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Abstract

In each rowing sport (rowing, kayaking, canoeing), the oars have their very own characteristics most
of the time selected through along time experience. Here we focus on rowing and address
experimentally and theoretically the problem of rowing efficiency as function of oar lengths and blades
sizes. In contrast with previous studies which consider imposed kinematics, we set an imposed force
framework which is closer to human constraints. We find that optimal oar lengths and blades sizes
depend on sports and athletes strength, and we provide an optimization scheme.

1. Introduction

Most sports require different equipment for different weight categories and genders. For example, in shot put,
women use masses of 4 kg, while men use masses of 7.5 kg. However in rowing [1, 2], oar characteristics are
rather constant in each discipline regardless of athletes strength and gender. In sculling (figure 1(2)), the oar size
ranges from 275 cm for short Fat2 Blade to 292 cm for long Big Blade [3, 4]. For sweep boats (figure 1(b)), the oar
size reads 362—-378 cm [3, 4]. Through rowing history, the tendency has been to reduce oar lengths (by almost
25% since 1850, see figures 2(a) and (c)). This evolution is also related to an increase in the blade area and the
shift to asymmetric blades (figures 2(b) and (e)). While not being the only improving factors, these changes have
likely contributed to the increase of performance over time (figure 2(d)).

In rowing competitions, the average stroke rate ranges between 30 and 40 strokes per minute depending on
the boat category”, which corresponds to strokes of 1.5-2 s. At the beginning of the race, the stroke rate is yet
much higher (40—45 strokes per minute for a single scull and 45-50 for a coxless four) [8]. The rowing stroke is
divided into two phases: a propulsive phase of about 0.7 s (40% of the stroke) and a recovery phase of 1.1 s (60%
of the stroke) [9]. During the propulsive stroke, typical force profiles exerted by the blade on the water were
measured by Valery Klesnev [10] and are reprinted in figure 3(a). As one can see, the maximal handle force
exerted is around 700 N. Our study is conducted in the limit of a constant force profile, which corresponds to
the first order approximation of the actual force profile. As we shall see, this approximation allows us to gain
further understanding on the effects of oars’ length and blade size. Beyond this approximation, the framework
we provide allows to use more accurate force profiles and to compute the resulting dynamics numerically. Also
note that the force does remain rather constant during the whole race, as evidenced from the rather constant
stroke frequency revealed in figure 3(b).

The main problem in rowing is the determination (and optimization) of the mean velocity of the hull which results
from a balance between propulsion and friction. The question of friction has been addressed by Wellicome in 1967
[11] for the steady motion and rediscussed lately by Day et al [ 12] to account for unsteadiness. The propulsion phase is
more debated as underlined in the review of Caplan in 2010 [13]. All authors agree that the initial acceleration phase is
dominated by drag [14] but once the boat reaches its steady motion lift plays arole [ 15, 16] as well as the elasticity of the
shaft [17-19]. Theoretically, most of the studies are developed in the footprints of the pioneering work of Alexander
[20] and show that observations can be satisfactorily approached with a one dimensional momentum balance,
infinitely stiff oars with inertia and non-infinitesimal stroke angles, and quadratic relationships between force and

? The average stroke rate is about 33—35 strokes per minute for a single scull and 39 for a coxless four.
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Figure 1. Front view of a single scull (a) and a coxless pair (b) [, 2]. The inboard and outboard lengths are respectively denoted £ and
L. Typical lengths are indicated. (a) © FFA — Daniel Blin, (b) © FFA — Mimmo Perna.

2.8
(a) (b) (c) o .
A ~_ 2.61 ®
~
[ ¢
d 2.2< “..
2.0 , , | |
= 1800 1850 1900 1950 2000 2050
e Macon (1960) (d)
5 z . ]
L N =T 6 (32
3 i
(D)
O 4
, o
Big (1990) $500 1850 1000 1950 2000 2050
(e)
A 200
Q [ ]
ﬂ 2150‘ * *
14 N .
Il 100 * .
! Fat2 (2017) - ° o

50 y y y y y
1980 1985 1990 1995 2000 2005 2010

Figure 2. (a) Picture of three different sweep oars (This SquareMaconCleaver image has been obtained by the author(s) from the
Wikimedia website where it was made available Yeti Hunter under a CC BY-SA 2.0 licence. Itis included within this article on that basis.
Itisattributed to Yeti Hunter.). The left oar dates back to 1850, the middle one to 1960, and the right one to 1992. (b) Pictures, from top
to bottom, of a Macon Blade (1960), a Big Blade (1990) and a Fat2 Blade (2017) (Reproduced with permission from [3]. © Concept2, Inc).
(c) Evolution of the oar aspect ratio o« = L/ for sculling oars in black and sweep oars in red. Note that since the inboard length £
remained quite constant through time, v can be seen as the dimensionless oar length. The oldest data points were obtained from race
photographs, while the more recent ones come from [6] or were provided by the French athlete Thomas Baroukh. (d) Evolution of the

mean speed of the winner boat at the Oxford and Cambridge Boat Race (data gathered from [7]). (e) Evolution of the dimensionless blade
area § = S/S. with Sthebladeareaand S, = S, Cp,/(NCy), where N is the number of blades, C, the drag coefficient of a blade, S}, the hull
wetted surface and G, the hull drag coefficient (for all the points, the hull wetted surface is taken constant as that of a coxless four rowing

boat S, = 5.92m?). The black dots are for sculling blades and red dots for sweep blades. Data come from [6].

velocity for the boat and oar blade [21]. We will follow those footprints to develop our model. Concerning the effect of
oars’ length, Nolte [6] performed an empirical study on a dataset of rowing races. He reported that ’Shorter Oars Are
More Effective’. However, Laschowski et al [22] studied experimentally the effect of oar-shaft stiffness and length with
elite athletes. They showed that changes in stiffness and oars’ length led to small differences in the measured boat
acceleration but these differences remained of the same order of magnitude as inter-stroke fluctuations. To get a clear
answer on the question we decided to avoid the fluctuations induced by humans and developed a rowing robot.

In section 1, we present the methods of this study with the design of the rowing robot. Section 2 is dedicated
to the experimental results. In section 3, we first derive the dynamical equations for a rigid oar. We then compute
the boat velocity at given imposed force for varying oar lengths and compare our results to experiments. Finally,
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Figure 3. (a) Handle force during one stroke as a function of the oar angle for two top-level French rowers (Edouard Jonville and
Augustin Mouterde). These data were collected by Valery Klesnev [10]. A 0° oar angle corresponds to oars perpendicular to the boat.
(b) Typical stroke frequency during a rowing race, specifically the Lucerne 2016 world championship for the winner boat in the M1x
category (data extracted from [8]).
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Figure 4. (a) Picture of the 2 m long model rowing boat with 4 robot rowers at constant force with (1) a hull, (2) 4 floats, (3) a mass
support, (4) 4 masses of 80 g, (5) 4 robot rowers and (6) 4 oars. (b) Sketch of the mechanism of one robot rower. The oar and pulley
(red) rotate with respect to the rowlock (blue), itself in rotation with respect to the hull (black) to ensure lifting/dropping of the oar
between the propulsive and recovery phases. A suspended mass/string system (gray) ensures oar motion at constant force during the
propulsive phase. The recovery phase and the blade flips were ensured by two servomotors and position sensors connected to an
Arduino™ board (not shown for clarity). (c) Side view sketch of the oar /rowlock system.

we present master plots on the efficiency of rowing boats and discuss the particular case of sweep oars
optimization. In section 4 we conclude.

2. Methods: rowing robot at constant force

In order to understand the effect of the ratio &« = L/£ on the boat speed in the limit of constant force,

we designed and manufactured a rowing robot with imposed propulsive force (see figure 4). Using a home-
made wooden mold based on a real rowing shell [23] at the scale 1/10th, we built a glass fiber rowing boat

(see figure 4(a)(1)) with 4 robot rowers (figure 4(a)(5)) using one oar each (figure 4(a)(6)). Constant force
during the propulsive phase was ensured through a pulley-mass system. Each oar was linked to a pulley centered
atitsrowlock. A suspended mass m = 80 g (see figure 4(a)(4)) was connected to the pulley through a string
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Figure 5. (a) Instantaneous velocity (solid lines) and mean velocity (dash line) of the hull with respect to the water, starting from rest at

t = 0, for v = 7.(b) Velocity of the hull with respect to the water (solid lines) and absolute velocity of the blade (dash line) with respect to
the water as function of time over two consecutive rowing cycles in the stationary regime, for &« = 7, theory (equations (9)—(12)) in red
and experiments in black. (c) Mean boat velocity and (d) propulsive stroke duration as function of o, black crosses signify experiments
while solid red lines indicate theoretical predictions, equations (9)—(12).

(see figure 4(b)) by that setting the oar in motion at constant force F, = mg (if we neglect frictional losses in all
connections). Consistent with actual data which reveals a catch angle of ~—55° and finish angle of ~35° (see
figure 3(a)), the angular travel of the oar was fixed to 6, = 90° [4]. The recovery phase and the blade flips were
ensured by two servomotors and position sensors connected to an Arduino' ™ board. The masses are suspended
to a unique support (see figure 4(a)(3)) and the stability of the boat was ensured by four polystyrene floats (see
figure 4(a)(2)).

The experiments were performed at the swimming pool of Ecole polytechnique. Setting the recovery phase
time to a constant value T = 1.3 s (such that it roughly matches empirical conditions: 40% propulsion against
60% recovery), we video recorded the model rowing boat over 25 m for four different oar lengths, with
corresponding aspect ratios spanning froma = 5toa = 8.

3. Results

As one can see in figure 5(a) after the start, the speed of the hull V}, /,, increases during about 8 s (3 strokes) until it
reaches a stationary regime where the average speed remains constant. Stationary stroke duration T,.®® was
recorded for each stroke using the position sensors mentioned above and averaged for each race.

In figure 5(b), the time evolution of the hull and blade velocities in the stationary regime are plotted (black
curve). One can easily distinguish two phases: the propulsive phase where the hull speed increases and the
recovery phase where the speed decreases. Note that in reality, the speed keeps increasing at the beginning of the
recovery stroke due to the motion of the rowers on the boat [24]. The experiments show that, for a given force,
when increasing «, the average hull velocity V4, /,, decreases (black dots in figure 5(c)), coherent with an increase
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Figure 6. Top view sketch of a model rowing boat (for clarity, only one oar/rowlock system is depicted). Forces are presented in blue
and velocities in red.

in the propulsive stroke duration T, P’ (see figure 5(d)). This observation agrees quite well with the historical
evolution of the ratio « for real oars, presented in figure 2(c), as o decreased over the years with faster and faster
boats (see figure 2(d)).

4. Discussion

4.1. Dynamics of a rigid oar
Here, we present the dynamical equations that govern oar propulsion for a given force profile exerted by the
rower. The first kinematic relation relating the velocities in the different reference frames reads (see figure 6):

Vo, = Vo + Viyw (D

where V4, /v, Vi /n and Vj, /5, respectively denote the speed of the blade with respect to the water, the speed of the
blade with respect to the hull, and the speed of the hull with respect to the water”. The second kinematic relation
ensures conservation of angular momentum of the oar at the oarlock (see figure 6):

Von = —aVim, (2)

where V;/, denotes the speed of the rower hands in the reference frame of the hulland o« = L/ is the ratio
between the outboard and inboard lengths. To reach analytical predictions we use the 1D theoretical framework
developed by Cabrera et alin 2006 [21]. From now on, we assume that V;, /,, and W, , are all parallel to the
direction of motion of the hull, so we write in the small angle approximation: V;, ;. = W, /v € and

Vo/h = Vo nex, together with Vi, 1y, = WV /wer and Vi, = V, p e, with e, the unit vector in the direction of
motion of the boat. The forces exerted on the moving blade are (i) the pressure drag F,,, and (ii) the added mass
F,m, both parallel to the blade motion in the reference frame of the water (see [14, 25]):

1
Fp = _EPSCd|Vb/w|Vb/w» (3a)

Em = _pQCme/W) (3b)

where p denotes the water density, S = £}, hy, is the surface of the blade, Cq and C,, are the drag and added mass
coefficients, and {2 = 78¢},/4 is the volume of the cylinder with diameter £}, and height hy, (figure 4(c)). Note
that we neglect here all contributions related to lift forces on the blade’. The net force E, _.;, = E, + E exerted
by the water on the blade must match that of the rower F, through a torque conservation relation at the rowlock
(assuming the oar tubes to be rigid and of negligible mass). That is:

1
Ev—v» = —FE. (4)
«

In the following, we choose to work on a simple and analytically solvable case by assuming a constant
imposed force (figure 3(a)). Although previous studies (see [26, 28, 29]) show evidence of slightly time-
dependent force profiles, we here wish to extract the general physics and scaling arguments of rowing mechanics
with minimal ingredients, for which a constant force seems appropriate from a physiological point of view.
Indeed, what the sportsman controls is rather the deployed force than the velocity which is nothing but the
response of the physical system.

* The velocity of the blade that we consider here is the velocity at the center point of the blade (where the hydrodynamic force is exerted).

> Although lift might not be negligible especially during the beginning and the end of the rowing stroke [26, 27], it has the same scaling as the
drag force and thus taking it into account would not significantly change our results.
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4.2. Boat propulsion at constant force

Appendix shows a complete analysis of the oar dynamics for a resting hull with respect to the water and identifies
two regimes depending on which drag component (added mass or pressure drag) is dominant. In this section we
relax the constraint of an immobile hull (W4, 5, #= 0) and use the results of appendix to compute propulsion
characteristics. At this point, the equation needed to close the problem results from the force balance on the hull.
Thisis E, ., = NE /«, with N the number of blades. We assume that the drag force on the hull is dominated by
skin friction® and we do not take into account the motion of the rowers on the boat. According to Newton’s
second law, one obtains in this limit:

MV + 1/2p8k Col Vil Viyw = NE/ @, (5)

where M is the total mass of the boat, S}, the wetted surface of the hull and G, its skin drag coefficient. We use the
hull parameters to non-dimensionalise the problem. Thus, we introduce the velocity scale V* = /2NE /(pS, Cy)
and the time scale 7% = M./2/(pNE.S, C,) andwewrite V = VV*,t = i7* and F = FE, with F. a characteristic
force scale. The natural characteristic length of the problem is L* = V*7*. The dimensionless equation governing
the boat velocity then writes:

L . 1~
[ViywlVihyw + Vhyw = EE- (6)

The dimensionless equation governing the dynamics of the oar (see equation (A.1) in appendix) reads:

. - - 1
BIVo el Vo rw + YWVo v = —EE, (7)

where:
B = NSCq/(ShCp) (8

denotes the ratio between the blades’ pressure drag and the hull skin dragand v = N p§2C,,/M s the ratio
between the blades’ added mass and the boat mass. In the following and for the sake of simplicity, we consider
self-similar blades (ratio h,/ £}, constant), so that y ~ ,6’3/ ?, by that reducing the number of dimensionless
parameters.

Each rowing cycle k is made of two phases: (i) the propulsive phase at constant force with duration T for
which we set § = 1and (ii) the recovery phase with duration T, for which E = 0. The overall cycle period
reads T, = T, + T,.In the following, we shall restrict to a constant and prescribed duration for the recovery
phase T,® = T® 7 The solution of equation (6) reads in the propulsive phase (f € [f, f + T, "] with
fk = ka)

Ve (@) = % tanh[% (F = #) + tank™ (VO (G0 @ ]], ©)

and in the recovery phase (f € [f + 7®, fD):

(1) 1

Vijw() = ———— —. (10)
D+ TN + G = B — T
To close the system, one needs the continuity equation for the velocity:
Vipwlie) = Vi), (11)
and the equation for the stroke duration TP of the kth propulsive phase:
t+ T,ip) I+ T,EP)
f Vb/hdt = f (Vb/w — Vh/w)dtz —aA. (12)

3 tx

In order to test our theory, we compare its predictions with the results for our rowing robot with imposed
propulsive force presented in the section 2 (see figure 4). The experimental results are reported in figure 5 and
compared to the theoretical predictions of our model. The estimation of the oar parameters Cy and C,,, is detailed
inappendix. The drag coefficient on the hull G, was estimated by measuring the deceleration of the fully loaded
model boat with a given initial velocity and blades out of the water (we found S, C,, = (2.2 + 0.1)10 > m?).

The measured instantaneous hull velocity (figure 5(b)) is found in quite good agreement with the theoretical
predictions. The stroke duration (figure 5(d)) and the mean velocity (figure 5(c)) are slightly off the theoretical
curves. These small discrepancies can be the results of two different effects. First, our model does not account for

6 The skin friction is expected to account for 80% of the overall drag[26, 30]. Thus, we neglect here the other contributions to the drag on the
boat (form drag, wave drag and aerodynamic drag).

7 . .
Note that another possible choice would be to set T = T®,
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the dynamic inclination of F,_.;, with respect to the direction of motion of the boat, by that overestimating the
propulsive force. Indeed the instantaneous real propulsive force should read E, .}, cos @ where 6 € [— 6,/2,
60/2] denotes the angle of the oar with respect to the normal to the direction of motion. Although we do not wish
to increase the model’s complexity further by accounting for this effect, the associated correction can be roughly
estimated by (cos 0)_g,/2,6,/21 = 10%. Second, our robot rowing boat suffered from an abrupt slow down at the
end of the propulsive phase (figure 5(b)) due to both (i) the oars hitting the mechanical stop before being lifted
out of the water, and (ii) the deceleration of the masses increasing the drag on the hull. Note that, in contrast with
the static boat experiments of appendix, our model boat lies on the crossover between the added mass and
pressure drag dominated regimes. Indeed, as can be seen on figure 5(b), the blade velocities display roughly
balanced acceleration and plateau timescales. This key effect is precisely due to relaxing the static constraint by
that shortening the blade’s travel with respect to the water.

To interpret the results in term of efficiency, we define the anchoring A of the blade, as the ratio of the
distance traveled by the hull during the propulsive phase, denoted A (), and the travel of the blade in the
reference frame of the boat a A (see figure 6):

(P

Ay . o
A= —, with A = Vi /wdt. 13
A wi h(Q) ﬁ h/ (13)

The anchoring can be seen as the oar efficiency. Indeed, if A = 1, the blade does not move with respect to the
water and all the rower’s energy is transferred to the boat. In contrast, if A = 0 the boat does not move and the
oars slip in the water. Interestingly the anchoring has an energetic interpretation. The propulsive energy provided
by therower E, = AF,isdissipated by both the hull E;, = A \F,/« and the blades Ey, such that E, = E;, + Ey,.
Equation (13) yields:

E
A=22 (14)
E,
thatis: the anchoring A € [0, 1] quantifies the efficiency of energy transfer between the rower and the
boat[9, 31].
The tendencies and the optimization are discussed in the following section and compared to real rowing
boat data.

4.3. Physical discussion

Here, we discuss the global optimization problem as function of parameters « and $ and confront our results to
real rowing boats. Figure 7 displays the dimensionless hull velocity, the stroke duration and the anchoring as
function of ovand (%, together with a few 2D cuts to simplify the discussion. The velocity plot can be understood
from the stroke duration and anchoring plots through the relation:

=T (15)

At constant «, the rescaled velocity and the stroke duration are increasing functions of 3 (figures 7(a3) and
(b3)) and saturate at large 3. This can be understood through the anchoring behavior (figure 7(c3)). At small
O—small blades—the anchoring is weak and much of the energy is dissipated by the blades motion with respect
to the water. Atlarge (3, the large blades are well anchored in the water ensuring maximal energy transfer to the
boat, or equivalently that the hull velocity matches the blade velocity with respect to the boat. The behavior with
ovat constant (isless trivial. The stroke duration is an increasing function of  and the velocity crosses over from
aplateau at small o (added mass dominated) to an a~'/? regime (pressure drag dominated) at large cv. At large
given B the anchoring is maximal (4 — 1) and the velocity is a monotonous function of «, while for small given
O there exists an optimal value of v that maximizes the velocity.

The mean power injected by a rower at constant maximal force writes:

o prt EA
P_igﬁ Ewmm_E@ (16)

P scalesas 1/T . Note that decreasing the dimensionless oar length o decreases the stroke duration T and
thus increases the mean injected power.

On the one hand, if one wants to achieve maximum velocity regardless of injected energy—or equivalently
mean power—(sprint strategy), one should choose rather short oars & ~ 1 (at the limit of the plateau
corresponding to the transition between the added mass and pressure drag dominated regimes (figure 7(al)).
However, bear in mind that short oars go hand in hand with high rowing frequency which might be hard to

8 . . ..
Note that we here use the parameters of real rowing boats in order to be able to compare our theory to the empirical data.
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Figure 7. (al)—(a3) Rescaled mean boat velocity Vi /w > (b1)—(b3) propulsive stroke duration Tm(p) and (c1)—(c3) anchoring A as
function of o and (3. The manifolds (al), (b1), (c1) and the curves obtained at given « (a2), (b2), (c2) or given 3(a3), (b3), (c3) were
obtained numerically with the parameters of a coxless four rowing boat. Asymptotes at small and large scale in (a2), (a3), (b2), (b3),
(c2), (c3) are indicated with black and red dashed lines. The black dot in each plot corresponds to the observed data for a coxless four
rowing boat.

achieve from a physiological point of view, by that setting a lower bound to « [32, 33]. Furthermore, reducing
the oar length imposes to increase the blade surface to maximize the anchoring in water 4. On the other hand, if
one is rather tempted by maximal efficiency A — 1 (endurance race), then long oars are indicated in order to
reduce the mean power provided by the rower (figure 7(c1)).

Note that all the results presented in figure 7 were obtained for a fixed recovery time T® = 1.1, roughly
corresponding to that of a real rowing race. The recovery time plays a role on the position of the transition point
between the different regimes, as well as on the maximal mean velocity V}fr}a‘jf reached in the plateau region.
Figure 8 displays the maximal mean velocity as function of recovery to propulsion time ratio. Decreasing the
recovery time T reduces the fluctuations of the boat velocity and leads to an increasing maximal mean velocity
that saturates for T’ / T < 1.In the limit T / T" > 1, the distance traveled by the boat during the
propulsive phase reaches a constant value, while the period of the rowing cycle scales as T Therefore, one
has: Viw ~ 1/T.

Now, let us focus on the case of a coxless four rowing boat. We consider that each rower deploys a force
F, = 700 N (figure 3(a)). The stroke duration, the mean boat velocity and the anchoring computed from our
model in this specific case are presented in figure 9. For real sweeping oars, o« ~ 2.2 and 3 ~ 100 which lies
precisely at the cross-over between the added mass and pressure drag regimes. As one can see in figure 9(c), the
estimated anchoring for a coxless four rowing boat [31] compares well with the theoretical anchoring
predictions, with A being close to 80%.

The real mean velocity (figure 9(b)) is smaller than the theoretical one. This is due to all the assumptions of
our model: in particular neglecting the effect of the circular motion of the oar, as well as other sources of drag on
the hull like the wave drag. Most importantly, the maximal theoretical boat velocity is reached for o = 0, while
real oars have v > 2.2. The stroke duration is also off compared to the theory (figure 9(a)). As mentioned above,
physiology imposes a limit to our model. Indeed, the mechanical optima identified here are not always attainable
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Figure 8. Rescaled maximal mean boat velocity (typically the mean velocity on the plateau, see figure 7(al)) as function of recovery to
propulsion time ratio.

0.7 6.8 1.0,
() off } (b) L
' 6.6 0.8f— e :
o~ 0.5} 4 @
~— 0.4l | E 6.4} 0.6}
03 ~—
—~ 3F 4 . .
o > 6.2 0.4
~— 0.2, 4 g
6.0 - - : - 0.2}
5 o) 1S °
0.0 L L L L L L 5‘8 L L L L L L 0‘0 L L L L L L
0.0 05 1.0 15 20 25 3.0 35 0.0 05 1.0 1.5 20 25 3.0 35 0.0 05 1.0 1.5 20 25 3.0 35
(0% (0% «

Figure 9. (a) Propulsive stroke duration as function of cv. (b) Mean boat velocity as function of c. (c) Anchoring (or equivalently
energy transfer efficiency) as function of « (equation (13)). The blue curves were obtained numerically for Fbetween 90 and 120.
Empirical data for a coxless four rowing boat are indicated with a black dot.

by the athletes. In particular, the rowers are not able to hold the pace and row at too high frequencies (or
equivalently too small stroke durations). A given rower should thus choose the smallest possible oars
corresponding to the minimal stroke duration he is able to achieve while deploying a maximal force.

In addition, there is a physiological relationship between the force exerted by a muscle and its characteristic
speed, as shown by Hill [32—-34]. When the speed increases the force decreases, implying that there exists an
optimum power developed by the muscle. In the specific case of rowing, the movement is quite complex and
involves a lot of different muscle groups. A physiological study would allow to find the optimum for a given
athlete and to confront it with the mechanical optimum to choose the oars. In particular, knowing the precise
Hill curve for a given athlete would allow to be more quantitative regarding the optimal geometric parameters.
Bear in mind, however, that being fully quantitative would require also to account for other features abstracted
in our model such as the effects oflift for example.

Other physiological and practical aspects can be important when it comes to the choice of the oar length.
With smaller oars, the rower would have to raise much more the hands, which is not optimal to pull the oar. The
techniques for the catch (or blade entry in water) and the release (blade going out of water) should also be
changed to adapt with the new oars. Furthermore, for a good synchronization between rowers, it is necessary
thatall the rowers deploy the same force and have the same oar characteristics [25].

5. Concluding remarks

The present study deals with the question of optimal oar characteristics with a constant imposed force to model
the rower, in contrast with most previous works which considered imposed kinematics. This assumption closes
the mechanical problem, setting the movement of the rower and the stroke duration. Our theoretical model was
validated experimentally in static and dynamic using a robot rowing boat at constant force. We distinguish two
regimes depending on whether the force on the blade is dominated by added mass or by pressure drag. We found
that real rowing lies at the cross-over between these two regimes.

The optimal oar length and blade size depend on the adopted strategy. If one wants to go as fast as possible
without paying attention to the energy consumed (sprint strategy), it is better to use short oars and large blades.
If one however aims at minimizing the injected mean power (endurance strategy), long oars and small blades are
optimal. Note that olympic rowing races correspond rather to the sprint regime (race duration is around 6 min)
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and thus the oars should be small while ensuring a reasonable stroke frequency. This is actually the tendency
observed historically on rowing (figure 2).

To conclude, let us underline that our study aims at providing the key ingredients to perform the
optimization of oar length and blade size for a given rower depending on the rowing category. To be more
quantitative, the effect of the oar angle with respect to the direction of motion, the lift on the blade and the wave
drag on the hull could be taken into account. A more realistic force profile could also be injected in the
dynamical equations, which would then have to be solved numerically. Finally, note that our work can easily be
extended to other sports or propulsive mechanisms, such as kayaking, canoeing” and swimming [35].
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Appendix. Single oar dynamics at constant force

Here we derive the dynamics of a single oar at constant force in an immobile hull. We introduce a new velocity
scale V. = /2F./(pSCy) and anew time scale 7. = C\,,€2/2p/(F.SCy) and write: V = VV.,t = fr.and

F = FFE, with F. the characteristic force introduced in section 4.2. The natural characteristic length of the
problem L. = V7. = 2C, ©2/(SCy) compares the effects of added mass and pressure drag. Using

equations (30) and (4), one obtains:

N N A 1 -~
Vo, wlVow + Voyw = —EE- (A.1)

Equation (A.1) can be solved numerically for any force profile £ (t), such that one can determine the exact
blade velocity Vi Jwe

Letting the deployed force of the rower F, = F,, namely £ = 1 into equation (A.1), together with
Vb/w (0) = Oyyields:

N N 1 t
Vo w(t) = N tanh( — ) (A2)
In particular, one has Vb/w(f <1)= —f/oz and Vb/w(f > 1) = —1/\/5.

To check equation (A.2) experimentally, we performed a simple experiment involving one oar subjected to a
constant force (figure A1(a)). The force was exerted by a reference mass m suspended to a nylon string, itself
connected to the oar handle through a pulley (so that F, = mgwhere g denotes the acceleration of gravity). The
rowlock was attached to the basin boundary. A top view image is presented in figure A1(b). For a given mass m
we measured the velocity of the blade while varying L = 5-30 cm at constant £ = 3 cm (which amounts to
varying «v). The blade dimensions were £}, = 7.0 cm and h, = 4.7 cm. Fitting the theory (equation (A.2)) to the
experimental results (figure Al1(d))ledto Cy = 2.0 £ 0.2and C,, = 0.7 &+ 0.1 in good agreement with
literature values (for a plate of ratio height to span around 0.6, one has Cq4 ~ 1.2 [36] and C,,, ~ 0.70 [37]).

To go one step further, we compute the stroke duration T®. The travel of the oar end (held by the rower
hands) is given by A = 0,¢'where 6, = 90° (figure 6). The stroke duration T® solves:

T®
j; Vi ndt = A. (A3)

Note that in the setup working at constant force F, amounts to working at constant rower energy over a cycle
E, = AF,. Usingequation (A.2), one obtains:

T® = 7. Ja cosh™le®®/Le, (A.4)

Note that o A /L. is the dimensionless number that compares the travel of the blade aA and the characteristic
length L... As such L. can be interpreted as the length above which the limit velocity is reached and added mass no
longer plays a role. Figure A1(c) displays the theoretical rescaled stroke duration as function of aA /L. as well as
the experimental data points. The stroke duration increases with «, consistent with increasing blade travel o A

’In kayaking, as there is no rowlock, o = 1, and the stroke frequency observed in competitions is much higher than that of rowing (near 100
strokes per minute), which follows the tendency that the stroke frequency decreases with « (figure 7(b3)). Kayak blades have another specific
feature: they are very hollow to increase added mass. However, in comparison with rowing, sprint kayaks tend to go slower as only the
rower’s arms work (as opposed to legs, back and arms in rowing).
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— rowlock
— row and pulley

— mass and string

Vb/w C“/‘/C

Figure A1l. (a) Sketch of the mechanism for the static boat experiment. The oar and pulley (red) rotate with respect to the rowlock
(blue) which is fixed in the reference frame of the lab. A suspended mass/string system (gray) ensures oar motion at constant force.
(b) Chronophotography of the static boat experiment with a 20 cm oar (corresponding to o = 5.3). The time between each frame is
60 ms. (c) Rescaled stroke duration as function of rescaled stroke length. The red curve corresponds to equation (A.4) and the black
crosses signify experimental data with constant Fy = 5 N while varying c. (d) Dimensionless velocity as function of dimensionless
time for three different values of «, each with two values of Fy € {5 N, 10 N}.

and decreasing blade propulsive force F,/«. Decreasing o« amounts to increasing rowing frequency. Two regimes
can be distinguished: an added mass dominated regime corresponding to a’A /L. < 1for which T ~ a,anda
pressure drag dominated phase for which aA /L, > 1and T ~ o2 (note that the experimental data on
figure A1(c) lies on the pressure drag dominated phase).
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