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Abstract
In each rowing sport (rowing, kayaking, canoeing), the oars have their very own characteristicsmost
of the time selected through a long time experience.Here we focus on rowing and address
experimentally and theoretically the problemof rowing efficiency as function of oar lengths and blades
sizes. In contrast with previous studies which consider imposed kinematics, we set an imposed force
frameworkwhich is closer to human constraints.Wefind that optimal oar lengths and blades sizes
depend on sports and athletes strength, andwe provide an optimization scheme.

1. Introduction

Most sports require different equipment for different weight categories and genders. For example, in shot put,
women usemasses of 4kg, whilemen usemasses of 7.5kg.However in rowing [1, 2], oar characteristics are
rather constant in each discipline regardless of athletes strength and gender. In sculling (figure 1(a)), the oar size
ranges from275 cm for short Fat2 Blade to 292 cm for longBig Blade [3, 4]. For sweep boats (figure 1(b)), the oar
size reads 362–378 cm [3, 4]. Through rowing history, the tendency has been to reduce oar lengths (by almost
25% since 1850, see figures 2(a) and (c)). This evolution is also related to an increase in the blade area and the
shift to asymmetric blades (figures 2(b) and (e)).While not being the only improving factors, these changes have
likely contributed to the increase of performance over time (figure 2(d)).

In rowing competitions, the average stroke rate ranges between 30 and 40 strokes perminute depending on
the boat category3, which corresponds to strokes of 1.5–2 s. At the beginning of the race, the stroke rate is yet
much higher (40–45 strokes perminute for a single scull and 45–50 for a coxless four) [8]. The rowing stroke is
divided into two phases: a propulsive phase of about 0.7 s (40%of the stroke) and a recovery phase of 1.1 s (60%
of the stroke) [9]. During the propulsive stroke, typical force profiles exerted by the blade on thewater were
measured byValery Klesnev [10] and are reprinted infigure 3(a). As one can see, themaximal handle force
exerted is around 700N.Our study is conducted in the limit of a constant force profile, which corresponds to
thefirst order approximation of the actual force profile. Aswe shall see, this approximation allows us to gain
further understanding on the effects of oars’ length and blade size. Beyond this approximation, the framework
we provide allows to usemore accurate force profiles and to compute the resulting dynamics numerically. Also
note that the force does remain rather constant during thewhole race, as evidenced from the rather constant
stroke frequency revealed in figure 3(b).

Themainproblem in rowing is thedetermination (andoptimization)of themeanvelocity of thehullwhich results
fromabalancebetweenpropulsion and friction.Thequestionof frictionhasbeenaddressedbyWellicome in1967
[11] for the steadymotionand rediscussed latelybyDay et al [12] to account forunsteadiness. Thepropulsionphase is
moredebated asunderlined in the reviewofCaplan in2010 [13]. All authors agree that the initial accelerationphase is
dominatedbydrag [14]butonce theboat reaches its steadymotion lift plays a role [15, 16] aswell as the elasticity of the
shaft [17–19]. Theoretically,most of the studies aredeveloped in the footprints of thepioneeringworkofAlexander
[20] and show that observations canbe satisfactorily approachedwith aonedimensionalmomentumbalance,
infinitely stiff oarswith inertia andnon-infinitesimal stroke angles, andquadratic relationshipsbetween force and
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velocity for theboat andoarblade [21].Wewill follow those footprints todevelopourmodel.Concerning the effect of
oars’ length,Nolte [6]performedanempirical studyonadataset of rowing races.He reported that ’ShorterOarsAre
MoreEffective’.However, Laschowski et al [22] studied experimentally the effect of oar-shaft stiffness and lengthwith
elite athletes. They showed that changes in stiffness andoars’ length led to small differences in themeasuredboat
accelerationbut thesedifferences remainedof the sameorderofmagnitude as inter-strokefluctuations.Toget a clear
answeron thequestionwedecided to avoid thefluctuations inducedbyhumans anddevelopeda rowing robot.

In section 1, we present themethods of this studywith the design of the rowing robot. Section 2 is dedicated
to the experimental results. In section 3, wefirst derive the dynamical equations for a rigid oar.We then compute
the boat velocity at given imposed force for varying oar lengths and compare our results to experiments. Finally,

Figure 1. Front view of a single scull (a) and a coxless pair (b) [1, 2]. The inboard and outboard lengths are respectively denotedℓ and
L. Typical lengths are indicated. (a)©FFA−Daniel Blin, (b)©FFA−MimmoPerna.

Figure 2. (a)Pictureof three different sweepoars (This SquareMaconCleaver image has beenobtainedby the author(s) from the
Wikimediawebsitewhere itwasmade available YetiHunter under aCCBY-SA2.0 licence. It is includedwithin this article on that basis.
It is attributed toYetiHunter.). The left oar dates back to 1850, themiddle one to 1960, and the right one to 1992. (b)Pictures, from top
to bottom, of aMaconBlade (1960), aBig Blade (1990) and aFat2Blade (2017) (Reproducedwith permission from [3]. ©Concept2, Inc).
(c)Evolution of the oar aspect ratioα=L/ℓ for sculling oars inblack and sweep oars in red.Note that since the inboard lengthℓ
remainedquite constant through time,α can be seen as the dimensionless oar length. The oldest data pointswere obtained fromrace
photographs, while themore recent ones come from [6] orwere providedby the French athleteThomasBaroukh. (d)Evolutionof the
mean speed of thewinner boat at theOxford andCambridge BoatRace (data gathered from [7]). (e)Evolution of the dimensionless blade
areaβ=S/Sc with S the blade area and Sc=ShCh/(NCd), whereN is the number of blades,Cd the drag coefficient of a blade, Sh the hull
wetted surface andCh the hull drag coefficient (for all the points, the hullwetted surface is taken constant as that of a coxless four rowing
boat Sh=5.92m2). The blackdots are for sculling blades and red dots for sweep blades.Data come from [6].
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wepresentmaster plots on the efficiency of rowing boats and discuss the particular case of sweep oars
optimization. In section 4we conclude.

2.Methods: rowing robot at constant force

In order to understand the effect of the ratioα=L/ℓ on the boat speed in the limit of constant force,
we designed andmanufactured a rowing robot with imposed propulsive force (see figure 4). Using a home-
madewoodenmold based on a real rowing shell [23] at the scale 1/10th, we built a glassfiber rowing boat
(see figure 4(a)(1))with 4 robot rowers (figure 4(a)(5)) using one oar each (figure 4(a)(6)). Constant force
during the propulsive phase was ensured through a pulley-mass system. Each oarwas linked to a pulley centered
at its rowlock. A suspendedmassm=80 g (see figure 4(a)(4))was connected to the pulley through a string

Figure 3. (a)Handle force during one stroke as a function of the oar angle for two top-level French rowers (Edouard Jonville and
AugustinMouterde). These data were collected byValery Klesnev [10]. A 0° oar angle corresponds to oars perpendicular to the boat.
(b)Typical stroke frequency during a rowing race, specifically the Lucerne 2016world championship for the winner boat in theM1x
category (data extracted from [8]).

Figure 4. (a)Picture of the 2 m longmodel rowing boatwith 4 robot rowers at constant force with (1) a hull, (2) 4floats, (3) amass
support, (4) 4masses of 80 g, (5) 4 robot rowers and (6) 4 oars. (b) Sketch of themechanismof one robot rower. The oar and pulley
(red) rotate with respect to the rowlock (blue), itself in rotationwith respect to the hull (black) to ensure lifting/dropping of the oar
between the propulsive and recovery phases. A suspendedmass/string system (gray) ensures oarmotion at constant force during the
propulsive phase. The recovery phase and the bladeflips were ensured by two servomotors and position sensors connected to an
ArduinoTM board (not shown for clarity). (c) Side view sketch of the oar/rowlock system.
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(see figure 4(b)) by that setting the oar inmotion at constant force Fr=mg (if we neglect frictional losses in all
connections). Consistent with actual datawhich reveals a catch angle of≈−55° andfinish angle of≈35° (see
figure 3(a)), the angular travel of the oarwas fixed to θ0=90° [4]. The recovery phase and the bladeflips were
ensured by two servomotors and position sensors connected to anArduinoTMboard. Themasses are suspended
to a unique support (see figure 4(a)(3)) and the stability of the boatwas ensured by four polystyrene floats (see
figure 4(a)(2)).

The experiments were performed at the swimming pool of Ecole polytechnique. Setting the recovery phase
time to a constant valueT(r)=1. 3 s (such that it roughlymatches empirical conditions: 40%propulsion against
60% recovery), we video recorded themodel rowing boat over 25 m for four different oar lengths, with
corresponding aspect ratios spanning fromα=5 toα=8.

3. Results

As one can see infigure 5(a) after the start, the speed of the hullVh/w increases during about 8 s (3 strokes) until it
reaches a stationary regimewhere the average speed remains constant. Stationary stroke durationT p

¥
( ) was

recorded for each stroke using the position sensorsmentioned above and averaged for each race.
Infigure 5(b), the time evolution of the hull and blade velocities in the stationary regime are plotted (black

curve). One can easily distinguish two phases: the propulsive phase where the hull speed increases and the
recovery phasewhere the speed decreases. Note that in reality, the speed keeps increasing at the beginning of the
recovery stroke due to themotion of the rowers on the boat [24]. The experiments show that, for a given force,
when increasingα, the average hull velocityVh w decreases (black dots infigure 5(c)), coherent with an increase

Figure 5. (a) Instantaneous velocity (solid lines) andmeanvelocity (dash line)of the hullwith respect to thewater, starting fromrest at
t=0, forα=7. (b)Velocity of the hullwith respect to thewater (solid lines) and absolute velocity of the blade (dash line)with respect to
thewater as functionof timeover two consecutive rowing cycles in the stationary regime, forα=7, theory (equations (9)–(12)) in red
and experiments inblack. (c)Meanboat velocity and (d)propulsive strokeduration as functionofα, black crosses signify experiments
while solid red lines indicate theoretical predictions, equations (9)–(12).
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in the propulsive stroke durationT p
¥

( ) (seefigure 5(d)). This observation agrees quite well with the historical
evolution of the ratioα for real oars, presented infigure 2(c), asα decreased over the years with faster and faster
boats (see figure 2(d)).

4.Discussion

4.1.Dynamics of a rigid oar
Here, we present the dynamical equations that govern oar propulsion for a given force profile exerted by the
rower. Thefirst kinematic relation relating the velocities in the different reference frames reads (see figure 6):

V V V , 1b w b h h w= + ( )

whereVb w ,Vb h andVh w respectively denote the speed of the bladewith respect to thewater, the speed of the
bladewith respect to the hull, and the speed of the hull with respect to thewater4. The second kinematic relation
ensures conservation of angularmomentumof the oar at the oarlock (see figure 6):

V V , 2b h r ha= - ( )

whereVr h denotes the speed of the rower hands in the reference frame of the hull andα=L/ℓ is the ratio
between the outboard and inboard lengths. To reach analytical predictionswe use the 1D theoretical framework
developed byCabrera et al in 2006 [21]. Fromnowon, we assume thatVb w andVb h are all parallel to the
direction ofmotion of the hull, sowewrite in the small angle approximation: V eV xb w b w= and
V eV xb h b h= , together withV eV xh w h w= andV eV xr h r h= , with ex the unit vector in the direction of
motion of the boat. The forces exerted on themoving blade are (i) the pressure drag Fp, and (ii) the addedmass
Fam, both parallel to the blademotion in the reference frame of thewater (see [14, 25]):

F SC V V a
1

2
, 3p d b w b wr= - ∣ ∣ ( )

F C V b, 3am m b wr= - W ˙ ( )

where ρ denotes thewater density, S=ℓb hb is the surface of the blade,Cd andCm are the drag and addedmass
coefficients, andΩ=πSℓb/4 is the volume of the cylinder with diameterℓb and height hb (figure 4(c)). Note
thatwe neglect here all contributions related to lift forces on the blade5. The net force F F Fw b p am= + exerted
by thewater on the blademustmatch that of the rower Fr through a torque conservation relation at the rowlock
(assuming the oar tubes to be rigid and of negligiblemass). That is:

F F
1

. 4w b r
a

= ( )

In the following, we choose towork on a simple and analytically solvable case by assuming a constant
imposed force (figure 3(a)). Although previous studies (see [26, 28, 29]) show evidence of slightly time-
dependent force profiles, we herewish to extract the general physics and scaling arguments of rowingmechanics
withminimal ingredients, for which a constant force seems appropriate from a physiological point of view.
Indeed, what the sportsman controls is rather the deployed force than the velocity which is nothing but the
response of the physical system.

Figure 6.Top view sketch of amodel rowing boat (for clarity, only one oar/rowlock system is depicted). Forces are presented in blue
and velocities in red.

4
The velocity of the blade that we consider here is the velocity at the center point of the blade (where the hydrodynamic force is exerted).

5
Although liftmight not be negligible especially during the beginning and the end of the rowing stroke [26, 27], it has the same scaling as the

drag force and thus taking it into account would not significantly change our results.
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4.2. Boat propulsion at constant force
Appendix shows a complete analysis of the oar dynamics for a resting hull with respect to thewater and identifies
two regimes depending onwhich drag component (addedmass or pressure drag) is dominant. In this sectionwe
relax the constraint of an immobile hull V 0h w ¹( ) and use the results of appendix to compute propulsion
characteristics. At this point, the equation needed to close the problem results from the force balance on the hull.
This is F NFw h r a= , withN the number of blades.We assume that the drag force on the hull is dominated by
skin friction6 andwe do not take into account themotion of the rowers on the boat. According toNewton’s
second law, one obtains in this limit:

MV S C V V NF1 2 , 5h w h h h w h w rr a+ =˙ ∣ ∣ ( )

whereM is the totalmass of the boat, Sh thewetted surface of thehull andCh its skindrag coefficient.Weuse the
hull parameters to non-dimensionalise the problem.Thus, we introduce the velocity scaleV NF S C2 c h h

 r= ( )
and the time scale M NF S C2 c h h

t r= ( ) andwewriteV VV= ˜ , t t t= ˜ and F FFc= ˜ , withFc a characteristic
force scale. Thenatural characteristic length of theproblem is L V  t= . Thedimensionless equation governing
theboat velocity thenwrites:

V V V F
1

. 6h w h w h w r
a

+ =∣ ˜ ∣ ˜ ˜̇ ˜ ( )

The dimensionless equation governing the dynamics of the oar (see equation (A.1) in appendix) reads:

V V V F
1

, 7b w b w b w rb g
a

+ = -∣ ˜ ∣ ˜ ˜̇ ˜ ( )

where:

NSC S C 8d h hb = ( ) ( )

denotes the ratio between the blades’ pressure drag and the hull skin drag and γ=N ρΩCm/M is the ratio
between the blades’ addedmass and the boatmass. In the following and for the sake of simplicity, we consider
self-similar blades (ratio hb/ℓb constant), so that γ∼β3/2, by that reducing the number of dimensionless
parameters.

Each rowing cycle k ismade of two phases: (i) the propulsive phase at constant force with durationTk
p( ) for

whichwe set F 1r =˜ and (ii) the recovery phasewith durationTk
r( ) for which F 0r =˜ . The overall cycle period

readsT T Tk k k
p r= +( ) ( ). In the following, we shall restrict to a constant and prescribed duration for the recovery

phaseT Tk
r r=( ) ( ) 7. The solution of equation (6) reads in the propulsive phase t t t T,k k k

pÎ +(˜ [˜ ˜ ˜ ]( ) with
t kTk k=˜ ˜ ):

V t t t V t
1

tanh
1

tanh , 9k kh w
p 1

h w
p

a a
a= - + -

⎡
⎣⎢

⎤
⎦⎥˜ (˜) (˜ ˜ ) [ ˜ (˜ ) ] ( )( ) ( )

and in the recovery phase t t T t,k k k
p

1Î + +(˜ [˜ ˜ ˜ ])( ) :

V t
V t T t t T

1
. 10

k k k k
h w

r

h w
p p 1 p

=
+ + - --

˜ (˜)
( ˜ (˜ ˜ )) (˜ ˜ ˜ )

( )( )
( ) ( ) ( )

To close the system, one needs the continuity equation for the velocity:

V t V t , 11k kh w
r

1 h w
p

1=+ +˜ (˜ ) ˜ (˜ ) ( )( ) ( )

and the equation for the stroke durationTk
p( ) of the kth propulsive phase:

V t V V td d . 12
t

t T

t

t T

b h b w h w
k

k k

k

k k
p p

ò ò a= - = - L
+ +

( ) ( )
( ) ( )

In order to test our theory,we compare its predictionswith the results for our rowing robotwith imposed
propulsive force presented in the section2 (seefigure 4). The experimental results are reported infigure 5 and
compared to the theoretical predictions of ourmodel. The estimationof theoar parametersCd andCm is detailed
in appendix. Thedrag coefficient on thehullChwas estimatedbymeasuring the decelerationof the fully loaded
model boatwith a given initial velocity and blades out of thewater (we found ShCh=(2.2±0.1)10−3m2).

Themeasured instantaneous hull velocity (figure 5(b)) is found in quite good agreement with the theoretical
predictions. The stroke duration (figure 5(d)) and themean velocity (figure 5(c)) are slightly off the theoretical
curves. These small discrepancies can be the results of two different effects. First, ourmodel does not account for

6
The skin friction is expected to account for 80%of the overall drag [26, 30]. Thus, we neglect here the other contributions to the drag on the

boat (formdrag, wave drag and aerodynamic drag).
7
Note that another possible choicewould be to set T Tk k

r p=( ) ( ).
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the dynamic inclination of Fw b with respect to the direction ofmotion of the boat, by that overestimating the
propulsive force. Indeed the instantaneous real propulsive force should read F cosw b q where θä [−θ0/2,
θ0/2] denotes the angle of the oarwith respect to the normal to the direction ofmotion. Althoughwe do notwish
to increase themodel’s complexity further by accounting for this effect, the associated correction can be roughly
estimated by cos 10%2, 20 0

qá ñ »q q-[ ] . Second, our robot rowing boat suffered from an abrupt slow down at the
end of the propulsive phase (figure 5(b)) due to both (i) the oars hitting themechanical stop before being lifted
out of thewater, and (ii) the deceleration of themasses increasing the drag on the hull. Note that, in contrast with
the static boat experiments of appendix, ourmodel boat lies on the crossover between the addedmass and
pressure drag dominated regimes. Indeed, as can be seen onfigure 5(b), the blade velocities display roughly
balanced acceleration and plateau timescales. This key effect is precisely due to relaxing the static constraint by
that shortening the blade’s travel with respect to thewater.

To interpret the results in termof efficiency, we define the anchoring of the blade, as the ratio of the
distance traveled by the hull during the propulsive phase, denotedΛh(α), and the travel of the blade in the
reference frame of the boatαΛ (see figure 6):

V t, with d . 13
T

h
h

0
h w

p

 òa
a=

L
L

L =
¥

( ) ( )
( )

The anchoring can be seen as the oar efficiency. Indeed, if 1 = , the blade does notmovewith respect to the
water and all the rower’s energy is transferred to the boat. In contrast, if 0 = the boat does notmove and the
oars slip in thewater. Interestingly the anchoring has an energetic interpretation. The propulsive energy provided
by the rowerEr=Λ F r is dissipated by both the hullEh=Λ hFr/α and the blades Eb, such thatEr=Eh+Eb.
Equation (13) yields:

E

E
, 14h

r

 = ( )

that is: the anchoring 0, 1 Î [ ]quantifies the efficiency of energy transfer between the rower and the
boat [9, 31].

The tendencies and the optimization are discussed in the following section and compared to real rowing
boat data.

4.3. Physical discussion
Here, we discuss the global optimization problem as function of parametersα andβ and confront our results to
real rowing boats. Figure 7 displays the dimensionless hull velocity, the stroke duration and the anchoring as
function ofα andβ8, togetherwith a few 2D cuts to simplify the discussion. The velocity plot can be understood
from the stroke duration and anchoring plots through the relation:

V
T

. 15
p

a
~

L

¥

( )( )

At constantα, the rescaled velocity and the stroke duration are increasing functions ofβ (figures 7(a3) and
(b3)) and saturate at largeβ. This can be understood through the anchoring behavior (figure 7(c3)). At small
β—small blades—the anchoring is weak andmuch of the energy is dissipated by the bladesmotionwith respect
to thewater. At largeβ, the large blades arewell anchored in thewater ensuringmaximal energy transfer to the
boat, or equivalently that the hull velocitymatches the blade velocity with respect to the boat. The behavior with
α at constantβ is less trivial. The stroke duration is an increasing function ofα and the velocity crosses over from
a plateau at smallα (addedmass dominated) to anα−1/2 regime (pressure drag dominated) at largeα. At large
givenβ the anchoring ismaximal 1 ( ) and the velocity is amonotonous function ofα, while for small given
β there exists an optimal value ofα thatmaximizes the velocity.

Themean power injected by a rower at constantmaximal forcewrites:

P
T

F V t
F

T

1
d 16

T

p 0
r h w

r
p

p

ò= =
L

¥ ¥

¥¯ ( )( ) ( )

( )

P̄ scales as T1 p
¥
( ). Note that decreasing the dimensionless oar lengthα decreases the stroke durationT p

¥
( ) and

thus increases themean injected power.
On the one hand, if onewants to achievemaximumvelocity regardless of injected energy—or equivalently

mean power—(sprint strategy), one should choose rather short oarsα∼1 (at the limit of the plateau
corresponding to the transition between the addedmass and pressure drag dominated regimes (figure 7(a1)).
However, bear inmind that short oars go hand in handwith high rowing frequency whichmight be hard to

8
Note that we here use the parameters of real rowing boats in order to be able to compare our theory to the empirical data.
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achieve from a physiological point of view, by that setting a lower bound toα [32, 33]. Furthermore, reducing
the oar length imposes to increase the blade surface tomaximize the anchoring inwater. On the other hand, if
one is rather tempted bymaximal efficiency 1  (endurance race), then long oars are indicated in order to
reduce themean power provided by the rower (figure 7(c1)).

Note that all the results presented infigure 7were obtained for afixed recovery timeT 1.1r =˜ ( ) , roughly
corresponding to that of a real rowing race. The recovery time plays a role on the position of the transition point
between the different regimes, as well as on themaximalmean velocity Vh w

max˜ reached in the plateau region.
Figure 8 displays themaximalmean velocity as function of recovery to propulsion time ratio. Decreasing the
recovery timeT r˜ ( ) reduces thefluctuations of the boat velocity and leads to an increasingmaximalmean velocity
that saturates forT T 1r p ¥

˜ ( ) ( ) . In the limitT T 1r p
¥ ˜ ( ) ( ) , the distance traveled by the boat during the

propulsive phase reaches a constant value, while the period of the rowing cycle scales asT r˜ ( ). Therefore, one
has: V T1h w

max r~˜ ˜ ( ).
Now, let us focus on the case of a coxless four rowing boat.We consider that each rower deploys a force

Fr=700 N (figure 3(a)). The stroke duration, themean boat velocity and the anchoring computed fromour
model in this specific case are presented infigure 9. For real sweeping oars,α;2.2 andβ;100which lies
precisely at the cross-over between the addedmass and pressure drag regimes. As one can see infigure 9(c), the
estimated anchoring for a coxless four rowing boat [31] compares well with the theoretical anchoring
predictions, with being close to 80%.

The realmean velocity (figure 9(b)) is smaller than the theoretical one. This is due to all the assumptions of
ourmodel: in particular neglecting the effect of the circularmotion of the oar, as well as other sources of drag on
the hull like thewave drag.Most importantly, themaximal theoretical boat velocity is reached forα=0, while
real oars haveα;2.2. The stroke duration is also off compared to the theory (figure 9(a)). Asmentioned above,
physiology imposes a limit to ourmodel. Indeed, themechanical optima identified here are not always attainable

Figure 7. (a1)–(a3)Rescaledmean boat velocity Vh w˜ , (b1)–(b3)propulsive stroke duration T p
¥̃

( ) and (c1)–(c3) anchoring  as
function ofα andβ. Themanifolds (a1), (b1), (c1) and the curves obtained at givenα (a2), (b2), (c2) or givenβ (a3), (b3), (c3)were
obtained numerically with the parameters of a coxless four rowing boat. Asymptotes at small and large scale in (a2), (a3), (b2), (b3),
(c2), (c3) are indicatedwith black and red dashed lines. The black dot in each plot corresponds to the observed data for a coxless four
rowing boat.

8

New J. Phys. 21 (2019) 093050 R Labbé et al



by the athletes. In particular, the rowers are not able to hold the pace and row at too high frequencies (or
equivalently too small stroke durations). A given rower should thus choose the smallest possible oars
corresponding to theminimal stroke duration he is able to achievewhile deploying amaximal force.

In addition, there is a physiological relationship between the force exerted by amuscle and its characteristic
speed, as shown byHill [32–34].When the speed increases the force decreases, implying that there exists an
optimumpower developed by themuscle. In the specific case of rowing, themovement is quite complex and
involves a lot of differentmuscle groups. A physiological studywould allow tofind the optimum for a given
athlete and to confront it with themechanical optimum to choose the oars. In particular, knowing the precise
Hill curve for a given athlete would allow to bemore quantitative regarding the optimal geometric parameters.
Bear inmind, however, that being fully quantitative would require also to account for other features abstracted
in ourmodel such as the effects of lift for example.

Other physiological and practical aspects can be important when it comes to the choice of the oar length.
With smaller oars, the rowerwould have to raisemuchmore the hands, which is not optimal to pull the oar. The
techniques for the catch (or blade entry inwater) and the release (blade going out of water) should also be
changed to adaptwith the new oars. Furthermore, for a good synchronization between rowers, it is necessary
that all the rowers deploy the same force and have the same oar characteristics [25].

5. Concluding remarks

The present study deals with the question of optimal oar characteristics with a constant imposed force tomodel
the rower, in contrast withmost previousworkswhich considered imposed kinematics. This assumption closes
themechanical problem, setting themovement of the rower and the stroke duration.Our theoreticalmodel was
validated experimentally in static and dynamic using a robot rowing boat at constant force.We distinguish two
regimes depending onwhether the force on the blade is dominated by addedmass or by pressure drag.We found
that real rowing lies at the cross-over between these two regimes.

The optimal oar length and blade size depend on the adopted strategy. If onewants to go as fast as possible
without paying attention to the energy consumed (sprint strategy), it is better to use short oars and large blades.
If one however aims atminimizing the injectedmean power (endurance strategy), long oars and small blades are
optimal. Note that olympic rowing races correspond rather to the sprint regime (race duration is around 6min)

Figure 8.Rescaledmaximalmean boat velocity (typically themean velocity on the plateau, seefigure 7(a1)) as function of recovery to
propulsion time ratio.

Figure 9. (a)Propulsive stroke duration as function ofα. (b)Meanboat velocity as function ofα. (c)Anchoring (or equivalently
energy transfer efficiency) as function ofα (equation (13)). The blue curves were obtained numerically forβ between 90 and 120.
Empirical data for a coxless four rowing boat are indicatedwith a black dot.
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and thus the oars should be small while ensuring a reasonable stroke frequency. This is actually the tendency
observed historically on rowing (figure 2).

To conclude, let us underline that our study aims at providing the key ingredients to perform the
optimization of oar length and blade size for a given rower depending on the rowing category. To bemore
quantitative, the effect of the oar angle with respect to the direction ofmotion, the lift on the blade and thewave
drag on the hull could be taken into account. Amore realistic force profile could also be injected in the
dynamical equations, whichwould then have to be solved numerically. Finally, note that ourwork can easily be
extended to other sports or propulsivemechanisms, such as kayaking, canoeing9 and swimming [35].
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Appendix. Single oar dynamics at constant force

Herewe derive the dynamics of a single oar at constant force in an immobile hull.We introduce a new velocity
scaleV F SC2c c dr= ( ) and a new time scale C F SC2c m c dt r= W ( ) andwrite:V VVc= ˆ , t t ct= ˆ and

F FFc= ˜ , with Fc the characteristic force introduced in section 4.2. The natural characteristic length of the
problem Lc=Vcτc=2CmΩ/(SCd) compares the effects of addedmass and pressure drag. Using
equations (3b) and (4), one obtains:

V V V F
1

. A.1b w b w b w r
a

+ = -∣ ˆ ∣ ˆ ˆ̇ ˜ ( )

Equation (A.1) can be solved numerically for any force profile F tr̃ ( ), such that one can determine the exact
blade velocityVb w

ˆ .
Letting the deployed force of the rower Fr=Fc, namely F 1r =˜ into equation (A.1), together with

V 0 0b w =ˆ ( ) yields:

V t
t1

tanh . A.2b w
a a

= -
⎛
⎝⎜

⎞
⎠⎟ˆ (ˆ)

ˆ
( )

In particular, one hasV t t1b w a= -ˆ (ˆ ) ˆ andV t 1 1b w a= -ˆ (ˆ ) .
To check equation (A.2) experimentally, we performed a simple experiment involving one oar subjected to a

constant force (figure A1(a)). The forcewas exerted by a referencemassm suspended to a nylon string, itself
connected to the oar handle through a pulley (so that Fr=mgwhere g denotes the acceleration of gravity). The
rowlockwas attached to the basin boundary. A top view image is presented infigure A1(b). For a givenmassm
wemeasured the velocity of the bladewhile varying L=5–30 cm at constantℓ=3 cm (which amounts to
varyingα). The blade dimensions wereℓb=7.0 cm and hb=4.7 cm. Fitting the theory (equation (A.2)) to the
experimental results (figure A1(d)) led toCd=2.0±0.2 andCm=0.7±0.1 in good agreement with
literature values (for a plate of ratio height to span around 0.6, one hasCd;1.2 [36] andCm;0.70 [37]).

To go one step further, we compute the stroke durationT(p). The travel of the oar end (held by the rower
hands) is given byΛ=θ0ℓwhere θ0=90° (figure 6). The stroke durationT(p) solves:

V td . A.3
T

0
r h

p

ò = L ( )
( )

Note that in the setupworking at constant force Fr amounts toworking at constant rower energy over a cycle
Er=ΛFr. Using equation (A.2), one obtains:

T cosh e . A.4Lp
c

1 ct a= a- L ( )( )

Note thatαΛ/Lc is the dimensionless number that compares the travel of the bladeαΛ and the characteristic
length Lc. As such Lc can be interpreted as the length abovewhich the limit velocity is reached and addedmass no
longer plays a role. Figure A1(c) displays the theoretical rescaled stroke duration as function ofαΛ/Lc as well as
the experimental data points. The stroke duration increases withα, consistent with increasing blade travelαΛ

9
In kayaking, as there is no rowlock,α=1, and the stroke frequency observed in competitions ismuch higher than that of rowing (near 100

strokes perminute), which follows the tendency that the stroke frequency decreaseswithα (figure 7(b3)). Kayak blades have another specific
feature: they are very hollow to increase addedmass. However, in comparisonwith rowing, sprint kayaks tend to go slower as only the
rower’s armswork (as opposed to legs, back and arms in rowing).
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and decreasing blade propulsive force Fr/α. Decreasingα amounts to increasing rowing frequency. Two regimes
can be distinguished: an addedmass dominated regime corresponding to L 1caL  for whichT(p)∼α, and a
pressure drag dominated phase forwhich L 1caL  andT(p)∼α3/2 (note that the experimental data on
figure A1(c) lies on the pressure drag dominated phase).
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