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The effect of an external pressure disturbance, being displaced with a constant speed
along the free surface of a viscous thin film, is studied theoretically in the lubrication
approximation in one- and two-dimensional geometries. In the comoving frame, the
imposed pressure field creates a stationary deformation of the interface – a wake – that
spatially vanishes in the far region. The shape of the wake and the way it vanishes
depend on both the speed and size of the external source and the properties of the film.
The wave resistance, namely the force that has to be externally furnished in order
to maintain the wake, is analysed in detail. For finite-size pressure disturbances, it
increases with the speed, up to a certain transition value, above which a monotonic
decrease occurs. The role of the horizontal extent of the pressure field is studied as
well, revealing that for a smaller disturbance the latter transition occurs at a higher
speed. Eventually, for a Dirac pressure source, the wave resistance either saturates for
a one-dimensional geometry, or diverges for a two-dimensional geometry.
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1. Introduction

A disturbance moving atop a fluid or a soft medium deforms the interface shape
of the latter, thereby producing a wake. This is a common phenomenon, which takes
place in various natural, scientific and industrial settings (Carusotto & Rousseaux
2013) across several orders of magnitude, ranging from waves generated at the
surface of water by animals and watercraft (Kelvin 1887), to patterns observed during
the deposition of thin polymer coatings (Kistler & Schweizer 1997). For instance, at
the geophysical scale, the study of gravity-driven flows around human-made obstacles
and landscape singularities is essential to understand and minimize the damage caused
by natural disasters, such as snow avalanches (Glenne 1987), landslides (Campbell
1989) and lava or mud flows (Huppert & Simpson 1980; Huppert 1982; Kondic 2003).
In nanophysics, gaining insight into the intrusive effect of local probes, such as atomic
force microscopy (Ledesma-Alonso, Legendre & Tordjeman 2013; Ledesma-Alonso,
Tordjeman & Legendre 2014; Wedolowski & Napiorkowskia 2015), is crucial in order
to improve further the measurement accuracy.
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Similarly, the wake angle and the wave pattern generated behind a disturbance
sailing at the surface of an inviscid liquid remain current topics of interest (Rabaud &
Moisy 2013; Benzaquen, Darmon & Raphael 2014a; Darmon, Benzaquen & Raphael
2014), because they are crucial for the naval industry. In fact, to be maintained,
the wake continually consumes energy, the latter being radiated away from the
disturbance. This loss can be formulated into a force, called the wave resistance
(Havelock 1918), which needs to be furnished by the controller in order to ensure
constant speed. The wave resistance associated with capillary–gravity wakes has thus
been fully characterized for an incompressible inviscid flow (Raphael & de Gennes
1996; Burghelea & Steinberg 2002; Benzaquen, Chevy & Raphael 2011), including
the cases of Dirac and finite-size pressure distributions. The perturbative role of
viscosity on the inertial wave resistance (Richard & Raphael 1999) has also been
considered, as well as the effect of thickness for a viscous liquid film (Wedolowski
& Napiorkowskia 2013).

In the context of viscous thin films (Oron, Davis & Bankoff 1997; Craster & Matar
2009; Blossey 2012), a moving external disturbance and the associated wake at the
free surface may be used directly as a new kind of fine rheological probe (Decre &
Baret 2003; Alleborn & Raszillier 2004). This idea was also proposed as a possible
method to measure slip at a solid–liquid boundary (Alleborn, Sharma & Delgado
2007). Interestingly, despite the broad applicability of the lubrication theory and its
importance for industrial processes, the study of the wake and the wave resistance in
such a context is a topic that has been little explored and remains an open question.
For instance, the competition between visco-capillary relaxation and perturbation
speed, which might control the extent and lifespan of the wake generated by the
moving perturbation, has not been studied. Imagine that the footprint left behind
by the moving perturbation is arrested by performing a local quenching, before the
relaxation of the thin film occurs (Orchard 1961; McGraw et al. 2012): this may
allow a narrow channel to be imprinted in the film, thus revealing the foundations of
a new nano-patterning technique. Additionally, one may be interested in estimating
and controlling the amount of energy that this technique requires, for which the wave
resistance of a moving disturbance atop a viscous thin film must be well characterized
in detail.

In the present study, the surface pattern generated by a moving external pressure
disturbance along a viscous thin film is described theoretically, within the lubrication
approximation, for one-dimensional (1D) and two-dimensional (2D) systems. The
wave resistance is analysed in both cases, leading to analytical expressions of this
force in terms of the disturbance speed and size, and the physical properties of
the liquid film. Low- and high-speed regimes are described through asymptotic
expressions, which unveil the nature of the wave resistance in the lubrication context.

2. General case
2.1. Thin-film equation for a moving pressure disturbance

We consider a viscous liquid film of thickness h0 deposited over a flat horizontal
substrate. The equilibrium free surface of the film is flat as well, and perpendicular
to the vertical direction z. An external pressure field ψ , moving along the horizontal
direction x with constant speed v> 0, is applied over the liquid film. As a result, the
incompressible Newtonian fluid flow yields a stationary surface pattern h (see figure 1)
in the frame of reference of the moving disturbance.

In the lubrication approximation, neglecting shear stress at the liquid–gas interface
and assuming no slip at the substrate, the incompressible Stokes equation and
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FIGURE 1. (Colour online) Schematic diagram of the surface profile h of a viscous
thin film reacting to an external pressure disturbance ψ moving along time t at constant
speed v: (a) 1D and (b) 2D geometries.

conservation of volume lead to the following Reynolds equation (Oron et al. 1997):

∂h
∂t
=∇ ·

[
(h0 + h)3

3µ
∇plg

]
, (2.1)

where µ is the dynamic viscosity of the liquid and plg is the pressure jump at the
liquid–gas interface. Under the lubrication hypothesis for the no-slip case, one can also
neglect the normal viscous stress at the liquid–gas interface, and the pressure jump is
thus given by the Young–Laplace equation. For small slopes, the latter reads:

plg =−γ1h+ ρgh+ψ, (2.2)

where 1 denotes the Laplacian operator in Cartesian coordinates, g is the acceleration
of gravity, and γ and ρ are the liquid–gas surface tension and density difference,
respectively. Equations (2.1) and (2.2) are coupled, and should be solved together
in order to describe the dynamic response of the viscous thin film due to the
displacement of the external pressure field.

We introduce the dimensionless variables:

X = κx, Y = y
`
, H = h

h0
,

T = t
τ
, Ψ = ψ`

sextκ
, Sext = sextκ

ρgh0`
,

 (2.3)

where the capillary length κ−1=√γ /(ρg) has been chosen as the characteristic length
scale in the x direction, and ` is a reference length scale in the y direction, which
depends on the dimension of the system: in 1D, one sets `= Ly, a unit length, and in
2D, one sets `= κ−1. In turn, τ = 3µγ /[(ρg)2h3

0] is the visco-capillary time scale, and
sext =

∫∫
dx dyψ is the imposed load, where in 1D the integral over y is restricted to

the horizontal extent Ly. In the limit of small surface deformations H�1, the thin-film
equation (TFE), obtained from the combination of (2.1) and (2.2), is given by

∂H
∂T
=−∇ · [∇(1H)−∇H − Sext∇Ψ ]. (2.4)
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Let us introduce the capillary number Ca = µv/γ and the Bond number
Bo = ρga2/γ , where a denotes the characteristic horizontal size of the external
pressure field. We now place ourselves in the frame of reference of the moving
disturbance, through the new variable U= X− VT , where the reduced speed V reads:

V = vτκ. (2.5)
By assuming stationarity of the surface profile in this comoving frame, one has
H(X, Y, T)= ζ (U, Y) and thus (2.4) reduces to the partial differential equation:[

∂2

∂U2
+ ∂2

∂Y2

]2

ζ −
[
∂2

∂U2
+ ∂2

∂Y2

]
ζ − V

∂ζ

∂U
= Sext

[
∂2

∂U2
+ ∂2

∂Y2

]
Ψ. (2.6)

In the following, we refer to (2.6) as the 2D TFE.
Similarly, for a 1D geometry, in which the system is invariant with respect to the

Y direction, (2.4) is reduced to the ordinary differential equation:

d
dU

[
d3ζ

dU3
− dζ

dU
− Vζ

]
= Sext

d2Ψ

dU2
. (2.7)

After integrating once with respect to U, and considering the boundary conditions
ζ = 0, dζ/dU = 0, d3ζ/dU3 = 0 and dΨ/dU = 0 at |U| → ∞ (since the liquid–gas
interface should be undisturbed far from the moving disturbance, and since the flow
and pressure gradients vanish in the far field), one gets

d3ζ

dU3
− dζ

dU
− Vζ = Sext

dΨ
dU

. (2.8)

In the following, we refer to (2.8) as the 1D TFE.

2.2. Wave resistance
The wave resistance r is the force that has to be externally furnished by the operator
– i.e. the pressure field – in order to maintain the wake. According to Havelock’s
formula (Havelock 1918), it reads:

r=
∫∫

ψ(x, y)
∂h
∂x

dx dy, (2.9)

where in the 1D case the integral over y is restricted to the chosen horizontal extent
Ly. Defining the dimensionless wave resistance R through

R= r
ρgh2

0`
, (2.10)

and recalling (2.3), one gets in the comoving frame:

R= Sext

κ`

∫∫
Ψ (U, Y)

∂ζ

∂U
dU dY. (2.11)

In the next two sections, we solve the 1D TFE and 2D TFE using Fourier analysis,
and study the shape of their solutions and the wave resistance for different values of
the two relevant dimensionless parameters: the reduced speed V and the Bond number
Bo. One should keep in mind that

√
Bo = aκ is the rescaled lateral extent of the

external pressure field. Also, note that, by linearity of the response, all the results
correspond to an arbitrary third dimensionless number Sext, the dimensionless load, as
it can be absorbed in ζ . In the following, Sext is chosen to be positive, although the
physical foundations and the wave resistance are valid for any sign of Sext.
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3. One-dimensional case
3.1. Surface profile

Considering the 1D Fourier transforms ζ̂ (Q) and Ψ̂ (Q) (see § A.1) of the surface
profile and the pressure field, the 1D TFE given in (2.8) becomes

−(iQ3 + iQ+ V)ζ̂ = iQSextΨ̂ , (3.1)

where i = √−1 is the imaginary unit, and Q is the angular wavenumber in the U
direction. As a consequence, the profile ζ is described by

ζ (U)= Sext

2π

∫
QΨ̂ (Q) exp(iUQ)
iV −Q(Q2 + 1)

dQ, (3.2)

where we recover the statement above that the dimensionless load Sext gives only a
constant prefactor in the linear response.

In order to account for the finite-size effects, we introduce a Lorentzian pressure
distribution:

Ψ (U)=
√

Bo
π(U2 + Bo)

,

Ψ̂ (Q)= exp(−√Bo|Q|).

 (3.3)

Note that
∫

dUψ = 1, by construction, and that in the limit Bo→ 0 this pressure
distribution becomes Ψ (U) = δ(U), or Ψ̂ (Q) = 1, where δ denotes the Dirac
distribution.

The associated normalized surface profile is shown in figure 2, for different values
of the reduced speed V and the Bond number Bo. At low speed, the deformation
profile is found to be nearly symmetric. In that case, the depression is centred at the
maximum of the pressure field and it exponentially relaxes towards a flat horizontal
surface, far away from the perturbation. As we increase the speed V , the symmetry of
the surface shape breaks and the depression is shifted towards the rear (left-hand side
of figure 2) of the driving pressure field, while a bump at the front (right-hand side of
figure 2) grows with the disturbance speed. An exponential relaxation is still observed
in the rear, with a shorter characteristic length scale as the speed increases, whilst
either a similar relaxation (for intermediate speeds) or an exponentially decaying
oscillation (for high speeds) is discerned at the front.

These features can be understood by looking at the asymptotic solution of the 1D
TFE. At a sufficiently distant position (|U|�√Bo) from the pressure field, its overall
effect can thus be taken as an interior boundary condition in order to analyse the
spatial spectrum of the solution in the far field. In that approximation, (2.8) has the
three asymptotic basis solutions

ζj ∼ exp
(

U
λj

)
, (3.4)

for j= 1, 2, 3, where the wavelengths λj are given by the characteristic equation

λ3
j +

1
V
(λ2

j − 1)= 0, (3.5)
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FIGURE 2. (Colour online) Normalized surface profile ζ (U), solution of (2.8) as given
by (3.2), using Lorentzian (see (3.3)) and Dirac (Bo→ 0) 1D pressure distributions, with
dimensionless load Sext > 0, for different values of the reduced speed V and the Bond
number Bo, as indicated.

and thus

λj =
√

3
(
Ω

σj
+ σj

Ω

)−1

,

σj = exp
[

i
2π

3
( j− 1)

]
,

Ω = 3
√

V +
√

V 2 − 1.


(3.6)
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FIGURE 3. (Colour online) Real (solid) and imaginary (dashed) parts of the three
dimensionless wavelengths λj of the asymptotic solution, as given by (3.6) for the 1D
case, as a function of the speed ratio V =V/Vc= 3

√
3 V/2, where V is the reduced speed.

Note that for V 6 1, Im(λj)= 0 for all the values of j; whereas for V > 1, Re(λ2) and
Re(λ3) overlap.

Here, V is the speed ratio, V = V/Vc, defined from the critical speed Vc = 2/(3
√

3).
The dependence of λj on V is depicted in figure 3. Since Ω comes from an expression
that may have different values (the roots of Ω6− 2V Ω3+ 1), we note that the correct
value to be employed in (3.6) satisfies the relation [Re(Ω)]2= 1−[Im(Ω)]2 for V 6 1,
and Im(Ω)= 0 for V > 1.

According to the signs of λj in figure 3, and in order to avoid any divergence of
the profile at U = −∞, it follows that for U < 0 and |U| � √Bo the shape of the
surface is necessarily given by

ζ =N1 exp
(

U
λ1

)
, (3.7)

where N1 is a real constant and λ1 takes a real value Re(λ1) > 0. This indicates that
the surface always presents a pure exponential relaxation towards a flat horizontal
profile at the rear of the perturbation, in the far field, no matter the speed. The typical
distance λ1 over which this relaxation occurs becomes shorter as V increases, as
observed in figure 2.

On the other hand, for U > 0 and |U| � √Bo, the behaviour of the asymptotic
solution depends strongly on V . When V < 1, according to the signs of λj in figure 3,
and in order to avoid any divergence of the profile at U=+∞, the surface profile is
described in the far field by the superposition

ζ =N2 exp
(

U
λ2

)
+N3 exp

(
U
λ3

)
, (3.8)

where N2 and N3 are real constants, and λ2 and λ3 are both real and negative with
|λ2|< |λ3|. As a consequence, an overdamping of the surface perturbation is observed
in the far field. The V =1 case corresponds to the critical damping situation for which
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λ2 = λ3 =−1. Finally, for V > 1, λ2 and λ3 are complex conjugates, and so are the
corresponding amplitudes N2 and N3. Thus, one can write

ζ =N exp
[

Re(λ2)U
Re(λ2)2 + Im(λ2)2

]
cos
[

Im(λ2)U
Re(λ2)2 + Im(λ2)2

+ φ
]
, (3.9)

where N and φ are real constants. This indicates the presence of spatial oscillations at
the front of the perturbation in the far field, before the film surface attains its complete
relaxation. In brief, the critical speed Vc denotes the reduced speed V at which a
transition is observed from overdamped relaxation to damped oscillations, at the front
of the perturbation.

In addition to the far-field trends described above, which depend solely on the
reduced speed V and the associated dimensionless characteristic lengths λj, one can
discern in figure 2 different near-field behaviours of the surface profiles that involve a
second dimensionless length

√
Bo associated with the horizontal extent of the pressure

field. As already explained above, for a pressure distribution with sufficiently small
size (

√
Bo� 1), the healing length of the profile is almost independent of Bo, and

approximately given by λj, which decreases as V increases. In contrast, for a large
size (

√
Bo� 1), the lateral extent of the profile is comparable with the typical size√

Bo of the pressure disturbance, as can be observed at low speed V in figure 2. In
this
√

Bo� 1 case, the healing length decreases with increasing speed only for low
velocities. Above the critical speed Vc typically, the healing length saturates, leading
to surface profiles that nearly follow the same trend, independently of V .

3.2. Wave resistance
Invoking (2.11) and the fact that in 1D one has ` = Ly, one gets the following 1D
expression of the dimensionless wave resistance:

R= Sext

∫
Ψ (U)

dζ
dU

dU. (3.10)

For a viscous thin film, it can be shown that the power exerted by the wave resistance
equals the viscous dissipated power in the bulk (see § A.3, (A 16)). This power balance
highlights the fact that the wave resistance is the force externally furnished by the
operator in order to maintain the stationary wake. Remarkably, owing to the nature of
the TFE, the wave resistance is also related to the spatial energy spectral density (see
§ A.2, (A 4)).

Combining (3.2) and (3.10) leads to

R= S2
extV
2π

∫
Q2Ψ̂ (Q)Ψ̂ (−Q)

V2 +Q2(Q2 + 1)2
dQ. (3.11)

Figure 4 displays the normalized wave resistance for a Lorentzian pressure distribution,
as given by (3.3) and (3.11), as a function of the reduced speed V , and for different
values of the Bond number Bo. The wave resistance for a Dirac pressure distribution
is also shown.

For the asymptotic case where V→ 0, a series expansion of the integrand in (3.11)
leads to

R= S2
extV
π
[ f (Bo)+O(V2)], (3.12)
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FIGURE 4. (Colour online) Dimensionless wave resistance R (see (3.11)) normalized by
the square of the dimensionless load Sext, as a function of the reduced speed V , for a 1D
Dirac pressure distribution, and for a 1D Lorentzian pressure distribution (see (3.3)) with
different values of the Bond number Bo as indicated. The vertical dashed lines indicate
the crossover speeds Vs, estimated from (3.19) for different Bo. The horizontal dotted line
corresponds to the plateau value of 1/6 in the 1D Dirac case.

where f (Bo) is a function that depends only on the shape of the pressure field. This
points out the linear dependence of the wave resistance on V , in the low-speed regime,
as observed in figure 4. For a Dirac pressure distribution one gets fδ(Bo) = π/4,
whereas for a Lorentzian (see (3.3)), one has

fL(Bo)= 8Bo3/2
∫ ∞

0

exp(−w)
(w2 + 4Bo)2

dw. (3.13)

Both behaviours are depicted in figure 5. In addition, fL→π/4 when Bo→ 0, as for
the Dirac pressure distribution, whilst a series expansion at Bo→∞ yields

fL(Bo)= 1
2
√

Bo
[1+O(Bo−1)], (3.14)

as observed in figure 5.
Considering the Dirac delta distribution, for any V , one finds (see § A.2 for details)

Rδ = −i
√

3θ 3/2S2
extV

2(θ 3 − 2θ 2 + 2θ − 1)
, (3.15)

with

θ = 3
√

1− 2V 2 + 2V
√

V 2 − 1, (3.16)

where V was defined after (3.6). For the asymptotic case where V →∞, a series
expansion leads to

Rδ = S2
ext

6
[1+O(V−2/3)]. (3.17)



838 R. Ledesma-Alonso, M. Benzaquen, T. Salez and E. Raphaël

–2

–1

0

0 3 6–3–6

1

2

Dirac
Lorentz

FIGURE 5. (Colour online) Shape function f (see (3.12)) of the 1D pressure field in
the low-speed regime, as a function of the Bond number Bo. Both the Lorentzian (solid,
see (3.13)) and the Dirac (dashed, see text) cases are represented.

This result indicates the singular feature that for a 1D Dirac pressure distribution the
wave resistance saturates to a constant value at high speed, as observed in figure 4.

For a finite-size Lorentzian pressure distribution, we combine (3.3) and (3.11)
(see § A.2 for details on the overall expression) and obtain, in the high-speed regime
V→∞,

RL = S2
ext

4πVBo3/2
[1+O(V−2)]. (3.18)

Therefore, a 1/V dependence of the wave resistance is asymptotically expected for
finite-size pressure fields at large speed, as indeed observed in figure 4.

For a Dirac pressure distribution, the reduced speed Vs at which the wave resistance
saturates can be defined by equating the low- and high-speed asymptotic expressions
of Rδ. This provides Vs = 2/3, consistent with the observation of figure 4. Similarly,
for a finite-size Lorentzian pressure distribution, the reduced speed Vs at which the
crossover between the low- and high-speed regimes of RL occurs is defined by

Vs ∼ 1
2Bo3/4

√
f (Bo)

, (3.19)

as observed in figure 4. In the case of small Bond number Bo, Vs scales as Bo−3/4;
whereas for large values of Bo, Vs scales as Bo−1/2.

4. Two-dimensional case
4.1. Surface profile

Considering the 2D Fourier transforms ζ̂ (Q,K) and Ψ̂ (Q,K) of the surface profile and
the pressure field, with the definitions given in § B.1, the 2D TFE of (2.6) becomes

[iQV − (Q2 +K2)2 − (Q2 +K2)]ζ̂ = Sext(Q2 +K2)Ψ̂ , (4.1)
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FIGURE 6. (Colour online) Normalized thin-film surface profile in the presence of a
moving Lorentzian pressure disturbance, with dimensionless load Sext > 0, Bond number
Bo= 102, and reduced speed V = 10, computed from (4.2) and (4.3). Perspective views of
the front (a) and the back (b), in arbitrary units and colour code.

where Q and K are the spatial angular frequencies in the U and Y directions,
respectively. Consequently, the surface ζ (U, Y) of the thin film reads

ζ (U, Y)= Sext

4π2

∫∫
(Q2 +K2) exp[i(QU +KY)]Ψ̂ (Q,K)

iQV − (Q2 +K2)(1+Q2 +K2)
dK dQ. (4.2)

In analogy with the previous 1D case, we introduce the following 2D axisymmetric
finite-size Lorentzian pressure distribution:

Ψ (U, Y)=
√

Bo
2π(U2 + Y2 + Bo)3/2

,

Ψ̂ (Q,K)= exp[−
√

Bo(Q2 +K2)].

 (4.3)

We recall that, since a is the characteristic horizontal size of the pressure field,√
Bo = aκ is the dimensionless size. When, Bo→ 0, the Dirac pressure distribution

Ψ (U, Y) = δ(U)δ(Y), or its equivalent Ψ̂ (Q, K) = 1 in the frequency domain, is
recovered.

Surface patterns generated by a Lorentzian pressure disturbance, for several
combinations of the parameters Bo and V , are illustrated in figures 6 and 7. A
common feature of these profiles is the depression observed. In figure 6, owing to
the particular parameters employed (see caption) to generate the surface profile, a
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FIGURE 7. (Colour online) Normalized thin-film surface profile (top view) computed from
(4.2) and (4.3), for a dimensionless load Sext > 0, and different values of the Bond number
Bo and the reduced speed V . In each panel, the pressure field travels from left to right,
along the longitudinal coordinate U.

non-symmetric shape is shown. A rim surrounds the front of the depression and
becomes a wake, behind, that follows the straight translation path of the pressure
distribution along U.

In figure 7, for low speeds (V < 1), we find deformation profiles that are mostly
symmetric, with a main depression aligned with the maximum of the pressure field
and followed by a monotonic relaxation towards a flat horizontal surface. In this
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situation, the liquid-film surface relaxation occurs faster than the displacement of the
pressure field: in real units, the displacement speed v is smaller than the characteristic
speed ρgh3

0κ/3µ at which the film relaxes and thus propagates information at its
surface. As the pressure acts on the surface by creating a moving depression, the
film has enough time to move the dislodged liquid volume isotropically.

Like for the 1D case, an increase of the speed V induces a symmetry-breaking
phenomenon, which above V' 1 consists of a level rising at the front (right-hand side
of the corresponding panels of figure 7) and a wake at the rear (left-hand side). In real
units, the relaxation of the liquid film now occurs with a speed ρgh3

0κ/3µ, which is
smaller than the displacement speed v of the pressure field. In other words, the liquid
volume that is ejected by the applied pressure is not distributed isotropically because
the information at the film surface does not propagate fast enough. This retardation
effect is similar to the Mach and Cerenkov physics (Carusotto & Rousseaux 2013),
where the speed of the object becomes larger than the wave propagation speed in the
considered medium.

For relatively moderate speeds, V ' 1, the protuberance at the front covers a
crescent-shaped region that grows with the size of the pressure field

√
Bo. The

maximum surface level at the front of the pressure field is located at Y = 0, whereas
the maximum of the wake, at each position U < 0, is located at Y ∼ |U|1/2. In
contrast, the local minimum of the wake is always placed at Y = 0. In addition, both
the local maximum and minimum of the wake present a rapid spatial exponential
relaxation. As the speed grows in the range V ∈ [1, 102], the height of the frontal rim
reduces, while the extent of the wake in the rear reaches a larger distance. The local
maximum at the front is still located at Y = 0, while the maximum height of the
wake is now placed at Y ∼ |U|α, where the exponent α evolves from 1/2 at V ∼ 1 to
1/4 at V ∼ 102. In fact, the 1/4 exponent in the high-speed regime indicates the same
dynamics as the capillary levelling of a trench in a viscous thin film with no slip
at the substrate (Baumchen et al. 2013; Benzaquen et al. 2014b). In this regime, the
film seems to overlook the presence of the fast disturbance, perceiving the footprint
left by the latter as a 1D trench which the film tends to refill by capillary levelling.
Therefore, when we compare the transverse profiles at different positions U < 0, we
in fact discern different stages of the 1D levelling of a viscous film.

4.2. Wave resistance

Invoking (2.11) and the fact that in 2D one has `= κ−1, one gets the following 2D
expression of the dimensionless wave resistance:

R= Sext

∫∫
Ψ (U, Y)

∂ζ

∂U
dU dY. (4.4)

Therefore, in combination with (4.2), one obtains

R= S2
extV

4π2

∫∫
Q2(Q2 +K2)Ψ̂ (Q,K)Ψ̂ (−Q,−K)
Q2V2 + (Q2 +K2)2(1+Q2 +K2)2

dK dQ. (4.5)

Considering the polar coordinates (%, ϕ), an axisymmetric pressure field Ψ̂ (%), as
is the case for the Dirac and Lorentzian distributions presented in this study, and
performing an integration over ϕ (see § B.2) yields

R= S2
ext

2πV

∫ ∞
0

[
1− %(%2 + 1)√

V2 + %2(%2 + 1)2

]
[Ψ̂ (%)]2%3 d%. (4.6)
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FIGURE 8. (Colour online) Dimensionless wave resistance R normalized by the square of
the dimensionless load Sext, as a function of reduced speed V , for a 2D Dirac pressure
distribution (see (B 7)), and for a 2D Lorentzian pressure distribution (see (4.3) and (4.6))
with different values of the Bond number Bo as indicated. The vertical dashed lines
indicate the crossover speeds Vs, estimated from (4.12) for different Bo.

For a Lorentzian distribution, a combination of (4.3) and (4.6) leads to the
corresponding wave resistance, the behaviour of which in terms of the reduced
speed V is shown in figure 8, for different values of Bo. The wave resistance for a
Dirac distribution is also represented.

In the asymptotic case where V→ 0, a series expansion of the integrand in (4.6)
(see § B.2 for details) leads to

R= S2
extV
8π
[F(Bo)+O(V2)], (4.7)

where F(Bo) is a function that depends only on the shape of the pressure field,
pointing out the linear dependence of the wave resistance on V , in the low
reduced-speed regime. For a Dirac pressure field Fδ(Bo)= 1, whereas for a Lorentzian
it is described by

FL(Bo)= 8Bo
∫ ∞

0

exp(−w)w
(w2 + 4Bo)2

dw. (4.8)

Both trends are illustrated in figure 9. For the Lorentzian FL(Bo) = 1 at Bo � 1,
the same behavior as for the Dirac pressure distribution, while a series expansion at
Bo→∞ gives

FL(Bo)= 1
2Bo
[1+O(Bo−1)]. (4.9)

Coming back to the Dirac pressure distribution, a series expansion of (4.6) at
V→∞ yields

Rδ =
Γ ( 1

3)Γ (
7
6)

8π3/2
S2

extV
1/3[1+O(V−1)], (4.10)

which indicates that the wave resistance of a 2D Dirac pressure diverges slowly with
increasing V .
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FIGURE 9. (Colour online) Shape function F (see (4.7)) of the 2D pressure field in the
low-speed regime, as a function of the Bond number Bo. Both the Lorentzian (solid,
see (4.8)) and the Dirac (dashed, see text) cases are represented.

For a Lorentzian pressure distribution, a series expansion in the high-speed regime
where V→∞ allows us to reduce the combination of (4.3) and (4.6) to

RL = 3S2
ext

16πVBo2
[1+O(V−2)]. (4.11)

This demonstrates that, for finite-size pressure fields in the high-speed regime where
V → ∞, the wave resistance behaves in the same way as in the 1D case, i.e.
decreasing as 1/V .

For a Dirac distribution, the speed dependence of the wave resistance changes from
R∼ V to R∼ V1/3 at the reduced speed Vs = 5/3, which is obtained by equating the
low- and high-speed asymptotic expressions of Rδ. Similarly, for a finite-size pressure
distribution, the reduced speed Vs, at which the crossover between the two asymptotic
regimes takes place, reads

Vs ∼
√

3
2Bo2F(Bo)

, (4.12)

emerging when we match the low- and high-speed regimes of RL. At small Bond
number Bo, the crossover speed is approximately given by Vs ∼ (Bo

√
2/3)−1, whilst

for large values of Bo, it happens around Vs ∼ (Bo/3)−1/2.

5. Conclusion
In the present work, the effects of a pressure disturbance moving near the free

surface of a viscous thin film have been studied in detail. Depending on the
disturbance–speed regime, the existence of nearly symmetric and non-symmetric
profile shapes has been revealed by means of numerical methods. The nature of the
wakes and bumps observed at the surface, as well as the lifespan of the trail and
its relaxation towards a flat surface in the far field, have been explained through
asymptotic solutions, unveiling their reliance on several dimensionless parameters,
namely the Bond number Bo, the dimensionless load Sext and the dimensionless
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speed of the disturbance V , all of which are related to the geometrical and physical
properties of the liquid film, and the density ρ, the air–liquid surface tension γ , the
dynamic viscosity µ, the film thickness h0 and the pressure distribution through its
total load sext and width a.

In addition, the wave resistance, which one must overcome in order to displace
the disturbance at constant speed, has been analysed. Even though the shape of
the free surface is calculated numerically, the wave resistance can be derived in
different asymptotic speed regimes, by means of analytical expressions for Dirac
delta and Lorentzian pressure distributions. Moreover, a general expression of the
wave resistance for a Dirac delta distribution in the 1D case has been presented.

We believe that the measurement of the wave resistance can be employed to deduce
one of the physical properties of a viscous thin film, such as the above ρ, γ , µ or
h0, when the remaining parameters are known. The working principle of a new fine
rheological probe may be based on this acquired insight. Additionally, in combination
with local quenching, controlling the lifespan of the footprint generated by the moving
perturbation might serve as the technological foundation of a new nano-patterning
technique, which may allow for imprinting nano-channels over polymeric materials.
This idea may provide an alternative to the current nano-lithography techniques
employed to fabricate nano-devices and templates for electronics.
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Appendix A. Details of the one-dimensional case
A.1. Fourier transform

The Fourier transform in the 1D case is given by

f̂ (Q)=
∫ ∞
−∞

f (U) exp(−iUQ) dU,

f (U)= 1
2π

∫ ∞
−∞

f̂ (Q) exp(iUQ) dQ.

 (A 1)

A.2. Wave resistance
Multiplying (2.8) by the surface displacement, and integrating over the whole U
domain gives ∫ (

d3ζ

dU3
− dζ

dU
− Vζ

)
ζ dU = Sext

∫ (
dΨ
dU

)
ζ dU. (A 2)

Some of the terms (the first two on the left-hand side and the one on the right-hand
side) of this equation can be simplified to∫

ζ
d3ζ

dU3
dU =

[
ζ

d2ζ

dU2
− 1

2

(
dζ
dU

)2
]∞
−∞
= 0,∫

ζ
dζ
dU

dU =
[

1
2
(ζ )2

]∞
−∞
= 0,∫

ζ
dΨ
dU

dU = [ζΨ ]∞−∞ −
∫
Ψ

dζ
dU

dU =−
∫
Ψ

dζ
dU

dU,


(A 3)
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FIGURE 10. (Colour online) Real (solid) and imaginary (dashed) parts of the three
dimensionless auxiliary quantities qj as a function of the speed ratio V , as given by (A 6).
Note that, for V 6 1, Re(qj)= 0 for all the values of j; whereas for V > 1, Im(q1) and
Im(q3) overlap.

if one takes into account that, for |U|→∞, the surface has completely recovered its
flat shape, and thus that ζ and all its derivatives are equal to zero in the far field.
Therefore, one finds

Sext

∫
Ψ

dζ
dU

dU = V
∫
ζ 2 dU, (A 4)

where the term on the left-hand side is the definition of the wave resistance given
in (3.10) and the integral on the right-hand side is the spatial energy spectral density.

Injecting the Dirac delta pressure distribution into (3.11) and performing the
integration yields the following expression of the wave resistance:

Rδ = i3
√

3S2
extV

2(q1 + q2)(q1 + q3)(q2 + q3)
, (A 5)

where i=√−1 is the imaginary unit. Here we have introduced the auxiliary quantities
q1, q2 and q3, which are given by (see figure 10)

qj =
(
θ

σj

)1/2

−
(σj

θ

)1/2
,

θ = (1− 2V 2 + 2V
√

V 2 − 1)1/3,

 (A 6)

and where the σj and V have been introduced in (3.6). After some algebra, one is
able to regain (3.15).

From the substitution of a Lorentzian distribution into (3.11) and after integration,
the following expression of the wave resistance is obtained:

RL = S2
extV
2π

3∑
j=−3
j6=0

Qj

1+ 4Q2
j + 3Q4

j

∫ ∞
0

−exp(−w)

w− 2Qj
√

Bo
dw, (A 7)
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where Qj is the jth root of V2 +Q2(Q2 + 1)2, given by

Qj = 1√
3

(
θ

σj
+ σj

θ
− 2
)1/2

, (A 8)

for j= 1, 2, 3, whereas for j= 4, 5, 6 we have Qj =−Qj−3. The σj and θ have been
introduced in (3.6) and (A 6), respectively. The asymptotic behaviours for V→∞ can
also be obtained from (A 7), after making θ→ 1 and some algebra.

A.3. Viscous dissipation
The viscously dissipated power indicates the rate at which the external work is
irreversibly converted into internal energy by viscous forces. For a thin film, the
viscously dissipated power per unit length is expressed as

Φµ =µ
∫ [∫ h

−h0

(
∂υx

∂z

)2

dz

]
dx, (A 9)

where υx is the horizontal component of the velocity within the film. Under the
assumptions of the lubrication theory, the previous expression can be rewritten as

Φµ = 1
µ

∫ {∫ h

−h0

[
(z− h)

∂1p
∂x

]2

dz

}
dx. (A 10)

Integration over the local film thickness and, afterwards, integration by parts yields

Φµ = 1
3µ

∫
(h0 + h)3

(
∂1p
∂x

)2

dx

=
∫
1p

∂

∂x

[
(h0 + h)3

3µ

(
∂1p
∂x

)]
dx, (A 11)

since h and 1p and their derivatives with respect to x are equal to zero at |x|→∞.
Making use of the 2D analogue of (2.1), allows us to find

Φµ =
∫
1p
(
∂h
∂t

)
dx. (A 12)

Now, invoking the dimensionless variables and placing ourselves in the moving
reference frame, one has

Φµ =−vρgh2
0

∫
1P

(
∂ζ

∂U

)
dU. (A 13)

Then, using the dimensionless equivalent of (2.2), one finds

Φµ =−vρgh2
0

∫ (
− ∂

2ζ

∂U2
+ ζ − SextΨ

)
∂ζ

∂U
dU. (A 14)
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Once more, considering that ζ and its first derivative with respect to U are equal
to zero at |U| →∞, the first two terms on the right-hand side of this equation are
reduced to ∫

dζ
dU

d2ζ

dU2
dU =

[
1
2

(
dζ
dU

)2
]∞
−∞
= 0,∫

ζ
dζ
dU

dU =
[

1
2
(ζ )2

]∞
−∞
= 0.

 (A 15)

Finally, using the definition given in (3.10), the viscously dissipated power can be
written in terms of the wave resistance:

Φµ = ρgh2
0

τκ
VR= vr. (A 16)

As already mentioned, the product vr is the power required to displace the surface
profile at constant speed, and it also corresponds to the power dissipated within the
viscous thin film during such a task.

Appendix B. Details of the two-dimensional case
B.1. Fourier transform

The Fourier transform in the 2D case is given by

f̂ (Q,K)=
∫ ∞
−∞

∫ ∞
−∞

f (U, Y) exp(−i[QU +KY]) dY dU,

f (U, Y)= 1
4π2

∫ ∞
−∞

∫ ∞
−∞

f̂ (Q,K) exp(i[QU +KY]) dK dQ.

 (B 1)

B.2. Wave resistance
Starting from (4.5), one considers the polar coordinates (%, ϕ), given by the relations
Q= % cos(ϕ) and K= % sin(ϕ), and multiplies both the numerator and denominator by
i/V , in order to retrieve the following expression:

R= S2
ext

4π2V

∫ ∞
0

∫ 2π

0

%3 cos(ϕ)Ψ̂ (%, ϕ)Ψ̂ (%, ϕ +π)

cos(ϕ)+ i
%

V
(%2 + 1)

dϕ d%. (B 2)

Additionally, if the Fourier transform of the pressure field Ψ̂ under consideration is
axisymmetric, a first integration of the previous equation over ϕ leads directly to (4.6).
In brief, for an axisymmetric pressure field, one should use the following formula:∫ 2π

0

cos(ϕ) dϕ
cos(ϕ)+D

= 2
∫ π

0

cos(ϕ) dϕ
cos(ϕ)+D

= 2

 2D√
1−D2

tanh−1

(D− 1) tan
(ϕ

2

)
√

1−D2

+ ϕ

∣∣∣∣∣∣∣
π

0

, (B 3)
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which, considering that

lim
x→∞
[tanh−1(x)] = iπ

2
, (B 4)

can be rewritten as ∫ 2π

0

cos(ϕ) dϕ
cos(ϕ)+D

= 2π

(
1+ iD√

1−D2

)
, (B 5)

in order to perform the aforementioned integration step. Moreover, a series expansion
of the integrand in (4.6) near V = 0 leads to

R0 = S2
extV
2π

{∫ ∞
0
[Ψ̂ (%)]2 % d%

2(%2 + 1)2
+O(V2)

}
, (B 6)

which can be rewritten in the form of (4.7).
For a Dirac pressure distribution, (4.6) becomes

Rδ = S2
ext

2πV

∫ ∞
0

[
1− %(%2 + 1)√

V2 + %2(%2 + 1)2

]
%3 d%. (B 7)

A series expansion near V = 0 of the integrand yields

Rδ = S2
extV
2π

[∫ ∞
0

% d%
2(%2 + 1)2

+O(V2)

]
, (B 8)

which after integration is equal to

Rδ = S2
extV
8π
[1+O(V2)]. (B 9)

Now, using the change of variables w= %(%2+ 1)/V , and a series expansion of the
integrand at V→∞, the integral in (B 7) can be approximated by∫ ∞

0

[
1− %(%2 + 1)√

V2 + %2(%2 + 1)2

]
%3 = V4/3

3

∫ ∞
0

w1/3

(
1− w√

1+w2

)
+O(V1/3)

= Γ
(

1
3

)
Γ
(

7
6

)
4
√

π
V4/3 +O(V1/3), (B 10)

which allows us to obtain (4.10).
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