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Hydrodynamic slip of a liquid at a solid surface represents a fundamental phenomenon in fluid dy-
namics that governs liquid transport at small scales. For polymeric liquids, de Gennes predicted that
the Navier boundary condition together with the theory of polymer dynamics imply extraordinarily
large interfacial slip for entangled polymer melts on ideal surfaces; this prediction was confirmed
using dewetting experiments on ultra-smooth, low-energy substrates. Here, we use capillary leveling
– surface tension driven flow of films with initially non-uniform thickness – of polymeric films on
these same substrates. Measurement of the slip length from a robust one-parameter fit to a lubri-
cation model is achieved. We show that at the lower shear rates involved in leveling experiments
as compared to dewetting ones, the employed substrates can no longer be considered ideal. The
data is instead consistent with physical adsorption of polymer chains at the solid/liquid interface.
We extend the Navier-de Gennes description using one additional parameter, namely the density
of physically adsorbed chains per unit surface. The resulting model is found to be in excellent
agreement with the experimental observations.

When a liquid flows along a solid surface, molecular
friction at the solid/liquid interface can have a large ef-
fect on the overall dynamics. For a sufficiently high
solid/liquid interfacial friction, the fluid velocity paral-
lel to the interface goes to zero at the boundary. This
“no-slip” boundary condition is a standard approxima-
tion for describing fluid flow at macroscopic length scales.
In the past few decades, there have been many experi-
ments measuring deviations from the no-slip boundary
condition (for recent reviews, see [1–5]), demonstrating
that molecules can slip along the solid interface. Interest
in hydrodynamic slip has focused both on the fundamen-
tal understanding of the molecular mechanisms involved,
as well as its impact on technological applications [6–18].

The effect of hydrodynamic slip is usually quanti-
fied through the slip length, b = [ux/∂zux]|z=0, shown
schematically in Fig. 1a from an extrapolation of the hori-
zontal fluid velocity profile, u(x, z), below the solid/liquid
interface located at z = 0. The slip length can vary
from nm to mm depending on the system [19, 20], with
b = 0 in the no-slip limit. Experimental techniques which
have been developed to quantitatively measure the slip
length can be broadly classified into three categories: 1)
hydrodynamic drainage experiments, where the pressure
is measured as fluid is squeezed out of (or drawn into)
a small gap between two solid surfaces [21–25], 2) a
direct measurement of the velocity profile near the in-
terface, by either using tracer particles [26–28] or flu-

orescence recovery [29], and 3) dewetting experiments,
which measure the retraction of a thin layer of fluid
from a low-energy substrate [30–35]. From these ex-
periments, some of the parameters affecting the magni-
tude of hydrodynamic slip have been elucidated which in-
clude the interfacial properties [22, 36–39], surface rough-
ness [29, 40], shear rate [21, 41–43], and molecular weight
in polymer fluids [15, 20, 44]. We focus on polymer flu-
ids flowing across hydrophobized silicon substrates which
provide ultra-smooth, low-energy surfaces. Consistent
with the notion that these substrates act as ideal sur-
faces [47], previous dewetting experiments have measured
large (> 1 µm) slip lengths for these systems [44–46], and
have confirmed the scaling of the slip length with molec-
ular weight for polymeric fluids originally predicted by
de Gennes [47].

Here, we employ a different experimental technique
with shear rates orders of magnitude smaller than those
characteristic of dewetting. We use capillary level-
ing [48, 49], an experimental approach which invokes a
film with an initially non-uniform thickness profile, re-
sulting in an excess surface area compared to a flat film,
the latter representing a metastable equilibrium. To sup-
press the energy cost of the excess surface area, surface
tension causes the film to flow, driving it towards a uni-
form thickness. For an initially stepped film (see Fig. 1a),
and after a transient regime, the surface profile evolves in
a self-similar fashion – that is, flow causes the profile to
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broaden, but the characteristic shape remains fixed and
the broadening is determined by a power law in time. By
monitoring the self-similar profile and fitting it to a lubri-
cation model, quantitative nano-rheological information
about the film can be obtained.

Previous works on capillary leveling measured the vis-
cosity of thin polymer films supported by a substrate
with a no-slip (b = 0) boundary condition [48, 49], and
addressed the infinite-slip (b→∞) limit using freestand-
ing polymer films where the two free interfaces provide
no resistance to flow [50]. In between the no-slip and
infinite-slip extremes, the current work demonstrates the
utility of capillary leveling as a quantitative probe of
finite interfacial slip. We find that the measured slip
length is independent of both temperature and sample
geometry over the ranges studied. However, the slip
length increases with the molecular weight of the poly-
mer, and eventually saturates to a plateau at large molec-
ular weight despite the ideal character of the substrate.
This latter fact contrasts drastically with the previous
high-shear-rate dewetting studies using identical mate-
rials and conditions [35, 44–46]. Inspired by the case
of chemically-grafted substrates [51], we propose a low-
shear-rate description based on the presence of a dilute
number of physically adsorbed polymer chains, which
reconciles the two sets of experiments, going beyond the
Navier-de Gennes paradigm.

RESULTS

Experimental approach

Capillary leveling of stepped films is used to measure
the slip length of polystyrene (PS) on TeflonTM fluo-
ropolymer (AF) substrates (see Methods), a combination
of materials which has been previously shown to exhibit
interfacial slip [35, 44–46]. As a calibration, identical
films of PS are prepared on silicon (Si) substrates since
the Si/PS interface has no interfacial slip [49]. Both types
of samples are annealed simultaneously and side-by-side
as outlined schematically in Fig. 1a, and surface profiles
are obtained with atomic force microscopy (AFM). The
self-similar profile of the Si/PS sample provides a calibra-
tion measurement of the PS capillary velocity, vc = γ/η,
where γ and η are the surface tension and viscosity, re-
spectively. Note that the value of vc depends on tem-
perature and molecular weight, which are identical for
the simultaneously studied Si/PS and AF/PS samples.
The protocol thus allows the unambiguous and quanti-
tative determination of the slip length of the solid/liquid
(AF/PS) interface, the only differing quantity between
the two simultaneously annealed samples. The measured
film thickness profiles are self-similar in the reduced vari-
able x/t1/4, where x is the horizontal coordinate and t
is the annealing time, for PS stepped films leveling on
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FIG. 1. Interfacial slip causes a faster broadening of the
film thickness profile in a capillary leveling experiment. (a)
Schematic of the experimental procedure in which identical
PS samples on two different substrates are annealed simul-
taneously. (b) Temporal series of experimentally measured
atomic force microscopy profiles, normalized to demonstrate
self-similarity of the film thickness profiles.

both substrates (Fig. 1b). We find that PS films broaden
more rapidly on the AF substrates than on the Si cali-
bration substrates (Fig. 1b) for all investigated molecular
weights, and this faster broadening is more significant at
higher PS molecular weight. In order to demonstrate that
we can resolve even the smaller slip lengths, we show a
zoom on the dip region of the lower molecular weight film
as an inset. There, it can clearly be seen that the film on
AF has also leveled further than that on Si. As it will be
shown below (Fig. 3), we resolve slip lengths at the level
of tens of nm. Capillary leveling thus provides one ad-
vantage over dewetting, for which small slip lengths have
comparatively larger measurement error (Fig. 3).

Theoretical approach

To extract quantitatively the slip length at the
solid/liquid interface, we employ a continuum hydrody-
namic model for the thin liquid film. Using the incom-
pressible Stokes’ equations in the lubrication approxima-
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tion [52], and allowing for weak slip1 (slip length much
smaller than the characteristic film thickness) at the
solid/liquid interface, leads to a partial differential equa-
tion describing the evolution of the film thickness profile
h(x, t) [53]:

∂h

∂t
= −vc

3

∂

∂x

[(
h3 + 3bh2

) ∂3h
∂x3

]
. (1)

One can nondimensionalize this equation by introduc-
ing an arbitrary reference length scale h0 = h1 + h2/2,
and the associated time scale 3h0/vc. Furthermore, for
a given stepped initial profile (Fig. 1a), the rescaled so-
lution (h − h1)/h2 of Eq. (1) is self-similar in the vari-
able [53, 54]:

U0 =

(
3x4

h30vct

)1/4

, (2)

but depends intrinsically on two parametric ratios, h2/h1
and b/h1. As a particular case, for a stepped ini-
tial profile with h2/h1 � 1 one can linearize Eq. (1).
Nondimensionalizing the obtained equation by introduc-
ing the previous length scale h0, but a different time
scale 3h0/[vc(1 + 3b/h0)], one obtains the result that the
rescaled solution (h − h1)/h2 is now a single universal
function of only the following generalized variable:

Ub =

[
3x4

h30vc(1 + 3b/h0)t

]1/4
. (3)

In general, numerical solutions of Eq. (1) [54] can be
used to fit the data (Fig. 2a). For the particular case of
h2 � h1, analytical solutions of the linearized version of
Eq. (1) [55] can also be used to fit the data (Fig. 2b).
Since vc is known from each corresponding no-slip cali-
bration experiment, and the sample geometry is directly
measured using AFM, the slip length b is the only free
parameter in fitting the theory to experimentally mea-
sured AF/PS profiles (Fig. 2). The slip length is found
to be independent of temperature (Fig. 2a) in the consid-
ered range, and is not sensitive to changes in the sample
geometry through h1 and h2 (Fig. 2b).

Complementary experiments were performed in a dif-
ferent geometry, in which the PS film was created with a
cylindrical hole at the top [56] (see Methods) instead of
a step. The result is shown in Fig. 2c. The slip length
is determined by fitting the radially averaged normalized

1 We have also analyzed our experiments using the intermediate-
slip thin-film equation outlined in Ref. [53]. In the worst case,
this results in a small (on the order of 30%) increase in the mea-
sured slip length, which does not affect any of the conclusions
of this work. Besides, we stress that strong-slip [53] or infinite-
slip [50] descriptions would be incompatible with the observed
self-similarity (see Fig. 1b).
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FIG. 2. Capillary leveling is a robust experimental probe to
measure slip length. For three different sample geometries,
the rescaled self-similar theoretical profiles (dashed lines) fit
the experimentally measured ones (solid lines) with one free
parameter, the slip length b. Parameters are indicated in
legends, and theoretical details are provided in main text. In
(c), the position x is replaced by the radial coordinate r.

profile to the analytical asymptotic solution of the lin-
earized axisymmetric thin-film equation [56] – including
weak slip through the variable Ub above, where x becomes
the radial coordinate here.

Effect of molecular weight on slip

The effect of chain length on interfacial slip was stud-
ied using a series of 13 different PS molecular weights
8 ≤ Mw ≤ 373 kg/mol spanning the range between un-
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FIG. 3. Slip on ideal substrates is inhibited at low shear rates
due to adsorbing polymer chains. (a) Results from PS leveling
experiments (blue circles) on AF substrates. Each data point
consists of 2-12 individual measurements. For comparison,
results from PS dewetting experiments (orange squares, data
from [44]) on AF substrates are also shown. A model with one
free parameter (solid lines) describes both sets of experiments:
it assumes adsorption of chains in the low-shear-rate leveling
experiments and no chain adsorption in the high-shear-rate
dewetting experiments. (b) The difference in the measured
slip length between leveling (blue) and dewetting (orange)
experiments is confirmed using a different substrate (SAM)
for PS (9 kg/mol at 110 ◦C and 65 kg/mol at 135 ◦C).

entangled and well-entangled PS [57, 58]. Results are
shown in Fig. 3a (blue circles). At low molecular weight,
the slip length increases with increasing PS molecular
weight, but becomes approximately constant for molecu-
lar weights greater than ∼ 100 kg/mol.

The molecular weight dependence of the AF/PS slip
length has previously been found in dewetting studies
(Fig. 3a, orange squares) to increase sharply at large
molecular weight [44–46], which contrasts with the lev-
eling results (Fig. 3a, blue circles) in the current work.
Although the results from the two techniques agree at
low PS molecular weight, the leveling results exhibit slip
lengths that are reduced by two orders of magnitude at
the highest molecular weights.

To determine if the difference in slip length at high
molecular weight is specific to AF/PS, we performed
a set of experiments with PS on self-assembled mono-
layer (SAM) substrates which are known to provide a
slip boundary condition for PS [31, 32, 46]. In the
SAM/PS experiments, both leveling and dewetting mea-
surements were performed for two different molecular
weights (9 kg/mol and 65 kg/mol). Results are shown
in Fig. 3b. As for AF/PS, both molecular weights show

a discrepancy between the slip length accessed with lev-
eling and dewetting. Furthermore, the difference grows
with molecular weight. Therefore, the observed differ-
ence in slip length between dewetting and leveling exper-
iments exists also in the SAM/PS system, and is thus not
specific to AF/PS.

DISCUSSION

For leveling experiments, typical shear rates at the
substrate can be estimated through ∂zu|z=0 = vch∂

3
xh,

which is on the order of 10−5 − 10−6 s−1 for the molec-
ular weights used. This is three orders of magnitude
lower than the average shear rates calculated for dewet-
ting with the same molecular weights [45], and even lower
if the maximum shear rate at the dewetting contact line
is used. We hypothesize that this difference in shear rates
leads to physically adsorbed chains on the substrate in
the leveling experiments that are not present in dewetting
measurements. This is supported by studies which find
a shear dependence of polymer adsorption [60, 61] and a
recent work demonstrating that dewetting processes are
faster when chain adsorption becomes weaker [62]. As-
suming such an adsorption scenario, the large difference
in measured slip lengths at high molecular weights be-
tween the low-shear-rate leveling experiments and high-
shear-rate dewetting experiments (Fig. 3) can be ratio-
nalized, as detailed below.

The Navier-de Gennes model [47] predicts that under
ideal conditions of no adsorption, where the polymer melt
slips along a smooth passive surface, the slip length fol-
lows the form:

bideal = a
η

η0
= a

Mw

M0

[
1 +

(
Mw

Me

)2
]
, (4)

where a is the monomer size, η is the polymer-melt vis-
cosity, η0 is the viscosity of a melt of monomers, M0

is the monomeric molecular weight, and Me is the en-
tanglement molecular weight. The right-hand side of
Eq. (4) corresponds to a smooth interpolation between
the Rouse and reptation regimes for the polymer-melt
viscosity [57]. Previous slip length measurements [44, 63]
have shown agreement with the large-molecular-weight
limit (b ∼ M3

w) of Eq. (4). Using the parameters and
data from Ref. [44] (i.e. a = 0.3 nm, M0 = 104 g/mol,
Me/M0 = 517), we show on Fig. 3a (orange line) that
Eq.(4) agrees with the dewetting data over the entire
molecular-weight range used.

We now turn to the case of low-shear-rate experiments,
and we describe the influence of transient physically ad-
sorbed chains in an analogous fashion to the case of per-
manent chemically grafted chains [51]. In the dilute-
adsorption regime, adding the adsorption-induced fric-
tional stress of Eq. (10b) from Ref. [51] to the previous
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ideal frictional stress ηu|z=0/bideal, within the Navier-de
Gennes construction [47], leads to the dilute-adsorption
prediction for the slip length:

bads =
bideal

1 + bideal/b?
, (5)

where b? = aMe/(nM0) and n is the number of adsorbed
chains in one cross-sectional chain area ∼Mwa

2/M0. In-
voking the parameters from Ref. [44] as above, the di-
mensionless number n is thus the only unknown quan-
tity, and we now make the assumption (justified from
the fit below) that n does not vary (or varies weakly)
with Mw. Stated differently, the density of physically
adsorbed chains per unit surface is assumed to scale in-
versely with the cross-sectional chain area.

By fitting Eq. (5) to the leveling experimental data in
Fig. 3a, we find an excellent agreement (blue line) and
extract n = 0.45± 0.02. Therefore, with a single free pa-
rameter we are able to reconcile the two very different ex-
perimental measurements of the slip length on the same
AF/PS system. The saturation value of the slip length at
high molecular weights and for low shear rates appears to
be set by b? ∼ Nea, where Ne is the number of monomers
between entanglements (omitting the numerical prefactor
1/n in front). The prefactor 1/n is expected to increase
with shear rate, and to eventually diverge, thus allowing
for a continuum of curves in between the two shown in
Fig. 3a. In addition, the leveling data appears to have
a sufficient resolution to observe for the first time the
low-Mw Rouse limit of the Navier-de Gennes prediction.
We add two remarks: i) we self-consistently find n < 1
which validates the dilute-adsorption hypothesis; ii) n is
indeed nearly constant, as having a variation of n with
Mw would correspond to not having a plateau for b at
large Mw.

Although the substrates we use are very smooth (see
Methods), it is reasonable to expect that chain adsorp-
tion may occur at least temporarily at low shear stresses.
First, even ultra-smooth surfaces show contact-angle hys-
teresis: if a contact line can be pinned on atomic-scale
roughness, then so too can polymer chains. Secondly,
unfavorable wetting does not imply repulsive interaction
between the solid and the liquid, as wetting is rather
controlled by a balance between this interaction and the
solid-air interaction. Finally, molecular dynamics sim-
ulations have shown that adsorbed groups of connected
monomers can occur at unfavorable interfaces, and the
length of these adsorbed groups increases with molecular
weight [64]. Chains which are adsorbed for long enough
durations of time to affect the interfacial fluid dynamics
are likely to have multiple attached monomers. There-
fore, larger adsorbed chains should exclude other chains
from adsorbing to the substrate. The fact that n is a con-
stant smaller than 1 could be a signature of this exclusion
mechanism.

In conclusion, we have demonstrated that capillary lev-
eling can quantitatively probe interfacial dynamics at low
shear rates. The use of simultaneously-annealed mea-
surement samples on AF substrates and calibration sam-
ples on no-slip Si substrates, combined with weak-slip
lubrication theory, allow for a robust one-parameter-fit
of the slip length to the experimental data. For the
case of PS films on an AF substrate, we find the slip
length to increase with PS molecular weight before reach-
ing a plateau value at large molecular weights. This
contrasts with previous dewetting measurements on the
same AF/PS system, which showed a strong increase in
slip length at large PS molecular weights, consistent with
the Navier-de Gennes model. Inspired by previous re-
sults for grafted chains, we propose an extension of the
Navier-de Gennes model which takes into account a di-
lute physical adsorption of polymer chains in the low-
shear-rate leveling experiments, and no adsorption in the
high-shear-rate dewetting experiments. With one free
parameter, the model is able to capture the molecular-
weight dependence of the slip length for both sets of ex-
periments. Beyond providing new fundamental insights
on the actively-studied problem of hydrodynamic slip,
these results demonstrate that even ultra-smooth low-
energy surfaces such as Teflon cannot always be consid-
ered as ideal substrates.

METHODS

Substrate preparation and characterization

Silicon (Si) wafers (obtained from University Wafer
and Si-Mat) were cleaved into 1 cm × 1 cm squares.
To create the calibration samples, the silicon wafers
were rinsed with ultra-pure water (18.2 MΩ cm, Pall),
methanol, and toluene (Fisher Scientific, Optima grade).
To create a slip substrate, the wafers were coated
with a thin film of the amorphous fluoropolymer AF
(AF1600/AF2400, obtained from Sigma Aldrich) by dip
coating from a dilute solution (solvent FC-72, obtained
from Acros Organics, 0.5% w/w concentration solution,
0.5 mm/s retraction speed). Following the manufac-
turer’s recommended procedure, the AF substrates were
annealed for 20 minutes at 5 ◦C above the glass-transition
temperature of AF (160 ◦C for AF1600 or 240 ◦C for
AF2400) to remove residual solvent. The AF film thick-
ness was 10-15 nm, measured using ellipsometry (EP3,
Accurion). Atomic force microscopy (AFM, Caliber,
Veeco; Dimension and Multimode, Bruker) measure-
ments showed that the AF substrates have a 0.3 nm RMS
surface roughness, and that PS droplets have a Young’s
contact angle of 88◦ on these substrates. As a second
set of ultra-smooth, low-energy substrates, we decorated
Si wafers with a dense self-assembled monolayer (SAM)
of octadecyltrichlorosilane (OTS) and dodecyltrichlorosi-
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lane (DTS, both purchased from Sigma-Aldrich). The
SAM was composed of a mixture of equal parts OTS and
DTS, providing the largest slip length for low-molecular-
weight PS, see [59] for details. Silane molecules covalently
bind to the native oxide layer of the Si wafer during the
established procedure [59, 65] for fabrication. These sub-
strates have an RMS roughness of 0.2 nm and PS droplets
have a long-time, receding contact angle of 63 ◦ on OTS
substrates [45].

Polymer film preparation

Polystyrene (PS) with molecular weight (Mw) ranging
between 8–373 kg/mol and polydispersity less than 1.1
was obtained from Polymer Source and PSS. Films with
an initially stepped thickness profile (as in Fig. 1a) were
made using a previously-described technique [48, 49],
with only minor modification. A bottom PS film (thick-
ness range h1 = 100 − 800 nm) and a top PS film (thick-
ness range h2 = 40 − 400 nm) were spun cast from a di-
lute toluene solution (liquid chromatography grade) onto
freshly cleaved mica substrates (Ted Pella). The PS films
were pre-annealed on mica in a home-built vacuum oven
for at least ten times longer than the calculated longest
relaxation time of the PS [57] (pre-annealing tempera-
ture 140-180 ◦C, pre-annealing time 4-72 hours; depend-
ing on the PS molecular weight). After annealing, the
bottom PS film was floated onto an ultra-pure water
bath (18.2 MΩ cm, Pall), and picked up onto either a
silicon substrate (calibration) or AF substrate (measure-
ment). The bottom film was then allowed to dry for at
least 2 hours before undergoing another annealing (an-
nealing for at least two times the calculated longest re-
laxation time) to relax residual stress. The top PS film
was then floated off its mica substrate onto the water
bath. Sharp edges in the top PS film were created by the
floating process for low Mw PS [66], or for high Mw PS
by a procedure which involved floating onto Si, cleaving,
and refloating onto the water bath [49]. The sharp-edged
top film was then picked up off the water bath with the
previously-prepared bottom PS film on a substrate. A
final drying of the film at room temperature concluded
the sample preparation procedure. Identical procedures
were applied for the experiments on the SAM substrates.
Additional samples where the second film was prepared
with a hole (as in Fig. 2c) were made in the same man-
ner as the stepped films described above, except for the
creation of sharp edges. For the hole geometry, a top
film was floated onto the water bath and picked up using
a metal washer with a millimetric circular hole to cre-
ate a freestanding film. The top film was then heated
above the PS glass-transition temperature in the free-
standing state until small holes were nucleated with a
diameter between ∼ 3 and 10µm. After quenching to
room temperature, the top film was transfered onto the

bottom film supported by a solid substrate. Full details
on the hole-geometry sample preparation are presented
in Ref. [56].

Experimental setup

Pairs of otherwise identically-prepared samples were
used with only the substrate being different (Si or AF).
The film thickness profile of each sample was determined
by measuring the surface topography of the film using
AFM, and averaging the 3D topography along the di-
rection of translational quasi-invariance of the sample
to obtain a 2D thickness profile. The pairs of samples
were then placed side-by-side for simultaneous anneal-
ing in either the home-built vacuum oven or on a hot
stage (Linkam, UK). For a given pair of samples, the
annealing temperature was held constant (between 120
and 160 ◦C), and chosen such that the PS was in its liq-
uid melt state inducing the capillary-driven leveling of
the thickness profiles. After a chosen duration of an-
nealing t, the samples were rapidly quenched to room
temperature, deep into the glassy state of PS, where the
leveling process was temporarily halted. The broaden-
ing of the thickness profiles were measured using AFM.
The samples were then further annealed, quenched, and
measured again using AFM. The process of alternate an-
nealing and AFM measurements was repeated until the
measured thickness profiles became self-similar (Fig. 1b).
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Veress, and E. Raphaël, Physics of Fluids 24, 102111
(2012).

[56] M. Backholm, M. Benzaquen, T. Salez, E. Raphaël, and
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