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Abstract. We consider the classical problem of optimal portfolio construction with

the constraint that no short position is allowed, or equivalently the valid equilibria of

multispecies Lotka-Volterra equations, in the special case where the interaction matrix

is of unit rank, corresponding to a single-resource MacArthur model. We compute

the average number of solutions and show that its logarithm grows as Nα, where N

is the number of assets or species and α ≤ 2/3 depends on the interaction matrix

distribution. We conjecture that the most likely number of solutions is much smaller

and related to the typical sparsity m(N) of the solutions, which we compute explicitly.

We also find that the solution landscape is similar to that of spin-glasses, i.e. very

different configurations are quasi-degenerate. Correspondingly, “disorder chaos” is also

present in our problem. We discuss the consequence of such a property for portfolio

construction and ecologies, and question the meaning of rational decisions when there

is a very large number “satisficing” solutions.

Keywords: Spin-glasses, metastable states, cavity and replica method, quantitative

finance, Markowitz portfolios, population dynamics.
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1. Introduction

When considering a large number of interacting entities, regardless of their nature,

statistical physics has proved extremely efficient at gaining both qualitative and

quantitative insights on typical behaviour, statistics, and unexpected phase transitions.

While many problems can be mapped almost directly to magnetic systems (e.g. neural

networks where weights are analogous to the mean magnetisation on discrete lattice

sites [1–3]), other systems are constrained by conditions that are less natural in physical

systems. An example of such constraint is that of the non-negativity of some quantity,

like in the famous perceptron model and the associated storage problem [4, 5]. In this

paper, we address two further examples of systems with this restriction: (i) “long-

only” optimal portfolios of volatile financial assets, and (ii) equilibrium populations of

competing species.

The idea of maximising gains while minimising risk for a portfolio of fluctuating

assets is one that is both at the origin and at the heart of quantitative finance. As

early as 1952, Harry Markowitz derived the general formula for the portfolio with the

smallest variance for a desired return [6], assuming the asset fluctuations are fully

described by a covariance matrix. Since, Markowitz portfolio theory has stood as a

reference in portfolio management, and questions surrounding optimal portfolios have

been a very successful playground for physicists. By adapting calculations from the

physics of disordered systems, several theoretical results have been obtained, mainly

around the phase transition observed when the time series used to infer the covariance

matrix become too short relative to the size of the portfolio [7–9], and the impact

of having noisy covariance matrices in general [10–12]. The effect of having further

constraints in the optimisation problem has also been explored, with very rich results.

In particular, imposing that investors must provide a deposit proportional to the

value of the underlying assets was shown to result in an exponential number of valid

locally optimal portfolios, reminiscent of the number of metastable states in a spin-

glass [13]. As argued in that paper, the existence of a very large number of nearly

degenerate (or “satisficing”) solutions for a given optimisation problem is conceptually

important because common knowledge can no longer be assumed. The complexity of

the problems faced by the agents generates irreducible uncertainty, a quandary called

“radical complexity” by one of us.‡
A constraint that has long attracted much interest in the risk management industry

consists in enforcing long-only portfolios. Denoting w ∈ RN the vector of weights

associated to each of the N possible assets an investor can consider with ∑iwi = 1

(fully invested), a long position corresponds to a weight wi > 0, and conversely a short

sell refers to wi < 0. There are a variety of reasons why one might need to avoid short

sells, ranging from explicit investment mandates to extreme cases such as regulatory

bans as those seen in Europe during the Coronavirus outbreak. On the fundamental

level, very interesting behaviour has been observed when the long-only constraint is

‡ see, e.g. www.res.org.uk/resources-page/radical-complexity.html .

www.res.org.uk/resources-page/radical-complexity.html
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enforced, as portfolios quickly tend to become very sparse, resembling choices made by

individual stock pickers [14–16].

In the context of population dynamics, the non-negativity constraint is quite

intuitive, as the number of individuals in a given species can obviously not be smaller

than zero. Interestingly however, this quantity does not result from a constrained

optimisation procedure as in the portfolio case, but rather from a dynamical process

governed by ordinary differential equations. Despite this difference, statistical physics-

inspired calculations have also resulted in key insights [17–21]. Recent work around the

generalised Lotka-Volterra model, representing interacting species evolving in a finite

environment, demonstrated the existence of different phases of either unbounded growth,

multiple unstable attractors, or a unique stable equilibrium [22], depending on the shape

of interactions. To exploit the formal similarity with long-only optimal portfolios, we

shall focus on the last phase where a stable equilibrium can be reached, leaving the

dynamical picture aside.

The objective of this paper is to study how the width and shape of the disorder

distribution – here asset volatility or species interactions – affects the features of the long-

only optimal portfolio and the equilibrium populations respectively.§ Two quantities

that will particularly interest us are (i) the fraction of elements in the solution that are

nonzero (representing the sparsity of the portfolio or the fraction of surviving species),

and (ii) the number of acceptable solutions satisfying the constraint (degeneracy). Our

results contrast the standard (spin-glass like) optimisation problem in two ways. First,

the average number of solutions grows sub-exponentially with N , in a way that depends

sensitively on the nature of the disorder. Second, the typical (i.e. most likely) number

of solutions is very different from (and much smaller than) the average.

In Section 2 we introduce the underlying models for these two seemingly different

problems. Due to the availability of high quality empirical data for the portfolio problem,

Sections 3 to 5 focus on disorder distributions compatible with financial assets, and

present numerical and analytical descriptions of the quantities of interest. Distribution-

specific results for normally and uniformly distributed disorder are extended to a

generalised normal distribution. Section 6 numerically establishes disorder chaos, which

is interpreted in the context of both asset management and ecological equilibria. In

Section 7, we conclude and discuss future directions.

2. Underlying models

2.1. Portfolio optimisation

Consider a portfolio of N single assets, and assume (in line with the majority of studies

on portfolio optimisation) that asset returns are correlated Gaussian variables. The

§ While seemingly similar to our work due to the long-only constraint, Ref. [9] considers uncorrelated

assets described by empirical correlation matrices, which makes the two studies very different from one

another.
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portfolio statistics is fully caracterised by its covariance matrix Cij = ηiηj − µiµj, where

we have introduced for each asset i the expected return µi and the fluctuation ηi. The

overline indicates a time average. The full correlation matrix is notoriously difficult to

infer from noisy financial time series (see e.g. [12]), which is why simplifying hypotheses

are generally used in the asset management literature. One of them is given by the

one-factor risk model, which, rather than attempting to incorporate all possible sources

of fluctuations, assumes that correlations are mostly due to the market exposure. In

this framework the covariance matrix writes:

Cij = ziδij + βiβj, (1)

where zi denotes the variance of asset i, and βi its correlation to the market, or more

precisely the ratio of the return covariance with the market index to the return variance.

While this approximation may appear very coarse, empirical analyses on stocks show

that the top eigenvalue of the correlation matrix, corresponding to the market mode, is

indeed largely dominant relative to the other eigenvalues (see e.g. [23]).

For an investor interested in constructing an optimal portfolio, the expected returns

are of course key parameters. However for this theoretical analysis, which aims at

drawing qualitative insights regarding the multiplicity of solutions and its implication

on portfolio stability, we impose the simplification µ = 1, where µ = {µi}i∈[1,N] (see

Appendix F for extensions to arbitrary µi’s). In this case, the optimal portfolio, also

coined the Markowitz portfolio, which minimises the risk σ2
p = ∑i,j Cijwiwj for the given

expected return µp = 1, can easily be shown to write:

wi =
∑j C

−1
ij

∑i,j C
−1
ij

. (2)

Within the one factor model, the covariance matrix can be easily inverted using the

Woodbury matrix identity [24]. Up to a normalising constant, one obtains:

wi ∝
1

zi
(1 − βi

∑j βj/zj

1 +∑j β
2
j /zj

) . (3)

This equation is central for the problem that we aim to explore in the following.

2.2. Ecological equilibria

Consider now i = 1, . . . ,N species associated to a certain “carrying capacity” in the

environment. These species furthermore interact with each other, either competing for

resources, or in predator-prey relationships, or else in a mutualistic, cooperative mode.

In its simplest form, where we consider that all species have identical growth rates

µi = 1, the population dynamics are described by the general Lotka-Volterra equations:

∂tSi(t) = Si(t) [µi − µik
−1
i Si(t) −∑

j≠i

αijSj(t)] , with µi = 1 ∀i, (4)
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where Si is the population of species i, ki its carrying capacity, and αij is the N ×N

interaction matrix [22]. In this model, a positive entry αij corresponds to species i and j

competing for resources or i being a prey and j being a predator (in which case αji < 0).

Setting ∂tSi = 0 to identify fixed points of the system yields the equilibrium population

of the species:

Si =∑
j

C−1
ij , (5)

where here Cij = ziδij + αij, with zi = k−1
i . Naturally, in this context, one must have

Si ≥ 0 ∀ i since populations cannot be negative.

Experimentally, it is very difficult to gain insight on the nature of the interaction

matrix or its eigenvalues. As a matter of fact, it is this observation that initially

motivated Robert May to use Random Matrix Theory arguments in his seminal paper

[25]. While the qualitative phase portrait for the dynamical behaviour of the model is

independent of the exact distribution of αij [22], it seems natural from Eq. (5) that the

equilibrium picture would be dependent on the interaction matrix model.

Here, we propose a drastic simplification and choose the interaction matrix to be of

unit rank: αij = βiβj, corresponding to the celebrated MacArthur resource competition

model when considering a single resource assumed to be at equilibrium [26]. We will take

β’s to be independent and identically distributed, with a probability density function

ρ(β). The βi coefficients then quantify how strongly species i compete for the unique

resource with other species, and the interaction between two species then only depends

on how strongly they both depend on the resource. With this model of interactions,

the equilibrium populations map to the long-only optimal portfolio weights (up to a

constant that does not affect the sign), and both problems can be treated identically

based on Eq. (3). Note that the case of heterogeneous growth rates µi is equivalent to

different average returns for stocks, and is discussed later in Appendix F.

Taking ⟨β⟩ > 0 is a natural choice, both to avoid placing ourselves in an unbounded

growth regime, and more generally because ecosystems tend to by highly competitive.

Naturally, σ2 = V(β) shall also play a key role in the equilibrium picture of the system

and its properties. Finally, it is important to note that the unit rank model yields a

symmetric interaction matrix, which amounts to either cooperation or pure resource

competition. Predator-prey relations require, as noted above, asymmetric interactions

between species i and j.

2.3. Spin-glasses

Suppose we now enforce the non-negativity constraint common to the two problems.

For the portfolio, this means the positions associated to short sells after the Markowitz

optimisation, i.e. associated to wi < 0, will have to be removed from the portfolio

altogether, reducing the effective universe from which stocks may be picked. Likewise,

an extinct species (Si < 0) is by definition removed from the ecological universe, leading

to an ecology with a reduced number of viable species.
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Here, we introduce ‘spins’ {θ} that can take the value θi = 1 if position i is included

in the (possibly reduced) asset or species universe and θi = 0 if it is excluded from it.

Clearly, without excluding any specific entity, 2N combinations of {θ} can be constructed

from the N assets or species initially considered∥. The central question treated in this

paper can therefore be reformulated as follows: we seek the number Ns of possible

configurations {θ}, among these 2N , that satisfy the non-negativity condition.

This quantity can easily be understood for financial assets, as it corresponds to the

number of long-only Markowitz-optimal portfolios that can be constructed from a set

of N assets. In the context of ecological equilibria, the interpretation is similar even if

species are not “selected” in the same way as stocks. Ns can then be seen as the number

of viable stable ecosystems that result from particular subsets of the N interacting

species. The existence of solutions with a lower number of highly concentrated species

in addition to the default, most diverse, solution is actually particularly interesting in

the ecology context when considering the so-called Allee effect, which states that an

increase in population density is correlated with higher survival probability [27]. In

both cases, this quantity, which may appear somewhat artificial at this stage, will be

essential in understanding how disorder chaos arises and can impact these systems in a

very concrete way.

Naively, one could try to characterise the number of solutions by its average,

⟨Ns⟩ = ⟨∑
{θ}

N

∏
k=1

Θ (θkwk) ⟩, (6)

where we take the convention Θ(0) = 1 for the Heaviside step function, and averages

are taken over the distribution of β. At this stage, readers familiar with the physics

of disordered systems may notice how formally similar this enumeration is to counting

metastable states in quenched spin-glasses, where the Heaviside step function would be

replaced by a Dirac δ distribution with an argument minimising the Hamiltonian [28–30].

As in such physical systems, a key quantity in the study of the number of solutions is

the “annealed” complexity

Σ =
log ⟨Ns⟩

N
. (7)

In the case of Sherrington-Kirkpatrick spin-glasses, this quantity is indeed equivalent

to its more representative “quenched” counterpart, where the logarithm is averaged

(requiring a much more challenging replica calculation), for metastable states of

sufficiently high energy [29]. Another useful observable is the sparsity, describing the

average fraction of the N possible entities that are included in the configuration. We

can write it as

u =
1

N

N

∑
i=1

θi. (8)

Among the Ns configurations satisfying the non-negativity constraint for a given

set {βi}, one will be “as full as it can be”, meaning u will reach its maximum value,

∥ 2N − 1 solutions to be exact, as the empty portfolio cannot satisfy the fully invested constraint.
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the average value of which is noted m below, with m ≤ 1. In asset management terms,

this quantity corresponds to the most diversified long-only portfolios. For population

dynamics, it is the most diverse ecosystem that can result from all possible viable

ecosystems resulting from the N species.

3. Numerical experiments

3.1. Empirical data

In order to study the likely number of valid solutions, it is essential to have some

information on the distribution of the β coefficients.

For the portfolio problem, where β is a widespread metric for an asset’s correlation

relative to the market, high quality data is readily available. Using returns from a large

number of US stocks over a two year time span (up to November 2020) reveals that

the βs are normally distributed about 1, as shown in Fig. 1(a). We shall thus take as a

starting point i.i.d. variables βi ∼ N (1, σ2), which conveniently implies that σ and N are

the problem’s sole parameters. Nevertheless, all calculations can easily be generalised

to any ⟨β⟩ ≠ 1 since the problem is invariant under the simultaneous scaling of all βs

and all zs by an arbitrary factor α and α2, respectively.

This being said, other distributions for β can also be of interest. In particular, if

one focuses on specific sectors, the empirical distribution of volatility matches a uniform

distribution relatively well as can be seen in Figure 1(b). Alternatively, looking at weekly

returns rather than daily returns to construct the volatility gives thicker tails, between a

Gaussian and Laplace distribution, as well as some slight skewness, visible in Fig. 1(c).

As mentioned in the previous section, there is unfortunately no such data for the

interaction matrix in ecological communities, so in this context our model parameters

should be considered with a grain of salt.

In the following numerical experiments, markers labelled by ‘Data’ will be referring

to calculations that are using the empirical distributions of β from Fig. 1. Practically,

the shape and width of the empirical distributions are obtained by fitting the histograms,

and data points are then constructed by random sampling with replacement for different

values of N .

3.2. Maximum sparsity

Calculating the average maximum sparsity m numerically is rather straightforward, as

it simply requires to remove iteratively entries for which Eq. (3) gives negative weights,

i.e. setting θi = 0 for these positions, until all positions are acceptable. The result for

stock-compatible β ∼ N (1, σ2) in Fig. 2(a) is consistent with the findings of Lehalle

and Simon [15]: the sparsity decreases rapidly and non-trivially when the βs cease to

be very tightly distributed about unity. Interestingly, the sparsity clearly appears to

be a function of the parameter χ = σN only (see Fig. 2(a)). Such a scaling provides

precious insight for the analytical formulation of the problem, as will become apparent
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Figure 1: Distributions of β computed using the variance and covariance of returns averaged

over one and two years respectively (as accurately estimating covariance requires more data).

(a) Daily returns of the 1500 largest capitalisation stock, and fit to a normal distribution. (b)

(dark green) Daily returns of the 120 largest capitalisation stocks in the energy and utilities

industries, (light green) uniformly distributed points over the same interval for the same sample

size. (c) Weekly returns of the 1000 largest capitalisation stocks, and fit to a generalised normal

distribution of shape parameter b ≈ 3/2.

in the following section. It should be noted that such a scaling result ceases to hold

for large values of σ, as a large standard deviation yields a significant fraction of assets

with negative β that can obviously be included in the long-only portfolios (see Eq. (3)),

thereby causing m to increase again at large σ.

This effect can be partially observed in the empirical points that have a slightly

wider distribution of β (σ ≈ 0.3) and a few negative entries (not shown). This being said,

in a range for N and σ relevant for applications, the evolution of m for real data points

appears to be roughly in line with the χ = σN scaling curve where the fully numerical

points lie.

The same procedure may be repeated for uniformly distributed β as show in

Fig. 3(a). The result is qualitatively very similar, albeit with a slower decrease in

m with N . Interestingly we recover the scaling χ = σN where σ now governs the

width of the distribution. Like in the Gaussian case, the points sampled from empirical

data appear to be slightly too widely distributed to perfectly match the points from

continuous probability densities, although the evolution of m appears to be very close

up to some offset.

3.3. Exact enumeration of solutions

The other numerical experiment that can be carried out to guide our study of the

multiplicity of solutions is an exact enumeration. The procedure relies on testing all

2N possible combinations of {θ}, calculating the weight for each, and counting those

that yield only positive weights. Given the exponential number of configurations to be

tested, we are limited to N ≤ 32 in order to keep the computation times reasonable.

From Fig. 2(b), we find that, as expected, the number of solutions is close to 2N

when σ → 0, and then decreases as the number of negative entries to be removed

increases. The complexity Σ for the same datapoints in Fig. 2(c) gives further insights
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Figure 2: Numerical and theoretical results for β ∼ N (1, σ2). (a) Maximum sparsity m as

a function of χ = σN , inset focusing on the large χ region. (b) Number of solutions ⟨Ns⟩ as

a function of N , obtained by exact enumerations averaged over relatively few (4-10) samples.

Straight lines display the respective theoretical predictions, dotted line corresponds to 2N . (c)

Complexity Σ as a function of σN resulting from the exact enumerations and normalised by

log 2, inset zooming out to show the large χ region. The full line is the numerically exact

result, and the dotted line is an asymptotic approximation based on Eq. (27) below. The

legends are shared for (b) and (c).
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Figure 3: Numerical and theoretical results for β ∼ U(1 ±
√

2σ). See Fig. 2 for the detailed

caption.

on the evolution and transition from full to sparse portfolio. Clearly, the complexity

also scales almost perfectly with χ = σN .

Repeating the experiment for the uniform distribution presented in Figs. 3(b-c)

displays a comparable result, with a slightly slower decrease of Σ, a difference that is

consistent with the previously observed maximum sparsities.
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3.4. Exploration of the solution space

Beyond the macroscopic observables that are the number of valid solutions and the

maximum sparsity, the precise distributions of more specific quantities among the long-

only configurations may also be explored numerically. Here, two of these are particularly

interesting in the context of the multiplicity of solutions.

First, the quadratic form

H({β},{θ}) =
N

∑
i,j=1

Cijwiwj (9)

represents the metric that is minimised under constraint. For the portfolio problem,

this is obviously the total portfolio square volatility. Although less straightforward,

H can also be understood intuitively in the population dynamics context. Indeed, as

Cij represents the level of competition for the resource between species i and j, the

quantity to be minimised corresponds to the aggregated level of competition (including

self-competition) for the surviving species.

The second quantity of interest is the overlap between two configurations {θ} and

{θ̃}. We choose to define it as

q({θ},{θ̃}) =
1

N

N

∑
i=1

θiθ̃i − (
1

N

N

∑
i=1

θi)(
1

N

N

∑
i=1

θ̃i) . (10)

This definition differs from the usual spin-glass expression with the addition of the

second term on the RHS, that is included to ensure that two statistically independent

configurations have zero overlap on average.

Using these two metrics, we can study the distribution among valid configurations

of their excess variance or level of competition relative to the value for the globally

optimal configuration {θ⋆}

∆H = H({β},{θ}) −H({β},{θ⋆}) (11)

as well as their normalised overlap with this global optimum

Q =
q({θ},{θ⋆})

q({θ⋆},{θ⋆})
. (12)

A value of Q close to 1 indicates a configuration has a large number of common species or

assets with the optimal configuration, Q close to 0 corresponds to solutions much sparser

than the optimum while negative values of the overlap are reached for configurations

that are largely full but orthogonal to the best possible outcome.

The distributions of ∆H and Q can be obtained directly from the exact

enumerations for small values of N . Such a result for normally distributed β is shown in

Fig. 4, which also displays the joint density of the two quantities. Looking at the overlap,

we find that, as one could have expected, the majority of valid solutions are composed

of a relatively small number of non-zero spins and therefore have Q close to zero. More
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surprisingly, looking at ∆H reveals that a very large fraction of these are associated to

a small excess variance or level of competition relative to the minimum. This is further

confirmed by the joint distribution, where we indeed observe that many configurations

display a small value of ∆H despite having Q ≈ 0. As such, the multiplicity of solutions

and associated complexity is of a great importance in this problem. Not only do we find

a large number of portfolios or ecosystems that satisfy the constraint, a large fraction of

these achieve a portfolio variance or level of competition very close to the best possible

outcome. These quasi-degenerate solutions might therefore become optimal following a

small change in the disorder. This idea is at the root of the disorder chaos investigated in

Section 6, and related to the de facto limitation of rational choice arguments in complex

situations.

Note that, interestingly, we can also recover a subset of the solution space displayed

in Fig. 4 for relatively large values of N by modifying the iterative procedure yielding the

optimal configuration (not shown here). To achieve this, we introduce some stochasticity

in the algorithm by excluding positions associated to negative weights with a probability

p < 1 and those associated to positive weights with probability 1 − p. As such, one

eventually obtains a non-negative solution, but has randomly removed some spins that

could have belonged to the optimal configuration. Repeating this computationally

inexpensive procedure a large number of times for fixed disorder, one can find the

distribution of ∆H for some region in the distribution of Q, that depends on the value

of p chosen. Clearly, taking p close to 1 would only uncover configurations with a

normalised overlap close to 1 whereas taking smaller values of p would eventually allow

one to explore Q close to or below zero. While not as detailed and complete as the

picture given by the exact enumeration, this method allows us to verify that the key

characteristics of the solution space, namely having a large density of solutions in the

small Q and ∆H region, remain qualitatively similar as N increases significantly.

As ∆H is analogous to the excess energy relative to the ground state in spin-

glasses, more complex numerical techniques that have proved effective with SK or EA

Hamiltonians (e.g. [31]) could also be implemented for a more thorough exploration of

the solution space.

4. Analytical setup

4.1. Self-consistent equation

While it may appear natural to attempt to directly tackle the enumeration of valid

solutions using Eq. (6) and a Fourier representation of the Heaviside function, such a

calculation quickly requires a Gaussian assumption on the distribution of β and thus

lacks generality. The alternative taken here is to first study directly the maximum

sparsity m as a function of N , before translating this quantity back to the number of

long-only portfolios.

Going back to Eq. (3) that relates the weight of position i to its βi, it immediately
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Figure 4: Solution space explored by exact enumeration for Gaussian β with N = 28,

σ = 0.1, averaged over 30 realisations. Top left: distribution of overlap relative to the

optimal configuration Q. Bottom left: distribution of excess variance relative to the optimal

configuration ∆H. Right: heatmap of the joint density of these two quantities.

appears that there should be a threshold value β+ above which a position will likely

be shorted (or a specie go extinct), which must thus be excluded. This is quite

reasonable intuitively: an investor wishing to take the least possible risk and unable

to balance volatility through shorts will be unlikely to pick excessively risky stocks or

bonds. Likewise, since large values of β are associated to species subject to increased

competition, those species are likely to go extinct and thus not be present in the

equilibrium population. Given the distribution ρ(β), the average maximum sparsity

m is then related to the threshold β+ through:

m = ∫

β+

−∞

dβ ρ(β). (13)

Therefore, calculating β+ will directly yield m. Of course, this threshold is only valid

in a statistical sense, and for a given set of β’s its value will differ from the mean.

Writing β̃+ the fluctuating variable representing the largest β to be included for a unique

realisation of the disorder, and modifying Eq. (3) with the previously introduced spin

notation directly gives

β̃+ =
∑j β

2
j θj/zj + 1

∑j βjθj/zj
, (14)

where we now have θi = 1 for βi < β̃+ and θi = 0 otherwise. In order to recover the typical

behaviour of interest, we introduce the probability of inclusion conditioned to β. We

define Prob(θi = 1∣βi) = FN(βi), where FN(β) is a smooth step-like function, centred

about the mean β+. Clearly, we require FN(β) to be monotonously decreasing, with

FN(−∞) = 1 and FN(∞) = 0, (15)

and F ′

N(β) is therefore peaked in a region around β+, the width of which is expected to

decrease as N increases.
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At this stage, we start by assuming that two spins are uncorrelated at order N−1,

which shall be checked a posteriori by ensuring the Onsager “reaction” term is o(N−1).

The sums at the numerator and denominator of Eq. (14) may therefore be treated using

the central limit theorem, i.e. for N ≫ 1

1

N
∑
j

βkj θj

zj
≈ ⟨z−1⟩⟪βk⟫ +

1
√
N
ξk (16)

where the partial expectation operator ⟪⋯⟫ is defined, for an arbitrary test function

g(.), as

⟪g(β)⟫ ∶= ∫
∞

−∞

dβ g(β)ρ(β)FN(β) (17)

and ξk is a zero-mean Gaussian variable, with a variance that depends on k. Eq. (14)

may then be rewritten as

β̃+ = β+ +
1

√
N
ξ, (18)

where the full expressions of β+ and ξ are given in Appendix A. From the very definition

of FN(β), which represents the probability of inclusion in the reduced universe of an

asset or specie with respectively correlation or interaction strength β, one can write

FN(β) = Prob (β < β̃+). Using that ξ is a Gaussian noise, this can be expressed as

FN(β) =
1

2
erfc [

√
N(β − β+)

γ
√

2
] , (19)

where γ is the standard deviation of ξ.

We now place ourselves in the scaling regime where σ = χ/N (motivated by

numerical results). In this case the width of the distribution of β − 1 scales as N−1.

Assuming that in this regime γ → 0, one finds that to leading order ⟪βk⟫ =m+O (N−1).

Now, given the expression for γ2 in Appendix A, one finally obtains

γ = O (N−1/2) , when σ = O (N−1) , (20)

which justifies our assumption that γ → 0 for large N . It furthermore shows that the

width of the smoothed step function FN(β) (Eq. (19)) scales as N−1.

This result then allows us to explicitly make Sommerfeld-like expansions of averages,

as described in Appendix B, that now have no contribution at order N−1. Eliminating

the higher order terms appropriately finally yields the equation for the mean threshold

β+ =
⟨β2⟩c

⟨β⟩c
+

1

N

z

⟨β⟩c
+O (

1

N2
) , (21)

valid in the regime of interest σ = χ/N , with z = ⟨z−1⟩
−1

and

⟨g(β)⟩c ∶= ∫
β+

−∞

dβ g(β)ρ(β). (22)

Eq. (21) is self-consistent in the sense that β+ appears in both sides of the equation.
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Recall that this equation for β+ assumes negligible correlations between the

occupation variables θi. In the spirit of a bona fide cavity calculation, one should look at

the effect of the introduction of an additional asset or species on the already existing θi.

Knowing the importance of the Onsager reaction term in Sherrington-Kirkpatrick spin-

glasses, that turns the naive mean field equation into the celebrated TAP equation [32],

it is important to ensure that the average threshold is not affected by a similar term.

This is done in Appendix C where we check that the introduction of a new spin does

not alter the above equation at order N−1. As such, Eq. (21) is our central analytic

result for the problem at hand, which we shall solve for different distributions ρ(β) in

section 5.

4.2. Complexity and number of solutions

Now, we define N (K,N) to be the average number of solutions satisfying the constraint

with K among the N possible spins included. We may write an iterative equation to

describe the evolution of this quantity as N → N + 1. First, the addition of this new

element – that we will take to be at index 0 and associated to β0 – is only possible if β0

is small enough. If we recall the probabilistic interpretation of the maximum sparsity

m = Prob(β0 ≤ β+), the probability of θ0 = 1 being compatible with the constraint is

simply given by m(σ,K). In order to form such a solution, with K among the now N +1

spins included, the new element must be added to a solution previously comprising K−1

spins. However, a fraction of the solutions with K −1 nonzero spins are rendered invalid

due to the fact that β+ is a decreasing function of K. Those positions are such that

β+(K) < βi < β+(K − 1), and occur with probability

p(σ,K) = ∫

β+(K−1)

β+(K)

dβ ρ(β) =m(σ,K − 1) −m(σ,K), (23)

and given βs are drawn independently, we finally find the expression

N (K,N + 1) = N (K,N) +m(σ,K)[1 − p(σ,K)]K−1N (K − 1,N) (24)

to describe the evolution of the number of solutions withK non-zero spins asN increases.

To properly initialise and close the recursion, we require

N (0,0) = 1 and N (N + 1,N) = 0. (25)

The quantity that interests us, the average total number of solutions satisfying the

constraint, is then simply given by

⟨Ns⟩ =
N

∑
K=1

N (K,N). (26)

Defining n(x, t) to be the continuous analogue of N (K,N) with K → x and N → t,

the iterative equation may be rewritten as a partial differential equation, valid in the

large N limit. To leading order, i.e. neglecting a diffusion term of order N−1, one has

∂tn(x, t) + exϕ
′
(σx)ϕ(σx)∂xn(x, t) = exϕ

′
(σx)ϕ(σx)n(x, t) (27)
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where we have used the scaling result m(N,σ) = ϕ(χ) with χ = σN as observed in

numerical experiments, and further justified by the analytical calculations in the next

section.

This inhomogeneous advection equation may then be treated with the method

of characteristics [33]. Taking the characteristic curve s in (x, t) space, and writing

z(s) = n(x(s), t(s)) the solution along the curve, the problem reduces to the system of

ordinary differential equations

dt

ds
= 1 (28)

dx

ds
= ex(s)ϕ

′
(σx(s))ϕ(σx(s)) (29)

dz

ds
= ex(s)ϕ

′
(σx(s))ϕ(σx(s)) z(x(s), t(s)), (30)

with boundary conditions

t(0) = 0, x(0) = 0, z(0) = 1. (31)

The solution satisfying these boundary conditions then directly corresponds, for t = N ,

to the dominating term in the sum given in Eq. (26).

To summarise, the self-consistent equation (21) allows one to determine the average

threshold β+ for the inclusion of an asset or specie in the non-negative solution for a

given sparsity. This quantity will in turn yield the expression of the maximum sparsity

m(N,σ) = ϕ(χ) in the regime σ = χ/N . Solving the set of characteristic equations

tracing back to the known boundary conditions shall finally give an expression of the

average number of solutions, and therefore the annealed complexity.

5. Distribution-specific results

5.1. Gaussian β

As argued with the data presented in Fig. 1(a), taking β to be normally distributed

with mean 1 and variance σ2 appears to be a good approximation for the portfolio

problem. Going back to Eq. (21), all the terms of interest can be written exactly using

the Gaussian cumulative distribution function Φ(x) = 1
2(1+erf(x/

√
2)). Taking σ = χ/N

and introducing the ansatz

β+ = 1 +
χf(χ)

N
(32)

allows one to rewrite the self-consistent equation as

χf(χ) =
z

m
−

1

m

χ
√

2π
e−

1
2
f(χ)2 , (33)

with m = ϕ(χ) = Φ(f(χ)). As anticipated in the previous section, m(N,σ) indeed only

depends on χ in the scaling regime.
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Setting z = 1 (without loss of generality, since it simply corresponds to the rescaling

χ→ χ/z) this equation may be solved numerically for f at given χ, the result of which is

plugged back into the expression for m and is shown by the continuous line in Fig. 2(a).

This analytical result is in excellent agreement with numerical experiments, which gives

us confidence that our self-consistent equation is exact in the regime of interest. As

expected, while qualitatively reasonable, the model does not perfectly describe the

sparsity corresponding to more broadly distributed empirical β’s.

This numerically obtained m = ϕ(χ) can also be injected in the iterative expression

forN (K,N) given in Eq. (24). Summing all contributions, the mean number of solutions

⟨Ns⟩ and associated complexity Σ are computed and shown by the continuous lines in

Fig. 2(b-c). The match between this semi-analytical solution and the numerical results

is also excellent, this time for both the arbitrary and empirically determined values of σ.

Based on the numerical solution of Eq. (33), we find that f(χ≫ 1) quickly reaches

large negative values. The error functions through which ϕ is expressed can therefore be

approximated asymptotically through the method of steepest descent. Keeping the first

two terms in the series expansion of m = ϕ in the self-consistent equation, and taking

iterated logarithms, one finally finds, at the leading order in the scaling regime:

ϕ(χ) ≈

√
2 logχ

χ
, (χ≫ 1) (34)

This asymptotic result is compared to the numerical experiments in the inset of Fig. 2(a),

displaying a very good fit for values as small as χ ∼ 10.

As detailed in Appendix D, this result may be used in the characteristic Eq. (29).

At the leading order, we find the expression of x along the characteristic

x(s) =

√
2s

σ
(logσs)

1
4 [1 +O (

log logσs

logσs
)] . (35)

Eq. (30) may then be integrated to find z(s) the number of solutions along the

characteristic,

log z(s) =

√
2s

σ
(logσs)

1
4 [1 +O (

1

logσs
)] (36)

From Eq. (28) and the associated boundary condition, we may now finally set s = t = N .

Going back to original variables of the problem, we therefore have the asymptotic

evolution for the number of non-negative solutions

⟨Ns⟩ ∼ exp
⎛

⎝

√
2N

σ
(logσN)

1
4

⎞

⎠
(37)

and the associated annealed complexity

Σ ≈
√

2
(logχ)

1
4

√
χ

. (38)
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This fully analytical asymptote is compared to the previously obtained numerically

exact solution of the recursion relation (dubbed “semi-analytical” below) in the inset

of Fig. 2(c). The result appears satisfactory, although the conclusions are limited by

the numerical difficulty of obtaining the semi-analytical result for large values of N .

A careful observation suggests a small shift between the two curves, which might be

explained by the second derivative (diffusion) term in the partial differential Eq. (27),

which we neglected.

In any case, this result corresponds to a growth slightly faster than e
√

N but

significantly slower than eN : asymptotically, the complexity of the rank-one portfolio

problem, or of the rank-one ecological problem, is zero, contrarily to the spin-glass case.

But the average number of different possible solutions is still very large when N is large.

It immediately appears however, that this solution is somewhat contradictory with

the previously found behaviour of the maximum sparsity. Indeed, taking a closer look at

the solution for x(s) along the characteristic curve, we find that the associated sparsity

u⋆ = x(t)/t is given by

u⋆ ∼
(logχ)

1
4

√
χ

. (39)

Comparing with Eq. (34), we find that u⋆ ≫ ϕ(χ) for χ≫ 1.

In other words, it appears that the configurations dominating the count of the mean

number of solutions are those with a number of non-zero spins K⋆ greatly exceeding

the theoretical prediction mN . While surprising at first, this result means that the

average (over βs) number of solutions is dominated by extremely rare configurations

{βi} that allow K⋆ ≫ mN positions to survive in the portfolio. Even if rare, such

configurations allow an exponentially large number of portfolios to exist, i.e. CK⋆
N .

Hence the distribution of Ns is heavily skewed towards large values, corresponding to

events that are extremely unlikely to be witnessed in reality. For typical configurations

of the βi’s, on the other hand, one expects that eligible portfolios are much smaller,

and contain at most mN assets. Correspondingly, the typical number of solutions is

expected to be of order of eNm ≪ ⟨Ns⟩. In order to compute precisely the typical number

of solutions, one should compute ⟨logNs⟩ and the associated quenched complexity. This

would require going back to the direct formulation given in Eq. (6), expressing the

Heaviside step function with its Fourier representation and making use of the replica

trick as detailed in numerous works relating to spin-glasses (see [29, 30, 34]). We leave

such a calculation for later investigations.

This difference between the typical (and average) maximum sparsity and the most

likely effective sparsity u⋆ resulting from the iterative procedure is apparent in Fig. 5

that considers normally distributed β, and is comparable in the uniform case. For small

χ, we have u⋆ = 1
2 <m, as naively expected. However, beyond χ ≈ 5 we find that indeed

the mean behaviour u⋆ exceeds the typical sparsity m. The divergence between the

two quantities appears to be relatively slow however, explaining why it is not clearly

noticeable in the numerical results in Fig. 2 and 3, where only a small fraction of elements

are excluded as m is still close to unity.
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Figure 5: Evolution of the effective sparsity of the maximum of N (K,N) calculated

iteratively for Gaussian β of variance σ2, up to N = 400 (points), compared to the maximum

sparsity (line). The red vertical line separates a small χ regime where one expects that

⟨Ns⟩ ≈ N
typ.
s , from a large χ regime where ⟨Ns⟩≫ N

typ.
s when N →∞.

5.2. Uniform β

We now extend the results to other distributions of β. The uniform distribution is

an interesting case, as it can model the case of stocks restricted to certain industries

(see 1(b)).

In the uniform case, the distribution is still centred about β = 1 but now has

width 2
√

2σ. Once again, we take the scaling χ = σN from numerical experiments,

and the ansatz β+ = 1 + χf(χ)/N . The moments up to the threshold β+ assuming

β+ < 1 +
√

2σ may then be easily written explicitly given the simple expression of the

uniform distribution. Taking the self-consistent equation at order N−1, where we can

once again take z = 1 without loss of generality, finally gives the expression for the

function f(χ) = −
√

2 ± 25/4/
√
χ, from which the maximum sparsity directly follows by

picking the solution giving the positive result. This solution requires the threshold to be

before the right edge of the distribution, and hence must be completed with the result

beyond which saturates the maximum value m = 1. Combining both gives a closed form

solution for the entirety of the domain without having to rely on asymptotics

ϕ(χ) =

⎧⎪⎪
⎨
⎪⎪⎩

1 for χ ≤ 1
√

2
,

1
21/4√χ for χ > 1

√

2
.

(40)

This solution corresponds to the continuous line in Fig. 3(a). Once again, the match

with numerical simulations is very good, whereas – as discussed in Section 3 – there is

a small offset relative to the empirically sampled points that lie slightly outside of the

analytically tractable region. Note that the typical sparsity of the portfolios decreases

with N much more slowly in the uniform case than in the Gaussian case.

The fully analytical solution for m = ϕ(χ) is substituted in the iterative formula for

the mean number of solutions, resulting in the continuous lines in Fig. 3(b-c). Clearly,

this theoretical result displays a very good match with the numerical points across all

values of σ tested.
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As before, we now employ this expression in the set of ordinary differential equations

to solve the partial differential equations describing the evolution of the number of

solutions. Thanks to the simple expression for ϕ that is now valid for all values of χ,

the integration may be carried out with no difficulty (Appendix D), giving

log z(s) = (
3

25/4

s
√
σ
)

2
3

[1 +O (
1

3
√
σs

)] (41)

and thus simply replacing s = t = N ,

⟨Ns⟩ ∼ exp

⎧⎪⎪
⎨
⎪⎪⎩

(
3

25/4

N
√
σ
)

2
3
⎫⎪⎪
⎬
⎪⎪⎭

. (42)

As we might have expected from the slower decrease in maximum sparsity relative to

the Gaussian result, the average number of solutions grows faster in the uniform case.

The annealed complexity is now asymptotically given by

Σ ∼ (
3

25/4

1
√
χ
)

2
3

, (43)

that is plotted with the dashed line in the inset of Fig. 3(c). Here, the fully analytical

expression appears more or less in line with the semi-analytical iterative solution.

As for the Gaussian case, we notice that the sparsity of the configurations

dominating the enumeration is given by u⋆ = x(t)/t ∼ χ−
1
3 ≫ ϕ(χ). Just as before,

we have therefore calculated a mean number of solutions that appears to greatly exceed

the typical result observed. The typical behaviour would then also require to compute

⟨logNs⟩, which in this uniform case would not be as similar to typical spin-glass

calculations that rarely, if ever, involve uniform distributions with a finite support. We

note however that the typical number of solutions in this case should grow as exp(
√
N),

i.e. much faster than in the Gaussian case where it only grows as exp(
√

logN).

5.3. Bridging the gap: generalized normal distribution

To understand why two different decays in maximum sparsity hold for the normal and

uniform distributions, we use of the generalized normal distribution

ρb(β) =
b

2
√

2σΓ(1/b)
e
−( ∣β−1∣

σ
√

2
)
b

(44)

where b is a shape parameter allowing to recover the usual normal distribution of unit

mean and standard deviation σ2 for b = 2, and the uniform distribution centered at 1

and of width 2
√

2σ by taking the limit b → ∞. Moreover, probing b ≤ 1 can provide

insights on the problem with heavier tailed distributions of β’s, b = 1 corresponding to

the Laplace case, which may be of interest when considering e.g. the weekly returns

presented in Fig. 1(c).
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The first step in our search for an analytical solution in this general formulation is

to express the moments up to the threshold ⟨β⟩c and ⟨β2⟩c as well as m itself in workable

forms. As detailed in Appendix E, this can be done by reintroducing the expressions

for σ and β+. The generalised self-consistent equation now reads

χf(χ) =
z

m
−
χ

m ∫
∞

−f(χ)
duuρ(u), (45)

where u = (β − 1)/
√

2σ and we have postulated f(χ) < 0 which is intuitive from the

expression of β+ (we expect the threshold to be smaller than the mean value of β,

regardless of the distribution). Taking b = 2, the integral can be evaluated exactly and

we recover Eq. (33) as expected. As for the two previous cases, setting z = 1 simply

corresponds to rescaling χ→ χ/z.

For b sufficiently small, we may approximate the integrals asymptotically as we

expect f(χ) to have a large magnitude for these widely distributed β’s. The resulting

self-consistent equation (Appendix E) now reads

e
( ∣f(χ)∣√

2
)
b

=
χ

√
2bΓ(1/b)

(
∣f(χ)∣
√

2
)

2−2b

(46)

while the maximum sparsity at the leading order is

m = ϕ(χ) =
e
−( ∣f(χ)∣√

2
)
b

2Γ(1/b)
(
∣f(χ)∣
√

2
)

1−b

. (47)

Introducing the variables

y = (
∣f(χ)∣
√

2
)

b

and x =
χ

√
2bΓ(1/b)

, (48)

the self-consistent equation takes the much simpler form

y2− 2
b ey = x, (49)

giving in turn 2Γ(1/b)ϕ = y1− 1
b /x. For a given value of b, this simplified self-consistent

equation can be either solved semi-analytically or asymptotically in the limit of χ and

therefore x large. For instance taking b = 2, Eq. (49) gives y = W (x) the Lambert W

function and thus

m =

√
W (x)

2
√
πx

∼

√
2 logχ

χ
, (50)

thereby recovering the previously obtained result. Interestingly, the case b = 1

corresponding to Laplace distributed β’s yields the exact relation

m =
1

2x
=

1
√

2χ
, (51)
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Figure 6: Scaled sparsity as a function of b, σ and N for generalised normal distributions.

The continuous, dashed and dot-dashed lines correspond to the uniform, Gaussian and Laplace

asymptotes respectively.

suggesting ⟨Ns⟩ ∼ e
√

N , slightly slower than for Gaussian β’s. Both asymptotic solutions

are shown in Fig. 6, displaying a good match as χ increases.

For b ≫ 1, the problem is not as straightforward. Indeed, as the shape of the

distribution approaches the uniform case, the effective support narrows to reach sharp

cutoffs at β = 1 ±
√

2 for b → ∞. In this limit, we therefore require −f(χ) <
√

2,

which is obviously unsuitable for the previously taken asymptotic approximations of

the integrals. Instead, the limit b → ∞ must be taken before evaluating the integral.

Doing so, one can directly recover the uniform expressions for f(χ) and m from the

previous section, and therefore m = (
√

2χ)−
1
2 .

Rescaling the b → ∞ result suggests 2ϕΓ(1/b) ≈
√

2/
√
x for large b. This large

b solution, and the crossover between the two regimes, with ϕ decays as χ−
1
2 and χ−1

respectively, can be seen in Fig. 6. Interestingly, for all finite values of b the second

regime will be reached eventually as χ is increased, and only the uniform distribution

will remain in the first regime, the slower decay of which translates in a larger number

of solutions. As such, the uniform distribution will be the case within the generalised

normal family allowing for the largest number of solutions, with finite b > 2 cases only

affecting the exponent of the logarithmic term in the complexity.

While the above theoretical setup should hold for finite b < 1, it is difficult to avoid

a large number of negative β’s when considering thicker tails, at which point we would

cease to observe a monotonous decrease of m in χ. Besides, it seems unlikely that a

heavy tailed distribution of infinite support would correctly depict the distribution of

asset correlations. For interacting species, negative interactions are not as unreasonable,

as mutually beneficial relations between species can exist, however their study would

require a different analytical framework. Yet, if negative values remain rare, it is clear

from the self-consistent equation that as tails get thicker, the number of solutions Ns
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further decreases before one enters a new regime when negative β’s start proliferating.

6. Disorder chaos

Having found that the number of solutions satisfying the non-negativity constraint is

near exponential for relevant distributions of β (in the regime ⟨β⟩ > 0 and σ = χ/N),

we ask ourselves if we can observe disorder chaos in this system. Disorder chaos in

this context is essentially the question of the stability of the optimal solution if the

disorder β is slightly altered, particularly in the case of large N . Indeed, if there is

an exponential number of valid solutions, some with similar values of the objective

function, it is not hard to imagine that a slight modification in the disorder could yield

a complete reshuffling in the spin configuration. This idea is further supported by the

numerical exploration of the solution space that was conducted in Section 3.4, where we

found that a large number of configurations with little overlap with the optimal solution

indeed have very close properties.

This phenomenon has been observed in spin-glasses [35–37], and may be formulated

in a formally very similar way. It should be noted that this form of instability under

changes in the quenched disorder, sometimes also referred to as static chaos, is not to

be confused with temperature chaos [38] (as the use of β might induce some confusion

in the spin-glass context). Introducing the perturbation ε, we alter the disorder as

β̃i − 1 = (βi − 1)(
1 + ευi
√

1 + ε2
) , (52)

where υi is a Gaussian random variable with zero mean and unit variance. This definition

allows one to keep the variance of the modified βs unchanged.

To compare the optimal/most diverse non-negative solution to the original problem

to the perturbed one, it is necessary to introduce some measure of the overlap between

solutions. Recalling our definition of the overlap between two configurations, Eq. (10),

we subsequently define the portfolio correlation as

ON(w, w̃) =
⟨q

{θ},{θ̃}(N)⟩
√

⟨q{θ},{θ}(N)⟩⟨q
{θ̃},{θ̃}(N)⟩

, (53)

where {θ} and {θ̃} correspond to the original and altered configurations respectively.

With this definition we ensureON(w, w̃) = 0 for independent portfolios, andON(w, w̃) =

1 for w = w̃.

The resulting overlap for Gaussian and uniform β’s compatible with market data

is shown in Fig. 7. Qualitatively, both collapsed plots appear similar, with a decrease

in the overlap as N gets large and other parameters are kept fixed. Taking a closer

look, it is clear that the disorder chaos is stronger for uniformly distributed β’s, which is

consistent with the fact that the number of solutions Ns is larger in this case, as found in

the previous section. While the reduction of the overlap in N is easily understandable,
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Figure 7: Overlaps obtained numerically for different fixed values of σ, ε while N is varied up

to 104, averaged over 64 realisations. Left: β ∼ N (1, σ2), data collapsed with N
1
3σ

1
6 . Right:

β ∼ U(1 ±
√

2σ), data collapsed with N
2
3σ

1
2 . Insets represents the overlap subtracted from 1,

its maximum value for identical disorder, plotted in log-log.

the detailed scaling behaviour in σ found numerically is more challenging to describe

analytically.

In any case, the logarithmically scaled insets shows a clean power law behaviour in

N . Asymptotically, our results therefore suggest that ON(w, w̃) → 0 for any ε > 0 as

N →∞, characteristic of disorder chaos. On both plots, the data points sampled from

empirical β’s are well aligned with numerical simulations, suggesting the chaos observed

is robust somewhat beyond the regime studied analytically.

Regardless of the precise behaviour of the overlap with the problem’s parameters,

the disorder chaos observed here is first and foremost a qualitative insight. What this

observation tells us has a practical consequence on the way one might approach the

systematic construction of a long-only portfolio. Supposing one picks among 3000 stocks

for example, which is a reasonable number for a large asset manager, a change of the

order of 10% of the β’s could result in a significant reshuffling in the positions that should

be held, particularly if the assets considered are within the same or similar industries

for instance. Such a change could e.g. come from empirical estimation errors of the

correlations, or simply because the β’s naturally evolve in time depending on the many

factors not incorporated in the present risk model. Besides, if one decides to modify

the portfolio to match the new optimal result, it is likely that significant transaction

costs could come into play, particularly given the highly concentrated nature of large

long-only portfolios, so it would rather make sense to choose a portfolio that is a mix of

many different quasi-degenerate solutions of the optimisation problem.

From a conceptual point of view, disorder chaos means that two perfectly rational

investors with a slightly different method of estimating the βs might end up with very

different optimal solutions in the large N limit. As emphasised in [13] and recalled

in the introduction, the presence of a very large number of quasi-degenerate solutions,

at the heart of disorder chaos, leads to some irreducible uncertainty in the decision of



A new spin on optimal portfolios and ecological equilibria 25

agents, even assumed to be fully rational.

In terms of ecological equilibria, this observation also has concrete implications.

Indeed, it suggests that a moderate change in the interaction between the N species

considered can lead to a significantly different outcome in terms of surviving species

at the equilibrium. It seems reasonable to imagine that some physical changes to the

environment (e.g. through temperature changes or the introduction of chemicals) could

alter the strength of interactions between species, which could then lead to a significantly

different equilibrium picture of the ecosystem (on this point, see also [20]).

7. Conclusion

Let us summarise what we have achieved in this study. Through the introduction

of a spin-glass inspired formalism, we have shown that N assets or species can be

recombined in a exponential number of solutions satisfying the non-negativity constraint

associated to the portfolio and ecological equilibrium problems, in the special case where

the interaction matrix is of unit rank. More precisely, we have computed the average

(or annealed) number of solutions and have shown that its logarithm grows as Nα,

where α ≤ 2/3 depends on the distribution of asset correlations and interaction strength

respectively. This average number does however not correspond to the typical behaviour

of the system, observed through a limited number of numerical experiments for example.

Indeed, we have found that in this problem the mean number of solutions is heavily

skewed by the existence of very unlikely occurrences that yield an exponential number

of solutions. Finding the typical (or quenched) number of solutions, by means of a

replica calculation, therefore appears to be a natural extension of the present work. We

conjecture that the result will be related to the typical sparsity m(N) of the solutions,

namely ⟨logNs⟩ ∝ Nm(N). Hence, the number of possible long-only configurations

that can be constructed from the N entities considered remains large, specially for a

strictly bounded distributions of β’s for which Nm(N) ∼
√
N .

We have also shown numerically that the solution landscape is similar to that

of other complex optimisation problems like spin-glasses, i.e. many very different

configurations or portfolios are quasi-degenerate, in the sense that they lead to nearly

identical values of the objective function (energy for spin-glasses, risk for portfolios).

Correspondingly, the phenomenon of “disorder chaos” in spin-glasses, i.e. the extreme

sensitivity of the optimal solution on the detailed specification of the problem when N is

large, is also present in our long-only portfolio problem (or in its ecological counterpart).

For asset management, this result suggests that, in the presence of transaction costs,

the construction of long-only portfolios should account for such an instability and in fact

blend together optimal portfolios obtained by slightly varying the risk model (here the

value of the β’s). Likewise, as emphasised in the original paper from Gallucio et al. [13]

and recalled above, such a sensitivity is interesting in the sense that it questions the

meaning of a rational decision when there is a very large number of quasi-degenerate

(or “satisficing”) solutions.
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For ecological equilibria, while there is unfortunately no empirical data to support

our choice of interaction matrix and to choose appropriate distributions of β, we believe

that most of the conclusions drawn for parameters compatible with stocks should hold for

highly competitive environments with a large number of similarly interacting species,

as discussed in a different context in [20]. Indeed, the analytical description can be

generalised to any values of ⟨β⟩ > 0 that could be appropriate for the ecology problem,

and we have shown that our results are in fact valid for a wide range of distributions of

β.

While not explicitly discussed in the bulk of the paper, heterogeneous expected

returns (or growth rates) µi can be analysed similarly, see Appendix F. We find that

the solution is akin to the one obtained with µi ≡ 1, with a threshold that is no longer

on β alone but on the ratio β/µ.

In both the portfolio and population dynamics cases, the choice of the effective

interaction matrix Cij is the main limiting factor in our study. Extending results to

more general (random) matrix models could be an interesting avenue to explore in the

future. Finally, the very general formulation of the problem, in essence studying the non-

negativity of a linear equation, leads us to believe that long-only portfolios and ecological

equilibria are not the only applications for the analytical description detailed in Section

4. Due to its links with population dynamics, the survival of firms in macroeconomic

systems [39, 40] could for example be another problem to study with this spin-glass

inspired approach.
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Appendix A. Full self-consistent equation

Starting from

β̃+ =
∑j β

2
j θj/zj + 1

∑j βjθj/zj
(A.1)

we make use of the central limit theorem as for N ≫ 1

1

N
∑
j

βkj θj/zj ≃ ⟨z−1⟩⟪βk⟫ +
1

√
N
ξk (A.2)

where ξk are Gaussian noises with mean ⟨ξk⟩ = 0 and variance

⟨ξ2
k⟩ = ⟨z−2⟩⟪β2k⟫ − ⟨z−1⟩2⟪βk⟫2. (A.3)
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After factorisation and expansion of the denominator, Eq. (A.1) can be written as

β̃+ =
⟪β2⟫

⟪β⟫
+

1

N
[
z

⟪β⟫
−

z2

⟪β⟫2
(⟨ξ1ξ2⟩ −

⟪β2⟫

⟪β⟫
⟨ξ2

1⟩)] +O (
1

N2
)

+
1

√
N

z

⟪β⟫
(ξ2 −

⟪β2⟫

⟪β⟫
ξ1) +O (

1

N3/2
.)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fluctuations

,
(A.4)

with z = ⟨z−1⟩−1, which can be rewritten as β̃+ = β+ + 1
√

N
ξ with the final noise term

ξ =
z

⟪β⟫
(ξ2 −

⟪β2⟫

⟪β⟫
ξ1) (A.5)

that still has zero mean and variance

γ2 =
z2⟨z−2⟩

⟪β⟫2

⎛

⎝
⟪β4⟫ − 2

⟪β2⟫⟪β3⟫

⟪β⟫
+ (

⟪β2⟫

⟪β⟫
)

2

⟪β2⟫
⎞

⎠
. (A.6)

Substituting the correct values for ⟨ξ1ξ2⟩ and ⟨ξ2
1⟩, the deterministic term can be

rewritten as

β+ =
⟪β2⟫

⟪β⟫
+

1

N
[
z

⟪β⟫
−
z2⟨z−2⟩

⟪β⟫2
(⟪β3⟫ −

⟪β2⟫2

⟪β⟫
)] +O (

1

N2
) . (A.7)

Now, as detailed in the following section for the case α = 1, at the leading order one

may Taylor expand the averages about the threshold β+ as FN(β) = H(Nα(β − β+)),

with α ≥ 1/2 from the form of FN found in the main text. As a result, ⟪βk⟫ ≃

m + σ(. . . ) + ⋅ ⋅ ⋅ + σk(. . . ) and so in the regime σ = χ/N we have both

⟪β3⟫ −
⟪β2⟫2

⟪β⟫
= 0 +O (

1

N
) and ⟪β4⟫ − 2

⟪β2⟫⟪β3⟫

⟪β⟫
+ (

⟪β2⟫

⟪β⟫
)

2

⟪β2⟫ = 0 +O (
1

N
) .

As such, the second term in N−1 may be eliminated from Eq. (A.7), and we find that

the variance γ2 is at most of order N−1.

Appendix B. Sommerfeld-like expansions

Starting from the averages

⟪βk⟫ = ∫

∞

−∞

dβ βkρ(β)FN(β), (B.1)

we may define ψ(β) = ∫
β

−∞
dβ βkρ(β) such that integrating by parts

∫

∞

−∞

dβ βkρ(β)FN(β) = −∫
∞

−∞

dβ ψ(β)F ′

N(β). (B.2)
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as the boundary term vanishes given ψ(−∞)ρ(−∞) = 0 and FN(+∞) = 0. As previously

mentioned, F ′

N(β) is peaked in a small region around β+, therefore we can expand ψ in

this region with a Taylor series, giving in turn

∫

∞

−∞

dβ ϕ(β)FN(β) = − ψ(β+)∫
∞

−∞

dβ F ′

N(β)

− ψ′(β+)∫
∞

−∞

dβ (β − β+)F ′

N(β) +O((β − β+)2).
(B.3)

Now, changing variables as x = N(β − β+) the equation becomes

∫

∞

−∞

dβ ϕ(β)FN(β) = −ψ(β+)∫
∞

−∞

dxH ′(x)−
1

N
ψ′(β+)∫

∞

−∞

dxxH ′(x)+O(N−2) (B.4)

where the first integral in x easily gives -1 given our knowledge of H(x), while the

second can be written as

κ = −∫
∞

−∞

dxxH ′(x) = ∫
∞

0
dx (H(x) +H(−x) − 1) (B.5)

that will clearly be zero in the case of a symmetric function written like H(x > 0) =
1
2 + ε(x) and H(x < 0) = 1

2 − ε(x). Given that in our case H(x) is a complementary error

function and is thus symmetric, we therefore have

∫

∞

−∞

dββkρ(β)FN(β) = ∫
β+

−∞

dβ βkρ(β) +O (
1

N2
) (B.6)

or, using the compact notations introduced in the main text,

⟪βk⟫ = ⟨βk⟩c +O (
1

N2
) (B.7)

Appendix C. Reaction term

We essentially adapt the Onsager cavity field approach to our problem. Considering

a system with N assets and their associated spins {θ}, the threshold for inclusion was

shown to be given by

β̃+N =
∑j β

2
j θj/zj + 1

∑j βjθj/zj
= β+N +

1
√
N
ξ (C.1)

After introduction of a new asset, at the index 0 for simplicity, this threshold is altered

as

β̃+N+1 =
∑j β

2
j θj/zj + β

2
0θ0/z0 + 1

∑j βjθj/zj + β0θ0/z0

(C.2)

that can be expressed, after applying the central limit theorem to sums and expanding

the denominator as before, as

β̃+N+1 = β
+

N +
1

√
N
ξ +

1

N
c(β0) (C.3)
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with the reaction term

c(β0) =
1

⟪β⟫
(
β2

0θ0

z0

−
⟪β2⟫

⟪β⟫

β0θ0

z0

) . (C.4)

Now, just like we took FN(β) = Prob (ξ ≥ β − β+), we have FN+1(β) =

Prob (ξ ≥ β − β+ − 1
N c(β0)), which may be Taylor expanded and averaged over the

distribution β0 such that

FN+1(β) = FN(β) +
1

N

e−
1
2
(
β−β+N
γ

)
2

√
2πγ2

∫

∞

−∞

dβ0 c(β0)ρ(β0)FN(β0) +O (
1

N2
) . (C.5)

Then, simply going back to the definition of the averages ⟪βk⟫, we clearly find the the

integral in the second term becomes

⟪c(β0)⟫ =
1

⟪β⟫z0

(⟪β2⟫ −
⟪β2⟫

⟪β⟫
⟪β⟫) = 0. (C.6)

As such, the reaction term has no contribution at order 1/N , and the naive self-consistent

equation for β+ requires no further modification.

Appendix D. Detailed resolution of the characteristic equations

Starting with the Gaussian case, the characteristic equation for x, rewritten as

s = ∫
x

0
dv

e−vϕ
′
(σv)

ϕ(σv)
(D.1)

is split between the small σv region, that yeilds a constant contribution, and the large

σv region where we had the asymptote

ϕ(σv) =

√
2 logσv

σv
. (D.2)

Using this expression, we explicitely write the derivative in the exponent

ϕ′(σv) =
1 − 2 logσv

σv2
√

2 logσv
. (D.3)

Now, for v ≫ 1, vϕ′(σv) decreases like
√

logσv/(σv) ≫ 1, justifying a Taylor expansion

of the exponential. As such,

e−vϕ
′
(σv) = 1 +

2 logσv − 1

σv
√

2 logσv
+O (

logσv

(σv)2
) (D.4)

and thus the integrand of Eq. (D.1) is given by

e−vϕ
′
(σv)

ϕ(σv)
=

σv
√

2 logσv
+ 1 −

1

2 logσv
+O (

√
logσv

σv
) . (D.5)
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The integration of the first term presents a slight challenge, but taking the change of

variable σv = e
w2

2 ,

∫

x

dv
σv

√
2 logσv

=
1

σ ∫

√

2 logσx

dw ew
2

=
1

σ
e2 logσxF (

√
2 logσx) (D.6)

with F the Dawson integral function. Using the asymptotic expansion of this special

function [41], this first term finally becomes

σx2

2
√

2 logσx
[1 +O (

1

logσx
)] . (D.7)

The third term in Eq. (D.5) can also be expanded asymptotically, as

1

2 ∫
x

dv
1

logσv
=

li(σx)

2σ
=

x

2 logσx
[1 +O (

1

logσx
)] (D.8)

where equalities are up to an additive constant, and li is the well known logarithmic

integral function. Bringing everything together,

s =
σx2

2
√

2 logσx
[1 +O (

1

logσx
)] + x [1 −

1

2 logσx
+O (

1

(logσx)2
)] +O ((logσx)

3
2) .

(D.9)

In the large x limit, the very first term will largely dominate others and we may therefore

recover the expression given in the main text,

s ∼
σx2

2
√

2 logσx
. (D.10)

Rearranging this expression, we have

σx =
√

2σs(2 logσx)
1
4 (D.11)

and thus we can take the iterated logarithm

logσx =
1

2
logσs +

3

4
log 2 +

1

4
log logσx (D.12)

and thus

σx =
√

2σs(logσs)
1
4 [1 +O (

log logσs

logσs
)]

1
4

, (D.13)

giving the asymptotic relation

x(s) ∼

√
2s

σ
(logσs)

1
4 . (D.14)

The final characteristic ODE can then be integrated,

log z = ∫
s

0
dv ex(v)ϕ

′
(σx(v))ϕ(σx(v)), (D.15)
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once again splitting the constant contribution from the small σv region and the known

asymptotic behaviour. Replacing with the expression for x(s), we have

logσx(v) =
1

2
logσv [1 +O (

log logσv

logσv
)] (D.16)

and thus

x(v)ϕ′(σx(v)) = −
(logσv)

1
4

√
σv

[1 +O (
log logσv − 1

logσv
)] . (D.17)

For σv ≫ 1, the exponential term in Eq. (D.15) can therefore be Taylor expanded. Given

ϕ(σx(v)) =
(logσv)

1
4

√
2σv

[1 +O (
log logσv

logσv
)] , (D.18)

the integral can finally be written as

log z = ∫
s

dv
(logσv)

1
4

√
2σv

− ∫

s

dv

√
logσv
√

2σv
+O (∫

s

dv
log logσv

√
σv(logσv)

3
4

) . (D.19)

Now, the first term will clearly dominate for large s. The integral may be evaluating by

taking the change of variable σv = e2w:

∫

s

dv
(logσv)

1
4

√
2σv

=
2

3
4

σ ∫

1
2

logσs

dww
1
4 ew =

√
2s

σ
(logσs)

1
4 [1 +O (

1

logσs
)] (D.20)

where the final equality may be shown by integrating by parts [42].

So far, we have used the position along the characteristic s, however integrating

the first characteristic equation with the associated boundary condition, we have s = t.

Recalling that the continuous variable t is analogous to the size of the problem N and

z to the average number of solutions ⟨Ns⟩, we may finally express the result with the

quantites of interest

⟨Ns⟩ ∼ exp

⎧⎪⎪
⎨
⎪⎪⎩

√
2N

σ
(logσN)

1
4

⎫⎪⎪
⎬
⎪⎪⎭

, (D.21)

as given in the main text. It should be noted that as the error terms are of logarithmic

orders, we expect the convergence to this asymptote to be relatively slow in N .

For the uniform case, the calculations are much easier thanks to the simpler form

of the maximum sparsity. For σv > 2−
1
2 large we remind that

ϕ(σv) =
1

2
1
4
√
σv
, (D.22)

giving in turn

vϕ′(σv) = −
1

2
5
4
√
σv
. (D.23)

The integral given in Eq. (D.1) therefore amounts to

s = ∫
s

dv [2
1
4

√
σv +

1

2
+O (

1
√
σv

)] (D.24)



A new spin on optimal portfolios and ecological equilibria 32

after Taylor expanding the exponential term, and removing the constant contribution

by using the boundary condition. One then easily finds

s =
2

5
4
√
σx

3
2

3
[1 +O (

1
√
σx

)] , (D.25)

and thus for σx≫ 1, which is expected for large N ,

x(s) ∼
⎛

⎝

3

2

s
√√

2σ

⎞

⎠

2
3

. (D.26)

As for the Gaussian case, this may be reinjected in the expressions of ϕ and ϕ′ to

calculate log z. We find

ϕ(σx(v)) = (
2

3

1
√

2σv
)

1
3

and x(v)ϕ′(σx(v)) = −
1

2
(

2

3

1
√

2σv
)

1
3

, (D.27)

resulting in, after Taylor expanding the exponential term,

log z = ∫
s

dv (
2

3

1
√

2σs
)

1
3

+
1

2 ∫
s

dv (
2

3

1
√

2σs
)

2
3

+O (∫

s

dv
1

σv
)

=
⎛

⎝

3

2

s
√√

2σ

⎞

⎠

2
3

[1 +O (
1

3
√
σs

)] .

(D.28)

Like before, realising s = t directly gives the mean number of solutions and associated

annealed complexity as a function of N .

Appendix E. Generalized normal distribution

Taking the generalised normal distribution and performing the change of variable

u = β−1
√

2
, we have

m =
b

2σΓ(1/b) ∫

β+−1√
2

−∞

du e−
( ∣u∣
σ
)
b

, (E.1)

⟨β⟩c =m +
b
√

2

2σΓ(1/b) ∫

β+−1√
2

−∞

duu e−
( ∣u∣
σ
)
b

(E.2)

and finally

⟨β2⟩c =m +
b
√

2

σΓ(1/b) ∫

β+−1√
2

−∞

duu e−
( ∣u∣
σ
)
b

+
b

σΓ(1/b) ∫

β+−1√
2

−∞

duu2 e−
( ∣u∣
σ
)
b

.

(E.3)

At this stage, one may first notice that if σ ∼ N−1, then the integrals involving uk will

be of order N−k. As such, as we are interested only in terms in N−1 or higher, rewriting
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m = ϕ and ⟨β⟩c = ϕ − ψ we therefore also have ⟨β2⟩c = ϕ − 2ψ +O(N−2), where ψ scales

as N−1. As such, the self-consistent equation simplifies to

β+ =
ϕ − 2ψ

ϕ − ψ
+

1

N

z

ϕ
+O (

1

N2
) . (E.4)

At this stage, we can reintroduce the ansatz β+ = 1 + χf(χ)/N such that at order N−1

the self-consistent equation becomes

χf(χ) =
z

ϕ
−
Nψ

ϕ
(E.5)

that corresponds to the equation given in the main text

χf(χ) =
z

m
−
χ

m

b

2
√

2Γ(1/b)
∫

∞

−f(χ)
duu e

−( ∣u∣√
2
)
b

. (E.6)

We now look at the case of finite b. The know asymptote

∫

b

a
dt f(t) ext ∼ exb [

n

∑
k=1

(−1)k−1f (k−1)(b)x−k] (E.7)

as x→∞ can then be used with minor tweaking. For all three integrals, we can use the

fact that in the regime of interest β+ − 1 < 0 so being careful with signs one may take

the substitution t = ub to have an integrand in the form of the formula above. This then

yields

ϕ ≃
1

2Γ(1/b)
e
−( ∣f(χ)∣√

2
)
b ⎡
⎢
⎢
⎢
⎢
⎣

(
∣f(χ)∣
√

2
)

1−b

−
b − 1

b
(
∣f(χ)∣
√

2
)

1−2b⎤
⎥
⎥
⎥
⎥
⎦

(E.8)

ψ ≃
χ

N
√

2Γ(1/b)
e
−( ∣f(χ)∣√

2
)
b ⎡
⎢
⎢
⎢
⎢
⎣

(
∣f(χ)∣
√

2
)

2−b

−
b − 2

b
(
∣f(χ)∣
√

2
)

2−2b⎤
⎥
⎥
⎥
⎥
⎦

(E.9)

giving, once plugged in Eq. (E.5)

2Γ(1/b) e
( ∣f(χ)∣√

2
)
b

=χf(χ)

⎡
⎢
⎢
⎢
⎢
⎣

(
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√

2
)

1−b

−
b − 1

b
(
∣f(χ)∣
√

2
)

1−2b⎤
⎥
⎥
⎥
⎥
⎦

+
√

2χ

⎡
⎢
⎢
⎢
⎢
⎣

(
∣f(χ)∣
√

2
)

2−b

−
b − 2

b
(
∣f(χ)∣
√

2
)

2−2b⎤
⎥
⎥
⎥
⎥
⎦

.

(E.10)

Finally, given the we know that β+ < 1 in this regime, then we can simply realise that

f(χ) = −∣f(χ)∣ and so terms on the right hand side cancel out to give

e
( ∣f(χ)∣√

2
)
b

=
χ

√
2bΓ(1/b)

(
∣f(χ)∣
√

2
)

2−2b

, (E.11)

the final equation to be approximated.



A new spin on optimal portfolios and ecological equilibria 34

Appendix F. Heterogeneous returns and growth rates

To extend our model to more realistic conditions, it is important to generalise the

calculations to variable values of µi. In such a case, the long-only portfolio and

population dynamics calculations are no longer strictly equivalent, as in the portfolio µi
and zi are independent while regarding species we have zi = µi/ki.

Starting with the long-only portfolio, we now have

θi = Θ(µi − βi
∑βjµj/zj

∑j β
2
j /zj + 1

) . (F.1)

The first important aspect to notice here is that, just as was the case for β, we may fix

the mean of µ to 1 without loss of generality as any multiplicative rescaling µi → αµi
leaves the above equation invariant. From there, we may proceed as before, now defining

a threshold on the quantity φ = β/µ:

φ̃+ =
∑j φ

2
jµ

2
jθj/zj + 1

∑j φjµ
2
jθj/zj

. (F.2)

The probability for an asset to be included in the portfolio is now given by the function

FN(φ) that is qualitatively identical to the previously introduced equivalent for β alone.

Taking µi and βi to have the joint probability distribution ρ(β,µ), we must calculate

⟪φkµ2⟫ = ∫ dφ∫ dµ∫ dβ φkFN(φ)µ2ρ(β,µ) δ (φ −
β

µ
) . (F.3)

From the results of Appendix B , we know that this integral can be calculated as

⟪φkµ2⟫ = ∫

φ+

−∞

dφφkh(φ) +O (
1

N2
) (F.4)

where the key step is therefore calculating

h(φ) = ∫ dβ ∫ dµµ2ρ(β,µ) δ (φ −
β

µ
) (F.5)

that will act as an effective distribution of φ. Assuming now that both β and µ are

distributed around 1 with a standard deviation scaling in N−1, we may shift and rescale

the problem by taking

β = 1 +
x

N
, µ = 1 +

y

N
, φ = 1 +

w

N
(F.6)

and ρ̃(x, y) that is the distribution of β and µ centred now at 0 and with standard

deviation of order 1. Using the scaling property of the Dirac delta distribution, we

finally have the rescaled effective density for φ that is given by

h̃(u) = ∫ dx∫ dy (1 +
2y

N
) ρ̃(x, y) δ(w − x + y) +O (

1

N2
)

= ∫ dy ρ̃(u + y, y) +O (
1

N
) ,

(F.7)
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as it will be shortly apparent that the N−1 contribution vanishes in the self-consistent

equation. Note that when ρ̃(x, y) is a bivariate Gaussian, h̃(u) is also Gaussian.

Expressing the threshold in φ+ as

φ+ = 1 +
f̃

N
, (F.8)

where f̃ depends on the parameters describing the distribution h̃. We may go back to

the self-consistent equation that is analogous to that for β+ and reads

φ+ =
⟨φ2⟩c

⟨φ⟩c
+

1

N

1

⟨φ⟩c
+O (

1

N2
) (F.9)

with now

⟨φk⟩c = ∫
φ+

−∞

dφφkh(φ) = ∫
f̃

−∞

du (1 +
ku

N
) h̃(u) +O (

1

N2
) . (F.10)

As such, we finally obtain an equation that is almost identical to the homogeneous µi = 1

case, contributions of order 1 cancel out and we have, at order N−1,

f̃ =
1

m
+

1

m ∫
f̃

−∞

duuh̃(u) (F.11)

with

m = ∫

f̃

−∞

du h̃(u). (F.12)

Clearly, the N−1 term in the expression of h̃(u) is dominated and therefore the µ2 term

that was initially present turns out to be inconsequential.

With this result in mind, we can look at the equilibrium ecosystem problem. As

previously mentioned, the relation zi = µi/ki means that the threshold is now given by

φ̃+ =
∑j φ

2
jkjµjθj + 1

∑j φjkjµjθj
. (F.13)

Thus, leaving aside the kj that play no part in the inclusion or not of the species (as was

the case for zj), the problem is identical to the long-only portfolio problem, albeit with

⟪φkµ⟫ to be calculated instead of ⟪φkµ2⟫. Having just determined that when taking

µ to be distributed in an N−1 region about its mean its contribution in the integral is

negligible, we find ourselves with exactly the same self-consistent equation as above.
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