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We derive analytical formulas for the wake and wave drag of a disturbance moving arbitrarily at the air-
water interface. We show that, provided a constant velocity is reached in finite time, the unsteady surface
displacement converges to its well-known steady counterpart as given by Havelock’s famous formula. Fi-
nally we assess, in a specific situation, to which extent one can rightfully use Havelock’s steady wave drag
formula for non-uniform motion (quasi-static). Such an approach can be used to legitimize or discredit a
number of studies which used steady wave drag formulas in unsteady situations.

I. INTRODUCTION

Water waves have fascinated physicists and mathematicians for centuries. Among them, Lagrange was the
first to derive the governing equations [1, 2] and Kelvin to account successfully for the famous V-shape pattern
of the wake behind a ship using stationary phase arguments [3]. Kelvin’s theory was recently brought up to
date thanks to airborne observations of ship wakes [4, 5], revealing more intricate phenomena which would
not have been observable back in the day.

The wake of a moving disturbance, say, a ship, naturally carries energy radiated by the source. Such energy
loss translates into a drag force exerted on the disturbance and opposing its motion, commonly called wave
drag or wave resistance [6]. Both Havelock [7] and Michell [8] proposed methods to compute the wave drag
of a body moving steadily at the air-water interface, which have been extensively used by both physicists
and naval engineers in the shipbuilding industry [2, 9] throughout the past century. Numerous experimental
and theoretical studies have focused on the extension of their results to account for the aspect ratio of the
body [10, 11], its front-back asymmetry [12], or varying depth [13] with applications for hull design and
rowing sports to name a few. At smaller scales, where capillarity is no longer negligible, the analysis of the
wave drag is also relevant [14], notably to understand the biolocomotion of certain insects and beetles [15–
17]. The highly unsteady nature of the propulsion mechanisms of such insects revealed the importance of
being able to properly account for unsteady effects in the wave drag [18].

Lacking a general formula to compute the wave drag for unsteady motion, a number of studies have used
the steady Havelock formula as if it were applicable, see e.g. [13, 19]. While in some cases (likely quasi-static)
this might be justified, one may rightfully argue that it will lead to inaccurate conclusions in others.

In the present paper, we extend Havelock’s theory to compute the unsteady wake and wave drag of distur-
bance with given trajectory r0(t) = (x0(t), y0(t)), which has no other constraints than being smooth enough,
typicallyC 1, see below. We obtain a general formula for both pure gravity, and capillary-gravity waves allowing
to compute the wake and wave drag for any r0(t). We illustrate our results for uniformly accelerated motion,
which allows to determine an acceleration threshold below which Havelock’s steady wave drag formula can
be considered accurate to some extent. See also the interesting study by Dutykh & Dias [20] for an analysis of
the unsteady waves generated by a moving bottom.

II. UNSTEADY WAKES

In this section we derive the surface elevation caused by a moving disturbance at the air-water interface. We
assume irrotational flow of an inviscid and infinitely deep fluid of constant and uniform density ρ, extending
infinitely in the (x , y) plane. The surface elevation of the fluid is denoted ζ(r, t) with r = (x , y). Following
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Havelock’s method, the moving disturbance is modeled by an external pressure field Pext(r, t) applied to the
fluid surface, on top of the atmospheric pressure Patm.

Hereafter we shall restrict to a linearized setting in which the waves amplitude always remain small com-
pared to the wavelength, allowing to neglect second-order terms and make extensive use of Fourier transform.
The disturbance trajectory is given by r0(t), assumed to be smooth enough (typically C 1), such that:

Pext(r, t) = Pe(r− r0(t)) , (1)

with Pe(r) the pressure field at t = 0 at position r. Denoting by ˆ the two-dimensional Fourier Transform with
respect to r, it follows that:

P̂ext(k, t) = P̂e(k)e
−ik·r0(t). (2)

Denoting u the velocity field in the fluid, the linearized Euler equations read:

∂tu = −∇P/ρ + g , (3a)

∇ · u = 0 , (3b)

where g denotes the acceleration of gravity. Combining ∇×u= 0 with Eq. (3b) yields that the scalar velocity
potential φ, defined as u=∇φ satisfies the Laplace equation:

∆φ = 0 . (4)

Equations (3) and (4) need to be complemented by the linearized boundary conditions at z = ζ:

∂tζ = ∂zφ|z=ζ , (5a)

P|z=ζ = Patm + Pext − γ∆x ,yζ , (5b)

respectively called kinematic and dynamical boundary conditions, and where γ is the surface tension. Com-
bining Eqs (2) to (5) with some Fourier analysis yields a second-order ordinary linear differential equation in
time for the Fourier Transform of the surface elevation ζ̂(k, t) (see e.g. [14, 21]):

∂ 2
t ζ̂(k, t) +ω(k)2ζ̂(k, t) = −

1
ρ

kP̂e(k)e
−ik·r0(t), (6)

with ω(k)2 = gk + γk3/ρ. Choosing as initial condition that the disturbance is turned on at t = 0 (which
implies that ζ= 0 beforehand):

ζ̂(k, t = 0) = 0 , (7a)

∂t ζ̂(k, t = 0) = 0 , (7b)

one obtains a general solution of Eq. (6) which holds for all trajectories r0(t) (see Appendix A for the details):

ζ̂(k, t) = −
∫ t

0

sin(ω(k)(t −τ))
kP̂e(k)e−ik·r0(τ)

ρω(k)
dτ . (8)

In the case of linear motion considered in Closa et al. [21] in which the disturbance undergoes uniform
linear straight motion r0(t) = r0(t)ux with r0(t) = vt starting at t = 0, one can show that the wake converges
to the well-known Havelock steady wave pattern. Using Eq. (8) one obtains the surface elevation ζ̂d(k, t) in
the frame of reference attached to the moving disturbance (see Appendix B for the details):

ζ̂d(k, t) = −
kP̂e(k)
ρω(k)

1
ω(k)2 − (vkx)2

�

ω(k)− eivkx t cos(ω(k)t)ω(k) + ieivkx t sin(ω(k)t)vkx

�

. (9)

Breaking up the cosine and sine functions into terms of the form e±iωt , one can write ζ̂d(k, t) as the sum of five
terms ζ̂d, j(k, t) for j ∈ [1, 5], the first one ( j = 1) being the constant one while the four others are oscillating
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functions of time. Noticing incidentally that ζ̂d,1(k, t) = ζ̂st(k), the well-known steady wave pattern, see
e.g. [14, 21]:

ζ̂st(k) = −
1
ρ

kP̂e(k)
ω(k)2 − (vkx)2

. (10)

To prove that the unsteady wake converges to its steady counterpart, one then needs to prove that the four
other contributions vanish as t → +∞. In Appendix C, we show that for all j ¾ 2, ζd, j(r, t) → 0, and as a
result ζd(r, t)→ ζst(r).

Such results extend to any linear motion for which a constant final velocity is reached in finite time, see
Appendix C. A more realistic trajectory would indeed consist of an acceleration phase during which the velocity
smoothly increases until it reaches a cruising plateau.

III. UNSTEADY WAVE DRAG

As mentioned above, the energy transferred to the waves translates into a drag force exerted on the distur-
bance and opposing its motion. In the case of steady motion and according to Havelock’s reasoning in [7], the
wave drag Rw is given by the total resolved pressure in the direction of the motion PedS ·m where m is the unit
vector collinear to the velocity, and dS the surface element vector orthogonal to the air-water interface. Using
that dS ·m= (m · ∇)ζmdS, one obtains Havelock’s formula:

Rw = −
∫∫

Pe(m · ∇)ζmdS . (11)

Such a result can also be obtained from a simple energy balance. The power transferred to the waves by the
moving disturbance writes [6]:

P =
∫∫

Pe∇nφdS , (12)

with ∇n denoting the derivative along the vector normal to the surface. Noting that ∇nφ = v · ∇ζ where
v= ∂tr0, and matching P to the power of a force acting against the motion, P = −Rw · v, yields Eq. (11).

Extending such reasoning to the unsteady setting in which the surface elevation is time-dependent yields a
nonzero vertical component. Using Havelock’s approach, the horizontal component is given as before by:

Pw(t) = −
∫∫

Pe(v · ∇)ζdS . (13)

The power of the vertical component can, on the other hand, be computed by noting that the infinitesimal
vertical work of the pressure field on the surface between t and t + dt is given by δWv = −Pedz with dz =
∂tζ(x , y, t)dt the infinitesimal vertical displacement of the surface. The vertical power thus reads:

Pv(t) = −
∫∫

Pe∂tζdS . (14)

This term naturally vanishes in the steady case (∂tζ= 0). Multiplying the kinematic boundary condition in the
frame of reference of the moving disturbance ∂tζ+ (v ·∇)ζ= ∂zφ by Pe and integrating over the surface, one
sees that the overall power transferred to the waves matches the power of the vertical and horizontal forces
acting on the moving disturbance: P = −(Pw +Pv), with P (t) given by Eq. (12).

In summary, for an arbitrarily moving disturbance the power transferred to the waves translates into a force
with a vertical and a horizontal components. The horizontal one is what we call wave drag (at standstill, the
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FIG. 1. Pure gravity instantaneous wave drag (dark red curves and left vertical axis) experienced by a moving disturbance
for four different values of the acceleration – from left to right: a ≈ 230, 23, 2.3 and 0.23 m·s−2 – as function of time
rescaled by τgrav =

p

b/g. The dashed dark red line shows the wave drag computed from Havelock’s steady wave drag
formula. The dash-dotted black line signifies the velocity profile rescaled by cgrav =

p

g b (right vertical axis).

moving disturbance does not experience any drag, only vertical oscillations [21]). Combining Eq. (11) with
Eq. (8) yields:

Rw =
m

4π2

∫∫

d2k
ik|P̂e(k)|2(k ·m)

ρω(k)

∫ t

0

dτ sin(ω(k)(t −τ))eik·(r0(t)−r0(τ)) , (15)

where we recall that m is the unit vector collinear to the velocity. Eq. (15) is the central result of this paper.
It gives the instantaneous wave drag for any trajectory r0(t) with nonzero velocity. In the particular case of
linear motion, and axi-symmetric pressure disturbance, P̂e(k) = P̂e(k), Eq. (15) simplifies to:

Rw = −
m
2π

∫ ∞

0

dk
k3|P̂e(k)|2

ρω(k)

∫ t

0

dτ sin(ω(k)(t −τ))J1(k(r0(t)− r0(τ))) , (16)

where J1 denotes the Bessel function of the first kind and of order 1. Note that in the case of a linear sudden
object motion described above one recovers the results of Closa et al. [21]. Also note that in the more general
case of linear motion with constant final velocity reached in finite time, having shown that the wake pattern
in the disturbance’s frame of reference converges to a constant, the same is true concerning wave drag.

IV. HOW SLOW IS SLOW ENOUGH?

In this section we raise the question of the accuracy of using Havelock’s steady formula to compute the wave
drag in an unsteady situation. In other words, how small does the acceleration need to be for the evolution
to be reasonably considered as quasi-static wave drag-wise. To answer this question in a stylized setting, we
compute Rw(t) for various different velocity profiles. More precisely we choose a ramp velocity profile with
constant acceleration of the form r0(t) =

1
2 at2ux.

Figure 1 shows the result in the pure gravity limit, ω(k)2 = gk, for four values of the acceleration a, com-
puted with a Lorentzian pressure field of the form P̂e(k) = F0e−b|k|, where b is the typical size of the disturbance.
One can see that, as expected, the quasi-steady limit is achieved for a� g.

Figure 2 shows the results for capillary-gravity waves for three values of the final velocity v∞ and four values
of the velocity ramp’s duration tramp. We choose b = κ−1/10, with κ−1 =

p

γ/(ρg) the capillary length, to
ensure that capillary effects are non-negligible [22]. While we consistently find again that the instantaneous
wave drag coincides better and better with its steady counterpart as the acceleration is decreased, significant
oscillations remain, at odds with the pure gravity case. The three rows describe three physically different
regimes of final velocities, see [21]. For v∞ < cmin, the final wave drag is zero, whereas it is non-zero whenever
v∞ ¾ cmin. Further, while for v∞ < ccrit ≈ 0.77cmin the oscillations decay exponentially, for v∞ > ccrit they
decay as 1/t.

Also note that even for the weakest acceleration (bottom right panel in Fig. 2), the discontinuity of wave drag
in the capillary-gravity case expected to occur at U/cmin = 0.23, as computed by Raphaël & de Gennes [14], is
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FIG. 2. Capillary-gravity instantaneous wave drag (dark red curves and left vertical axis) experienced by a moving
disturbance for three values of the final velocity – from top to bottom: v∞/cmin = 0.5, 0.9 and 4 where cmin = (4gρ/γ)1/4 ≈
0.23 m·s−1 – and four different durations of the velocity ramp. – from left to right: tramp = 0 (constant velocity), τ/10 ,
10τ and 100τ where τ is the pseudo-period of oscillations. The corresponding accelerations are, from left to right: for
v∞/cmin = 0.5, a ≈∞, 13 and 0.13 m·s−2; for v∞/cmin = 0.9, a ≈∞, 2.5 and 0.025 m·s−2; for v∞/cmin = 4, a ≈∞, 2300,
23 and 2.3 m·s−2. The dashed dark red line shows the wave drag computed from Havelock’s steady wave drag formula.
The dash-dotted black line signifies the velocity profile rescaled cmin (right vertical axis). The two seemingly missing panels
have been left out as they require unnecessary computing power, in addition to being almost perfectly flat lines at Rw = 0.

phased out in the unsteady case. This could be a solution to the apparent contradiction with the experimental
results of Burghelea & Steinberg [23, 24], who claimed that such discontinuity did not exist. See also [25] and
[22] for alternative explanations.

V. CONCLUSION

In this paper we have derived a general formula to compute the instantaneous wave drag exerted on an
arbitrarily moving disturbance. In particular, we have assessed in a specific situation to which extent one can
rightfully use Havelock’s steady wave drag formula. Such an approach can be used to legitimize or discredit a
number of studies which used steady wave drag formulas in unsteady situations, see e.g. [13, 19].

Of particular interest is the experimental analysis of Le Merrer et al. [19] in which the capillary-gravity wave
drag was inferred from the free deceleration of a liquid nitrogen droplet launched over the water surface [19].
The discrepancies observed by the authors between the experiments and the theoretical steady wave drag
could perhaps be attributed to the fact that their experiments did not fall in the quasi-static regime in which
steady Havelock is accurate. To solve this free deceleration problem one needs to compute jointly the wave
drag (Eq. (16)) and the resulting dynamics of the moving disturbance (the nitrogen droplet) from Newton’s
law: mr̈0 = −β ṙ0 − Rw({r0(t)}), with m the mass of the liquid nitrogen droplet and β a friction coefficient.
Further, computing the average wave drag for an oscillating velocity profile of the form v(t) = v0(1+ ε sinΩt)
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would be highly relevant to address optimal strategies in rowing sports, see [26, 27]. Such studies are left for
future work.

We thank C. Clanet, A. Darmon, U. Mizrahi and F. Vandenbrouck for fruitful discussions. We also thank Z.
Zeravcic for her help with the numerical computations, and R. Carmigniani for his thorough proofreading.
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Appendix A: Unsteady wake solution

Our aim here is to solve Eq. (6): ρ
�

∂ 2
t ζ̂(k, t)+ω(k)2ζ̂(k, t)

�

= −kP̂e(k)e−ik·r0(t), with the initial conditions (7a) and (7b).
One readily notices that we have an explicit basis of the solution space at our disposal: y1(t) = eiω(k)t and y2(t) = e−iω(k)t .
One can therefore look for solutions of the form:

ζ̂(k, t) = λ(t)y1(t) +µ(t)y2(t) , (A1)

λ and µ being two smooth functions of class C 1 which depend on k implicitly. One can find the exact solution under the
prescribed initial conditions by solving the system:

�

y1 y2
y ′1 y ′2

��

λ′

µ′

�

=

�

0

− kP̂ext(k)e−ik·r0(t)

ρ

�

, (A2)

Upon identification and integration, one is left with:

ζ̂(k, t) =

�

c(k)−
k

2iω(k)ρ

∫ t

0

e−iω(k)τ P̂e(k,τ) dτ

�

eiω(k)t +

�

d(k) +
k

2iω(k)ρ

∫ t

0

eiω(k)τ P̂e(k,τ) dτ

�

e−iω(k)t . (A3)

The initial conditions (7a) and (7b) yield that c(k) = d(k) = 0, and consequently Eq. (8).

Appendix B: The case of sudden uniform linear motion

In the case of a sudden uniform linear motion, the expression of ζ̂ reduces to:

ζ̂(k, t) = −
∫ t

0

sin(ω(k)(t −τ))
kP̂e(k)e−ivkxτ

ρω(k)
dτ. (B1)

Working out the integral yields:

ζ̂(k, t) = −
kP̂e(k)
ρω(k)

1
ω(k)2 − (vkx )2

�

e−ivkx tω(k)− cos(ω(k)t)ω(k) + i sin(ω(k)t)vkx

�

. (B2)

Now, with ζd(r, t) being the surface elevation in the ship’s frame of reference, we know that ζd(r, t) = ζ(r+ vtux, t), and
thus:

ζ̂d(k, t) = ζ̂(k, t)eivkx t , (B3)

which yields the result.

Appendix C: Proof of convergence of the wake for linear motion

We first show that the following term in equation (9) vanishes as t → +∞ for a sudden uniform linear motion:

ζd,2(r, t) =
1

(2π)2

∫∫

eik·r kP̂e(k)
ρ(ω(k)2 − (vkx )2)

ei(vkx+ω(k))t d2k . (C1)

A common trick (see e.g. [25]) to overcome the indefiniteness of the integral above, due to poles sitting on the integration
domain, is to take into account the weak viscosity of the fluid ν, which changes the denominator to ρ(ω(k)2 − (vkx )2)
to ρ(ω(k)2 − (vkx )2 + iπν) in the equation above, by that shifting the poles of the integrated function off the real axis,
and finally take the limit ν→ 0. For the sake of simplicity, we leave such considerations out of the picture. Changing the
variables to polar coordinates (r,ϕ) yields:

ζd,2(r, t) =
1

(2π)2

∫ 2π

θ=0

I(θ , t) dθ ,

with I(θ , t) =

∫ +∞

k=0

kP̂e(k)
ρ(ω(k)2 − (vk cos(θ ))2)

eikr cos(θ−ϕ)ei(vk cos(θ )+ω(k))t dk . (C2)
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Let fθ (k) = vk cos(θ ) +ω(k). If cos(θ ) ≥ 0, then the Riemann–Lebesgue lemma gives that I(θ , t)→ 0 when t → +∞.
Whenever cos(θ ) < 0, fθ has a unique critical point, that we name kθ . We then use the stationary phase approximation,
which gives that I(θ , t) = (C/

p
t)exp(it fθ (kθ )) + O (1/t), where C is a constant factor involving, among others, fθ

′′(kθ ).
Notably, we still have I(θ , t)→ 0. We conclude using Lebesgue’s Dominated Convergence Theorem.

We now prove that in the case of any linear motion reaching a final speed v0 at a finite time t0, the wake pattern in the
ship’s frame of reference converges to a constant as t → +∞. We note r0(τ) = v0τ− D for τ ≥ t0. As before, we have
ζ̂d(k, t) = ζ̂(k, t)eiv0kx t , which enables us to write:

ζ̂d(k, t) = −
kP̂e(k)
ρω(k)

�∫ t0

0

sin(ω(k)(t −τ))eikx (v0 t−r0(τ))dτ+ eikx D

∫ t

0

sin(ω(k)(t −τ))eikx v0(t−τ)dτ

− eikx D

∫ t0

0

sin(ω(k)(t −τ))eikx v0(t−τ)dτ

�

. (C3)

The first and the third term can be treated like ζd,2 above, using the stationary phase approximation. As for the second
term, in the Fourier domain, it is none other than ζ̂d, as given in Eq. (9) (and broke down into five terms), with a factor
eikx D. We have already shown that the corresponding term in the real domain tends to a constant pattern in the ship’s
frame of reference, hence the result.
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