ρ
1−r

(1 1
1 −1

)
.

This modification ensures that Σ̂ρ = ( 1 ρ
ρ 1 ). The response and volumes are also modified

accordignly. In particular the diagonal entries of Ω̂d
ρ will still be equal (but not necessarily

equal to 1).
Note that for C SPD, both Cε and Cρ are also SPD and therefore are coherent covariance

matrices.
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