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Cutting edge investments: Trading strategies

1 Typical daily trading profiles for executing one unit of daily risk
(left panel)
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The red trajectory corresponds to the bucket-shape trajectory
minimising the trading costs under the model in (2), with ˛ D 0.2 and
�0 D 90 seconds. The blue trajectory is a flat execution rate throughout
the day. The grey trajectory corresponds to a flat rate during two hours
at midday, and the purple trajectory is a linear profile, increasing from
morning to afternoon. The right panel provides the relative cost of each
of the trading trajectories with respect to the optimal one.

Optimal trading of a single stock
Optimal trading schedules under the cost function (1) for a fixed total vol-

ume to execute have been extensively investigated in the finance literature

(Alfonsi & Schied 2013; Busseti & Lillo 2012; Gatheral & Schied 2013;

Gatheral et al 2012; Obizhaeva & Wang 2013). The trajectory of minimum

cost can be written as q.t/ D Q ?.t/, where
R

dt  ?.t/ D 1 and  ?.t/

can be determined by solving a linear integral equation (Gatheral et al

2012). This yields the well-known symmetric bucket-shape solution for

 ?.t/ depicted in figure 1 (red curve). The optimal solution indicates that

after an initial period of faster trading, one should slow down the execu-

tion to limit the extra cost due to the effect of one’s own trades, and then

accelerate the trading again near the market close. Since trading does not

extend beyond that point, strongly affecting the price in this final period

does not penalise any further executions. As an example, the optimal pol-

icy is about 30% less expensive than a localised flat two-hour execution,

and approximately 7% cheaper than the linear trading profile represented

in figure 1.

The temporal shape of the impact kernel precludes price manipulation,

meaning no round-trip trajectory is capable of making money on average

(Alfonsi & Schied 2010; Alfonsi et al 2012; Gatheral 2010).

A quadratic cost model for portfolios
The problem of optimal execution across multiple instruments was first

considered in Schied et al (2010), Kratz & Schöneborn (2014) and

Schöneborn (2016), whereas the cost model defined above has been gen-

eralised to the multivariate case in Alfonsi et al (2016) (see also Schneider

& Lillo (2016) for a nonlinear generalisation). Within that framework, our

definition of risk above is readily extended to a portfolio of multiple stocks

with risk positionsQ D fQi gNiD1 as:

R2 D QT�Q (3)

where the correlation matrix � is constructed from the price covariance

matrix:

˙ D EŒ.pT � p0/.pT � p0/T�

through:

�ij D ˙ ijp
˙ i i˙jj

(4)

The daily volatilities are generalised to:

� D f� i gNiD1 D f.˙ i i /1=2gNiD1

Similarly, (1) can be extended to this setting as:

C D
“ T

0

dt dt 0qT.t/G .t � t 0/q.t 0/ (5)

The interpretation of the matrix elements of:

G .t � t 0/ D fGij .t � t 0/gNijD1

is as before: after trading dqj .t 0/ dollars of risk on the contract j at time

t 0, we expect the price of contract i to change byGij .t � t 0/ dqj .t 0/ units

of its daily dollar volatility � i . The terms with i D j correspond to direct

price impact, which was already described by earlier models where each

stock was independent. In addition, the new terms with i ¤ j describe

cross-impact between stocks, which, as was shown by Benzaquen et al

(2017), is a highly relevant effect, since it explains an important fraction

of the cross-correlation between stocks. We will use this feature below.

Benzaquen et al (2017) have further found that, within a good degree

of approximation, one can write the kernel G .�/ in the factorised form:

G .�/ D ŒGC CG���.�/

with�.�/ given by (2), andG˙ denoting the symmetric and antisymmetric

part of G , respectively. Schneider & Lillo (2016) have shown that when

the antisymmetric part of the propagatorG� is large, then price manipula-

tion is possible, leading to an ill-defined cost of optimal strategies. Since,

empirically, G� is small, we set it to zero, so the cost associated with the

execution of a portfolio of trades reads:

C D 1

2

“ T

0

dt dt 0 .qT.t/GCq.t 0//�.jt � t 0j/ (6)

The condition of symmetry for G is not the only one required in order to

avoid price manipulation. In fact, (6) is free of price manipulation if and

only if GC is positive semidefinite. This amounts to saying that buying

a portfolio always pushes its price up, and vice versa, regardless of its

composition. This results in an impact cost that is always greater than or

equal to zero, independently of the portfolio that is actually traded.

The EigenLiquidity model
In principle, G can be determined using simultaneous trades and quotes

data for the corresponding pool of stocks. However, the empirical impact

matrix G is, in general, extremely noisy, so some cleaning scheme is

necessary. By leveraging the empirical results of Benzaquen et al (2017)

(see figure 7 therein), which show the structure of the impact matrix is

in a suitable statistical sense ‘close’ to that of the correlation matrix, we

assume the impact matrix has the same set of eigenvectors as the correlation

matrix �. Intuitively, the eigenvectors of � correspond to portfolios with
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Trading lightly: cross-impact and optimal
portfolio execution
Iacopo Mastromatteo, Michael Benzaquen, Zoltan Eisler and Jean-Philippe Bouchaud model the liquidation costs of a
basket of correlated instruments by generalising the linear propagator model previously used for single instruments,
obtaining an arbitrage-free cost model. They illustrate their results using a pool of US stocks, showing that neglecting
cross-impact effects leads to an incorrect estimation of liquidity and results in suboptimal execution strategies that are not
correctly synchronised across different stocks

E
xecuting trading decisions in real markets is a difficult business.

Moving around substantial amounts is often foiled by a lack of

liquidity. When orders exceed the small volumes typically avail-

able at the best bid or ask in lit order books, the incurred slippage costs

rapidly become detrimental to the trading strategy. Accurately predicting

these trading costs is a non-trivial exercise, and one must often resort

to statistical models. Most of the complexity of such models arises from

price impact, ie, the fact that trades tend to move market prices in their own

direction. This effect has recently triggered a large amount of theoretical

activity due to its direct relation to supply and demand as well as the abun-

dantly available data on financial transactions. As alluded to above, this

interest is not purely academic, since reliable estimates of trading costs

are crucial to judge whether one should enter into a position and – if the

cost model is accurate enough – attempt to optimise the execution strat-

egy. For example, splitting large orders into a stream of smaller ones over

time is a universally accepted way of mitigating transaction cost. How-

ever, as always, the devil is in the details, and the precise nature and time

scheduling of the orders can make a large difference to the final result.

Optimal execution problems are widespread in the literature, and many

different formulas and techniques have been developed to solve them.

However, most of these problems are restricted to single asset execution.

In Benzaquen et al (2017), we showed that even a simple linear model of

cross-asset price impact leads to a very rich phenomenology, in line with

the results of Wang et al (2015) and Wang & Guhr (2016). In the present

paper, we provide a practical recipe to optimise the execution of a portfolio

of trades, taking into account the cross-impact on the different underlying

products within the multivariate framework of Schied et al (2010). We

will show that proper synchronisation of the legs of the execution sched-

ule is very important. To quantify the slippage incurred by the strategy, we

introduce the EigenLiquidity model (ELM). Ths model is directly related

to statistical risk factors that have been used for portfolio risk management

for several decades. Based on a principal component analysis of the corre-

lation matrix, which provides a practical method to quantify the different

kinds of market risk (long the market, sectorial, etc) one can trade while

staying within a prescribed budget of transaction cost.

A quadratic cost model for a single stock
To set the stage, let us first discuss the execution of a single company’s

stock over a trading day that starts at time t D 0 and lasts until t D T . The

total volume we have to trade is V shares, which is obtained over the day

by a continuous execution schedule with local speed v.t/, normalised as:

Z T

0
v.t/ dt D V

If we were to hold this position, our expected risk, defined as the standard

deviation of the daily profit and loss, would be R D �V , where � D
EŒ.pT �p0/2�1=2 is the daily volatility of the stock, expressed in dollars.

For convenience, let us define the trading speed in risk units as q.t/ WD
�v.t/ and the total risk exchanged over the day as:

Q D
Z T

0
dtq.t/ WD �V

which naturally equals R.

A standard model for estimating the cost incurred when trading a certain

volume was first introduced byAlmgren & Chriss (2001). We will consider

their framework in a setting where the trader is risk neutral and impact is

linear and transient (Alfonsi & Schied 2013; Busseti & Lillo 2012; Gatheral

& Schied 2013; Gatheral et al 2012). This allows one to express the trading

costs as:

C D
“ T

0

dt dt 0 q.t/G.t � t 0/q.t 0/ (1)

where G.�/ is an impact kernel (Bouchaud et al 2004), which quantifies

the effect of a small trade q.t 0/ dt 0 on the price at a later time t D t 0 C � .

G.�/ is typically a decreasing function, dropping from a maximum value

obtained at � D 0 to zero after a slow decay. Consistently with the results

of Bouchaud et al (2004), it can be written as G.�/ D g�.�/, with:

�.�/ D

8<
:
.1C �=�0/

�˛ for � > 0

0 for � < 0
(2)

G.�/ has units of 1=$, and its inverse corresponds to the amount of risk

one would have to trade, in the absence of decay, to move the stock’s price

by its typical daily volatility � .

In spite of some limitations (eg, impact is empirically found to be a

sublinear function of volume), the model above provides a reasonable

estimation of trading costs for large trades, and it is able to capture the main

effects of the trade schedule on costs (Alfonsi & Schied 2013; Gatheral &

Schied 2013; Gatheral et al 2012). Extensions of this model to account for

risk aversion have been considered inAlmgren & Chriss (2001), Obizhaeva

& Wang (2013) and Curato et al (2016), and for bid-ask spread effects in

Obizhaeva & Wang (2013) and Curato et al (2016).
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1 Typical daily trading profiles for executing one unit of daily risk
(left panel)
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The red trajectory corresponds to the bucket-shape trajectory
minimising the trading costs under the model in (2), with ˛ D 0.2 and
�0 D 90 seconds. The blue trajectory is a flat execution rate throughout
the day. The grey trajectory corresponds to a flat rate during two hours
at midday, and the purple trajectory is a linear profile, increasing from
morning to afternoon. The right panel provides the relative cost of each
of the trading trajectories with respect to the optimal one.

Optimal trading of a single stock
Optimal trading schedules under the cost function (1) for a fixed total vol-

ume to execute have been extensively investigated in the finance literature

(Alfonsi & Schied 2013; Busseti & Lillo 2012; Gatheral & Schied 2013;

Gatheral et al 2012; Obizhaeva & Wang 2013). The trajectory of minimum

cost can be written as q.t/ D Q ?.t/, where
R

dt  ?.t/ D 1 and  ?.t/

can be determined by solving a linear integral equation (Gatheral et al

2012). This yields the well-known symmetric bucket-shape solution for

 ?.t/ depicted in figure 1 (red curve). The optimal solution indicates that

after an initial period of faster trading, one should slow down the execu-

tion to limit the extra cost due to the effect of one’s own trades, and then

accelerate the trading again near the market close. Since trading does not

extend beyond that point, strongly affecting the price in this final period

does not penalise any further executions. As an example, the optimal pol-

icy is about 30% less expensive than a localised flat two-hour execution,

and approximately 7% cheaper than the linear trading profile represented

in figure 1.

The temporal shape of the impact kernel precludes price manipulation,

meaning no round-trip trajectory is capable of making money on average

(Alfonsi & Schied 2010; Alfonsi et al 2012; Gatheral 2010).

A quadratic cost model for portfolios
The problem of optimal execution across multiple instruments was first

considered in Schied et al (2010), Kratz & Schöneborn (2014) and

Schöneborn (2016), whereas the cost model defined above has been gen-

eralised to the multivariate case in Alfonsi et al (2016) (see also Schneider

& Lillo (2016) for a nonlinear generalisation). Within that framework, our

definition of risk above is readily extended to a portfolio of multiple stocks

with risk positionsQ D fQi gNiD1 as:

R2 D QT�Q (3)

where the correlation matrix � is constructed from the price covariance

matrix:

˙ D EŒ.pT � p0/.pT � p0/T�

through:

�ij D ˙ ijp
˙ i i˙jj

(4)

The daily volatilities are generalised to:

� D f� i gNiD1 D f.˙ i i /1=2gNiD1

Similarly, (1) can be extended to this setting as:

C D
“ T

0

dt dt 0qT.t/G .t � t 0/q.t 0/ (5)

The interpretation of the matrix elements of:

G .t � t 0/ D fGij .t � t 0/gNijD1

is as before: after trading dqj .t 0/ dollars of risk on the contract j at time

t 0, we expect the price of contract i to change byGij .t � t 0/ dqj .t 0/ units

of its daily dollar volatility � i . The terms with i D j correspond to direct

price impact, which was already described by earlier models where each

stock was independent. In addition, the new terms with i ¤ j describe

cross-impact between stocks, which, as was shown by Benzaquen et al

(2017), is a highly relevant effect, since it explains an important fraction

of the cross-correlation between stocks. We will use this feature below.

Benzaquen et al (2017) have further found that, within a good degree

of approximation, one can write the kernel G .�/ in the factorised form:

G .�/ D ŒGC CG���.�/

with�.�/ given by (2), andG˙ denoting the symmetric and antisymmetric

part of G , respectively. Schneider & Lillo (2016) have shown that when

the antisymmetric part of the propagatorG� is large, then price manipula-

tion is possible, leading to an ill-defined cost of optimal strategies. Since,

empirically, G� is small, we set it to zero, so the cost associated with the

execution of a portfolio of trades reads:

C D 1

2

“ T

0

dt dt 0 .qT.t/GCq.t 0//�.jt � t 0j/ (6)

The condition of symmetry for G is not the only one required in order to

avoid price manipulation. In fact, (6) is free of price manipulation if and

only if GC is positive semidefinite. This amounts to saying that buying

a portfolio always pushes its price up, and vice versa, regardless of its

composition. This results in an impact cost that is always greater than or

equal to zero, independently of the portfolio that is actually traded.

The EigenLiquidity model
In principle, G can be determined using simultaneous trades and quotes

data for the corresponding pool of stocks. However, the empirical impact

matrix G is, in general, extremely noisy, so some cleaning scheme is

necessary. By leveraging the empirical results of Benzaquen et al (2017)

(see figure 7 therein), which show the structure of the impact matrix is

in a suitable statistical sense ‘close’ to that of the correlation matrix, we

assume the impact matrix has the same set of eigenvectors as the correlation

matrix �. Intuitively, the eigenvectors of � correspond to portfolios with
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A. A toy example with two stocks

A simple realistic case is N D 2 stocks and an impact matrix G of
the form:

G D
�
Gdiag Goff

Goff Gdiag

�
(13)

with Gdiag > Goff . Let us also suppose the target volumes to have
the same magnitude:

Q D .Q1;Q2/ D .Q;˙Q/ (14)

After defining  .i/.t/ D qi .t/=Qi , the cost becomes:

C D jQj2
4

�
.Gdiag CGoff/„ ƒ‚ …

Gabs

k .1/ ˙ .2/k2

C .Gdiag �Goff/„ ƒ‚ …
Grel

k .1/ � .2/k2
�

(15)

The interpretation of this result is the following:

� The cost of trading is proportional to the eigenvalues Gabs and
Grel (where abs and rel stand for absolute and relative mode). It is
obviously minimised by choosing  .1/ D  .2/ D  ?, in which case
the cost is jQj2Gabs=relk ?k2.

� When trading directionally (ie, if Q1 D Q2), the minimum cost is
proportional to Gabs, while the neutral strategy Q1 D �Q2 yields a
smaller cost proportional to Grel.

� One could be tempted to locally trade the cheaper relative mode,
but this would construct a long-short position that would have to be
closed at a cost later. It is easy to check that the convexity of the cost
and the terminal requirement prevent this from being optimal.

Which trajectory is cheaper in terms of risk? If we assume the
correlation matrix is given by � D .

1 �
� 1 /, its eigenvalues are equal to

�abs=rel D 1 ˙�.The cost of trading per unit of risk can be written as:

C

R
D k ?k2 jQjGabs=rel

p
2�abs=rel

D k ?k2 jQjgabs=rel
p
�abs=rel

p
2

(16)

where .gabs=rel/�1 is the liquidity in dollars of the absolute and
relative modes, respectively. We can interpret this as follows:
� The cost of trading per unit risk depends trivially on Gabs=rel, but it
has an implicit dependence on the correlation through �abs=rel. The
more correlated the stocks, the more expensive it is to obtain a
target risk.

� The liquidity per mode .gabs=rel/�1 accounts for both effects,
describing how expensive it is to obtain a given target risk by trading
either the symmetric or the antisymmetric mode.

of a stock picked at random in our pool, the other stocks in the pool rise

on average by NG � 0:4 � 10�4 times their daily volatility, where NG is

the average of the off-diagonal elements ofG . Smaller risk modes may be

up to 30 times less liquid. Empirically, the liquidity per mode ga is well

fitted by ga / .�a/�1=2 (see figure 3). This finding is consistent with

the assumption of fragmentation invariance, which implicitly requires the

parameters ga�a ! 0 when �a ! 0 (see box B).

To illustrate the relevance of these findings when executing a portfolio

of trades, let us study numerically a toy daily execution problem of a trader

who has target volumes Q corresponding to a fraction ' D 1%, 5% or

10% of the daily liquidity of each of N D 150 US stocks. We assume the

trader uses the optimal synchronous policy derived above: .t/ D  ?.t/.

To explore a variety of trading styles, we set the sign (� D C for buy,

� D � for sell) of the N orders from N biased coin tosses. We vary the

B. Fitting the EigenLiquidity model

We present a step-by-step procedure for calibrating our cost model
to real data.
(1) Compute the covariance matrix of prices:

˙ D EŒ.pT � p0/.pT � p0/
T� (17)

and extract the volatilities � i .

(2) Standardise prices, their covariances and market volumes:

xi
t D pi

t=�
i (18)

�ij D ˙ ij =.�i�j / (19)

qi
t D � ivi

t (20)

(3) Compute the covariation of prices and volumes:

r.t � t 0/ D EŒ Pxt qT
t 0 � (21)

c.t � t 0/ D EŒqt qT
t 0 � (22)

where Pxt D .xtCdt � xt /=dt .

(4) Compute the derivative of the kernel:

P�.�/ D Œ�.� C d�/� �.�/�=d�

by solving:

Nr.t � t 0/ /
Z t

�1
dt 00 P�.t � t 00/ Nc.t 00 � t 0/ (23)

where:

Nr.�/ D N�1

NX
iD1

rii .�/

and:

Nc.�/ D N�1

NX
iD1

cii .�/=cii .0/:

Get the norm from the condition �.0/ D 1.

(5) Extract independent portfolios f�agN
aD1 from the correlation

matrix � by computing eigenvectors O and eigenvalues �

according to (7).

(6) Project the covariances r.�/ and c.�/ to independent portfolios:

Qra.�/ D .�a/Tr.�/�a (24)

Qca.�/ D .�a/Tc.�/�a (25)

(7) Estimate ga with the maximum-likelihood estimator:

ga D 1

�a

� R 1
0 d� P�.�/Qra.�/’ C1

�1 dt dt 0 P�.t/ P�.t 0/Qca.t � t 0/

�
(26)

bias parameter ˇ D EŒ�i � in the interval Œ�1;C1�. The interpretation of

this construction for ˇ D 0 or ˙1 is very simple:

� forˇ D ˙1, the order is a long or short directional one, and it is strongly

exposed to the market mode of risk;

� for ˇ D 0, the strategy is neutral, and its exposure to the market mode

is therefore limited.

The average cost under such an execution policy can be expressed

analytically, allowing us to obtain a relation between the cost C and ˇ:

EŒC� D '2k ?k2
2

�
.1 � ˇ2/

X
i

Gi i .QiM/
2 C ˇ2QT

MGQM

�
(27)
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uncorrelated returns. Our assumption means that trading one of these port-

folios will only affect (to first approximation) the returns of that portfolio,

and not those of any other orthogonal one. Besides being an empirically

reasonable cleaning scheme for G , our choice is motivated by the results

illustrated in this section, which show that this model leads to a cost func-

tion C satisfying three fundamental consistency requirements: symmetry,

positive semi-definiteness and fragmentation invariance.

More precisely, one can write:

� D O�OT (7)

whereO D fO iagNiaD1 is anN�N orthogonal matrix of eigenvectors and

� D f�aıabgN
abD1 is a diagonal matrix of N non-negative eigenvalues.

Our assumption is that the matrix G has the following structure:

G D O�gOT WD �1=2g.�1=2/T (8)

where g D fgaıabgN
abD1 is a diagonal matrix, and �1=2 D O�1=2.

An important property of this decomposition is that it leads to a frag-

mentation invariant cost formula in the following sense. When trading two

completely correlated products i and j (ie, when �ij D 1), the impact of

a trading trajectory does not depend on how the volume is split between

the two instruments. More formally, a fragmentation invariant cost C is

left unchanged under the transformation:

qi .t/ ! qi .t/C ıq.t/ (9)

qj .t/ ! qj .t/ � ıq.t/ (10)

where ıq.t/ is completely arbitrary. Intuitively, (8) fulfils this property

because of the factor � multiplying g. If instruments i and j are com-

pletely correlated, then the relative mode ‘rel’ is an eigenvector of zero

risk, with�rel D 0. When used for estimating the cost of an execution tra-

jectory q.t/, (8) will single out such relative modes through the projection

OTq.t/, and it will weight them by the corresponding risk �, which is

zero.

The impact model (8) will be called the ELM. It is the most natural

choice among all the models implementing fragmentation invariance. In

fact, it continuously interpolates between small risk modes (which are

expected to be characterised by having a small impact) and large risk

modes (for which impact costs can be substantial).

Empirically, (8) has been shown to hold to a good degree of approx-

imation (see Benzaquen et al 2017). However, the condition of positive

semi-definiteness of G , ie, ga > 0 for all a, is not guaranteed from (8)

and thus should be checked using empirical data. This is what we display

in figure 3. Here, we use real data and confirm that all the ga are actually

strictly positive. The quantity .ga/�1 has the natural interpretation of liq-

uidity per mode. It expresses the amount of daily risk in dollars that one can

trade on the eigen-portfolio a to move its price by its daily volatility
p
�a.

Optimal trading of portfolios
Under the ELM, the impact cost of any schedule q.t/ admits an interpreta-

tion in terms of the modes of the correlation matrix of normalised returns

through the decomposition:

C D 1

2

NX
aD1

gak Qqak2 (11)

where:

k Qqak2 D
“ T

0

dt dt 0 Qqa.t/�.jt � t 0j/ Qqa.t 0/

We also introduce the notation:

Qq.t/ D .�1=2/Tq.t/ (12)

denoting the projection of the executed volumes on a set of uncorrelated,

unit-risk eigen-portfolios ��1=2 D f�agNaD1.

The notion of eigen-portfolios is very useful for intuitively characteris-

ing the cost formula (11). The name comes from the portfolios being uncor-

related and having unit risk (ie, .�a/T��b D ıab), and that trading an

amount of the basket a according to the weights given by�a has no impact

on the total value of the basket b, and vice versa (ie, .�a/TG�b D ıabga).

This is precisely the intuition behind our central assumption (8).

This construction implies the cost C can be calculated by first projecting

the strategy q.t/ on the portfolios �a via (12) and then taking the sum

of an impact cost per mode ga with the weighting factor k Qqak2 given by

such projections.

Equation (11) also shows that the positivity of the matrixg and the kernel

�.�/ makes the optimisation problem convex, which always has a unique

solution. The optimum under the terminal constraint Q D
R T
0 dt q.t/ is

necessarily achieved under a synchronous execution schedule, where at

any given point in time all stocks are traded with the same time profile, ie,

q.t/ D Q ?.t/, resembling the case without cross-impact.

Intuitively, an asynchronous execution strategy can be seen in the mode

space as the optimal one above plus a round trip along some of these modes.

The convexity of the cost function (6) implies that round trips always

increase execution costs, so they should be avoided.1 Hence, synchronicity

is a general consequence of the convexity of the problem, together with

the homogeneity of the decay kernels �.�/ for different instruments.

A toy example to explain the implications of the formalism is given in

box A.

Applications to real data
We have fitted the ELM to a pool of 150 US stocks in 2012, following the

procedure described in detail in box B. In Benzaquen et al (2017), we find

that ˛ � 0:15 and �0 � 90 seconds for the time decay of impact.

A visual representation of the impact matrix is given in figure 2. The

inhomogeneity ofG captures the sectorial structure of the market, encod-

ing the specific dependence of stock i on its sector and/or its most corre-

lated stocks j .

The main difference between our ELM and a model without cross-

impact is the impact costs of a large buy programme can no longer be

reduced as effectively by spreading the orders across multiple correlated

instruments. The impact kernel diffuses the interaction across markets and

sectors through the modes. The transaction cost of trading Q dollars of

risk in the mode �a is equal to gaQ2 dollars. Figure 3 shows the inverse

of the eigenvalues ga; this is about $30 million of risk on the most liquid

mode. Most of the cross-interaction between stocks is captured by this

market mode, which accounts for the fact that when buying a dollar of risk

1 One may compare this with a related discussion by Wang (2017) inves-
tigating the case of round trips on two stocks.
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A. A toy example with two stocks

A simple realistic case is N D 2 stocks and an impact matrix G of
the form:

G D
�
Gdiag Goff

Goff Gdiag

�
(13)

with Gdiag > Goff . Let us also suppose the target volumes to have
the same magnitude:

Q D .Q1;Q2/ D .Q;˙Q/ (14)

After defining  .i/.t/ D qi .t/=Qi , the cost becomes:

C D jQj2
4

�
.Gdiag CGoff/„ ƒ‚ …

Gabs

k .1/ ˙ .2/k2

C .Gdiag �Goff/„ ƒ‚ …
Grel

k .1/ � .2/k2
�

(15)

The interpretation of this result is the following:

� The cost of trading is proportional to the eigenvalues Gabs and
Grel (where abs and rel stand for absolute and relative mode). It is
obviously minimised by choosing  .1/ D  .2/ D  ?, in which case
the cost is jQj2Gabs=relk ?k2.

� When trading directionally (ie, if Q1 D Q2), the minimum cost is
proportional to Gabs, while the neutral strategy Q1 D �Q2 yields a
smaller cost proportional to Grel.

� One could be tempted to locally trade the cheaper relative mode,
but this would construct a long-short position that would have to be
closed at a cost later. It is easy to check that the convexity of the cost
and the terminal requirement prevent this from being optimal.

Which trajectory is cheaper in terms of risk? If we assume the
correlation matrix is given by � D .

1 �
� 1 /, its eigenvalues are equal to

�abs=rel D 1 ˙�.The cost of trading per unit of risk can be written as:

C

R
D k ?k2 jQjGabs=rel

p
2�abs=rel

D k ?k2 jQjgabs=rel
p
�abs=rel

p
2

(16)

where .gabs=rel/�1 is the liquidity in dollars of the absolute and
relative modes, respectively. We can interpret this as follows:
� The cost of trading per unit risk depends trivially on Gabs=rel, but it
has an implicit dependence on the correlation through �abs=rel. The
more correlated the stocks, the more expensive it is to obtain a
target risk.

� The liquidity per mode .gabs=rel/�1 accounts for both effects,
describing how expensive it is to obtain a given target risk by trading
either the symmetric or the antisymmetric mode.

of a stock picked at random in our pool, the other stocks in the pool rise

on average by NG � 0:4 � 10�4 times their daily volatility, where NG is

the average of the off-diagonal elements ofG . Smaller risk modes may be

up to 30 times less liquid. Empirically, the liquidity per mode ga is well

fitted by ga / .�a/�1=2 (see figure 3). This finding is consistent with

the assumption of fragmentation invariance, which implicitly requires the

parameters ga�a ! 0 when �a ! 0 (see box B).

To illustrate the relevance of these findings when executing a portfolio

of trades, let us study numerically a toy daily execution problem of a trader

who has target volumes Q corresponding to a fraction ' D 1%, 5% or

10% of the daily liquidity of each of N D 150 US stocks. We assume the

trader uses the optimal synchronous policy derived above: .t/ D  ?.t/.

To explore a variety of trading styles, we set the sign (� D C for buy,

� D � for sell) of the N orders from N biased coin tosses. We vary the

B. Fitting the EigenLiquidity model

We present a step-by-step procedure for calibrating our cost model
to real data.
(1) Compute the covariance matrix of prices:

˙ D EŒ.pT � p0/.pT � p0/
T� (17)

and extract the volatilities � i .

(2) Standardise prices, their covariances and market volumes:

xi
t D pi

t=�
i (18)

�ij D ˙ ij =.�i�j / (19)

qi
t D � ivi

t (20)

(3) Compute the covariation of prices and volumes:

r.t � t 0/ D EŒ Pxt qT
t 0 � (21)

c.t � t 0/ D EŒqt qT
t 0 � (22)

where Pxt D .xtCdt � xt /=dt .

(4) Compute the derivative of the kernel:

P�.�/ D Œ�.� C d�/� �.�/�=d�

by solving:

Nr.t � t 0/ /
Z t

�1
dt 00 P�.t � t 00/ Nc.t 00 � t 0/ (23)

where:

Nr.�/ D N�1

NX
iD1

rii .�/

and:

Nc.�/ D N�1

NX
iD1

cii .�/=cii .0/:

Get the norm from the condition �.0/ D 1.

(5) Extract independent portfolios f�agN
aD1 from the correlation

matrix � by computing eigenvectors O and eigenvalues �

according to (7).

(6) Project the covariances r.�/ and c.�/ to independent portfolios:

Qra.�/ D .�a/Tr.�/�a (24)

Qca.�/ D .�a/Tc.�/�a (25)

(7) Estimate ga with the maximum-likelihood estimator:

ga D 1

�a

� R 1
0 d� P�.�/Qra.�/’ C1

�1 dt dt 0 P�.t/ P�.t 0/Qca.t � t 0/

�
(26)

bias parameter ˇ D EŒ�i � in the interval Œ�1;C1�. The interpretation of

this construction for ˇ D 0 or ˙1 is very simple:

� forˇ D ˙1, the order is a long or short directional one, and it is strongly

exposed to the market mode of risk;

� for ˇ D 0, the strategy is neutral, and its exposure to the market mode

is therefore limited.

The average cost under such an execution policy can be expressed

analytically, allowing us to obtain a relation between the cost C and ˇ:

EŒC� D '2k ?k2
2

�
.1 � ˇ2/

X
i

Gi i .QiM/
2 C ˇ2QT

MGQM

�
(27)
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2 Propagator G fitted during the year 2012 on a sample of 150
US stocks sorted by industrial sectors
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The market mode (ie, the average across the entries NG) has been
removed in order to highlight the sectorial structure of the market. The
figure clearly shows that after hiding the market mode, which accounts
for the overall positive interaction between buy (sell) trades and positive
(negative) price changes, the other large modes of the propagator
matrix can be interpreted as financial sectors, which are responsible for
the block structure of the matrix G .

where QM denotes average dollar risk exchanged by the market on the

different stocks.

Comparing (27) with the special cases above, one can see the dollar

cost is higher for ˇ D ˙1 than for ˇ D 0 by a factor that can be roughly

estimated on the basis of (27) to be

g1�1=.N�1X
a

ga�a/ � 6:6

This makes sense, as this is the ratio of the top eigenvalue of G , which

expresses the cost of trading the market directionally, versus the average

of all eigenvalues selecting the direct impact contribution in the left term

of (27). Figure 4 shows the full evolution of this ratio as a function of the

bias ˇ.

This result holds for a fixed dollar volume traded, but the risk of the

resulting position is in fact much higher for ˇ D 1 than for ˇ D 0. The

cost of trading per unit risk taken, expressed by EŒC�=
p

EŒR2�, is found

to be approximately independent of ˇ. By generalising (27) to the ratio

EŒC�=
p

EŒR2�, one can relate this finding to the numerical result:

g1.�1/1=2 � 1:1 �
X
a

ga�a
�sX

a

�a

Conclusions
In this paper, we have shown how to leverage the recent quantitative results

of Benzaquen et al (2017) on cross-impact effects in order to estimate the

3 Liquidity per mode .ga/�1, obtained by normalising the cost
of trading the portfolio �a by its corresponding risk (red line)

103
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101

100

1 20 40 60 80 100 120 140
Mode a

1/
g 

a  (M
$)

Only direct impact
ELM
1/g 

a ∝ (Λa )1/2

 

Each eigenvalue ga is interpreted as the cost of trading a dollar of risk
in the portfolio �a, so its inverse gives the liquidity in dollars available
on the mode a. The green line represents the liquidity available �a

under a model in which no cross-interaction is taken into account,
indicating that when neglecting cross-impact one underestimates the
cost of trading high-risk modes (eg, the market) and overestimates the
cost of trading small-risk ones. The dashed line plotted for comparison
indicates the prediction of a model in which ga / .�a/�1/2. While the
liquidity of the large-risk modes (left-hand side of the plot) is relatively
easy to estimate from empirical data, a preliminary cleaning step on the
noisy part of the eigenvalue spectrum is further required in order to
remove the spectrum of the bulk of lower-risk modes on the right-hand
side of the plot (Bun et al 2016).

4 Average trading cost C in basis points for the trading strategy
described in the application, as a function of the bias parameter
ˇ, for different participation rates of ' D 1%, 5% and 10%
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Consistent with (27), one can clearly see that directional trading
strategies are more expensive in terms of notional traded.

execution cost of a basket of correlated instruments. We confirm empir-

ically on a pool of 150 US stocks that cross-impact is a very substantial

part of the impact of trades on prices. We show that neglecting cross-

interactions leads to a distorted vision of the liquidity available on the mar-

ket: it overestimates the liquidity on high-risk modes and underestimates

the liquidity of low-risk modes.
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In order to distil these findings into a cost formula, we have assumed

the impact matrix has the same eigenvectors as the correlation matrix

itself, and the impact eigenvalues are proportional to the risk of the

corresponding modes. This specification prevents arbitrage opportunities

and price manipulation strategies. It also abides by the principle of frag-

mentation invariance, which states that trading zero-risk portfolios should

have no effect whatsoever on trading costs. We have provided the solu-

tion of the corresponding optimal trading problem, which leads to a syn-

chronous U-shaped trading profile across products. This avoids round trips

on unwanted positions at a potentially large cost.

In order to keep our approach as simple as possible, we have neglected

other sources of cost (spread costs, fees) and considered no risk-aversion

effects nor intraday predictive signals. Moreover, we have deliberately

disregarded the nonlinear nature of the price impact function, which

is known to be better represented by a square-root law (Grinold &

REFERENCES

Alfonsi A and A Schied, 2010
Optimal trade execution and
absence of price manipulations
in limit order book models
SIAM Journal on Financial
Mathematics 1(1), pages 490–522

Alfonsi A and A Schied, 2013
Capacitary measures for
completely monotone kernels
via singular control
SIAM Journal on Control and
Optimization 51(2),
pages 1758–1780

Alfonsi A, A Schied and
A Slynko, 2012
Order book resilience, price
manipulation, and the positive
portfolio problem
SIAM Journal on Financial
Mathematics 3(1), pages 511–533

Alfonsi A, F Klöck and
A Schied, 2016
Multivariate transient price
impact and matrix-valued
positive definite functions
Mathematics of Operations
Research 41(3), pages 914–934

Almgren R and N Chriss, 2001
Optimal execution of portfolio
transactions
Journal of Risk 3(2), pages 5–39

Benzaquen M, I Mastromatteo,
Z Eisler and J-P Bouchaud,
2017
Dissecting cross-impact on stock
markets: an empirical analysis
Journal of Statistical Mechanics:
Theory and Experiment 2017,
article 023406

Bouchaud J-P,Y Gefen,
M Potters and M Wyart, 2004
Fluctuations and response in
financial markets: the subtle
nature of ‘random’ price changes
Quantitative Finance 4(2),
pages 176–190

Bun J, J Bouchaud and
M Potters, 2016
Cleaning correlation matrices
Risk April, pages 54–58

Busseti E and F Lillo, 2012
Calibration of optimal execution
of financial transactions in the
presence of transient market
impact
Journal of Statistical Mechanics:
Theory and Experiment 2012(9),
article P09010

Curato G, J Gatheral and
F Lillo, 2016
Optimal execution with
non-linear transient market
impact
Quantitative Finance 17(1),
pages 41–54

Gatheral J, 2010
No-dynamic-arbitrage and
market impact
Quantitative Finance 10(7),
pages 749–759

Gatheral J and A Schied, 2013
Dynamical models of market
impact and algorithms for order
execution
In Handbook on Systemic Risk,
ed. J-P Fouque and JA
Langsam, pages 579–599
Cambridge University Press

Gatheral J, A Schied and
A Slynko, 2012
Transient linear price impact and
fredholm integral equations
Mathematical Finance 22(3),
pages 445–474

Grinold RC and RN Kahn, 2000
Active Portfolio Management
McGraw-Hill, New York

Kratz P and T Schöneborn,
2014
Optimal liquidation in dark pools
Quantitative Finance 14(9),
pages 1519–1539

Obizhaeva AA and J Wang,
2013
Optimal trading strategy and
supply/demand dynamics
Journal of Financial Markets
16(1), pages 1–32

Schied A,T Schöneborn and
M Tehranchi
Optimal basket liquidation for
cara investors is deterministic
Applied Mathematical Finance
17(6), pages 471–489

Schneider M and F Lillo
Cross-impact and
no-dynamic-arbitrage
Working Paper, arXiv:1612.07742

Schöneborn T, 2016
Adaptive basket liquidation
Finance and Stochastics 20(2),
pages 455–493

Tóth B,Y Lempérière,
C Deremble, J De Lataillade,
J Kockelkoren and
J-P Bouchaud, 2011
Anomalous price impact and the
critical nature of liquidity in
financial markets
Physical Review X 1(2),
article 021006

Wang S, 2017
Trading strategies for stock pairs
regarding to the cross-impact
cost
Working Paper, arXiv:1701.03098

Wang S and T Guhr, 2016
Microscopic understanding of
cross-responses between
stocks: a two-component price
impact model
SSRN Working Paper, available at
https://ssrn.com/abstract=2892266

Wang S, R Schäfer and T Guhr,
2015
Price response in correlated
financial markets: empirical
results
Working Paper, arXiv:1510.03205
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could be progressively reintroduced into our framework by preserving

the idea of an interaction that is diagonal in the space of correlation

modes. Indeed, we believe our simpler approach is better suited to trans-

parently illustrating the main effects of cross-impact between financial

instruments. �
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In order to distil these findings into a cost formula, we have assumed

the impact matrix has the same eigenvectors as the correlation matrix

itself, and the impact eigenvalues are proportional to the risk of the

corresponding modes. This specification prevents arbitrage opportunities

and price manipulation strategies. It also abides by the principle of frag-

mentation invariance, which states that trading zero-risk portfolios should

have no effect whatsoever on trading costs. We have provided the solu-

tion of the corresponding optimal trading problem, which leads to a syn-

chronous U-shaped trading profile across products. This avoids round trips

on unwanted positions at a potentially large cost.

In order to keep our approach as simple as possible, we have neglected

other sources of cost (spread costs, fees) and considered no risk-aversion

effects nor intraday predictive signals. Moreover, we have deliberately

disregarded the nonlinear nature of the price impact function, which

is known to be better represented by a square-root law (Grinold &
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