
Cross impact in derivative markets

Mehdi Tomas1,2,3, Iacopo Mastromatteo3,4, and Michael Benzaquen1,3,4

1LadHyX UMR CNRS 7646, Ecole Polytechnique, 91128 Palaiseau Cedex, France
2CMAP UMR CNRS 7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France

3Chair of Econophysics & Complex Systems, Ecole Polytechnique, 91128 Palaiseau Cedex, France
4Capital Fund Management, 23-25, Rue de l’Université 75007 Paris, France

February 4, 2021

Abstract

We introduce a linear cross-impact framework in a setting in which the price of some given financial instruments
(derivatives) is a deterministic function of one or more, possibly tradeable, stochastic factors (underlying). We show that a
particular cross-impact model, the multivariate Kyle model, prevents arbitrage and aggregates (potentially non-stationary)
traded order flows on derivatives into (roughly stationary) liquidity pools aggregating order flows traded on both derivatives
and underlying. Using E-Mini futures and options along with VIX futures, we provide empirical evidence that the price
formation process from order flows on derivatives is driven by cross-impact and confirm that the simple Kyle cross-impact
model is successful at capturing parsimoniously such empirical phenomenology. Our framework may be used in practice
for estimating execution costs, in particular hedging costs.
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1 Introduction

Understanding the relation that connects trade imbalances and price changes is arguably one of the main goals of market
microstructure theory. By leveraging a data deluge that increased both quantity and quality of financial data over the past
20 years, many empirical results have shed light on market impact (see e.g. [2, 4, 17]). Further, it lead to an adjustment of
the theoretical framework underpinning the foundations of market microstructure [7, 9], and it drove a more data-driven
community to build novel settings in which to accommodate these findings (see e.g. [4, 15]). On the other hand, only
sparse attention has been given in the literature to the related problem of establishing a relation between order flows
and price changes in a multi-instrument setting (cross-impact). Compared to its univariate counterpart, cross-impact is
much harder to characterize empirically, due to the larger number of degrees of freedom involved, and the consequently
smaller signal-to-noise ratio [8, 12, 14, 19]. The challenge of cross-impact modeling also raises from genuinely new effects
that only appear in the multivariate setting, such as the possible presence of cross-sectional arbitrages. Accounting for
these problems requires building some dedicated theoretical infrastructure [1, 11], and it led us to investigate in [16] the
principles by which a cross-impact model should abide in order to be free from basic inconsistencies and arbitrages.

This works aims precisely at illustrating the consequences of such a principled approach in a limit case that exposes
both the flaws of inconsistently formulated models and the benefits of having strong theoretical guarantees on the behavior
of a cross-impact model. In fact, we focus our study on cross-impact in a universe of instruments that comprises potentially
illiquid derivatives. This is the prototypical case in which a univariate approach to modeling impact and liquidity falls
short, due to two main reasons respectively related to prices and liquidity. Indeed, in an efficient market the prices of
derivatives should be locked by non-arbitrage, and hence they are not expected to respond to trades independently of their
underlying. Regarding liquidity, it is intuitive that in presence of many strongly correlated and individually illiquid financial
instruments (e.g. options), it is necessary to aggregate the liquidity of multiple products into common liquidity pools in
order to have a satisfactory description of the price response, which would otherwise appear anomalously strong. Both
points indicate that in order to have a viable model to describe impact on derivative markets in presence of fragmented
liquidity it is unavoidable to take a multivariate perspective on the system, namely one that is able to single out the relevant
liquidity factors.

Our approach allows to map this problem onto a dimensionality reduction one, showing that one can replace a high
dimensional space of instruments (say, option surfaces) with a lower dimensional representation of underlying factors
(spot, implied volatility), which are the only degrees of freedom allowed to respond to order flow imbalances.

It is worth emphasizing at this point that, although other models for cross-impact of derivatives (in particular for
options) have already appeared in the literature, our focus is different in several respects. A first stream of works aims at
the characterization of non-arbitrage properties in cross-impact models [1], aiming at defining necessary conditions that
should be satisfied in the general case. Here, we study a specific instance of such class of models, which leads to a very
rich phenomenology that cannot be fully appreciated in a completely generic setting. A second series of works focuses
on the implications that some specific cross-impact models have in the context of option replication and hedging [3, 10],
due to the fact that in presence of cross-impact non-linear effects arise, and potentially dangerous feedback loops emerge.
Finally, in [18] the emphasis is given to the empirical determination of cross-impact; one of its findings of interest to us is
the identification of impact along a non-trivial underlying factor (level of implied volatility) that does not mechanically
correspond to any individual option, and yet emerges from the aggregation of the whole volatility surface. An important
contribution that pushes this approach even further is [13], which indicates that other factors (skew of the volatility surface)
are also necessary to accurately describe cross-impact on options. Even though the last two references strongly relate
to our work, there are several differences that characterize our approach. First, we try to infer from data the rules to be
used to aggregate liquidities, rather than postulating them. Second, our approach can easily accommodate multi-factor
cross-impact models, whereas in such references only one factor at the time was considered. Third and last, the theoretical
foundations our our approach are strongly grounded in the classical market microstructure literature [5, 12], and in
particular in [6], which provides a solid micro-foundation of our model (see also [16]).

The paper is organized as follows. In Section 2 we introduce the notations used. Section 3 presents our modeling
framework. Section 4 provides illustrative examples of its applications. Section 5 presents the empirical results of cross-
impact on options. In Section 6 we conclude on the contributions of the paper, open questions, and directions for future
work.
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2 Notations

Throughout the paper, we write scalars in roman lower cases, vectors in bold lower cases and matrices in roman upper
cases. The set of n by n real-valued square matrices is denoted by Mn(R), the set of orthogonal matrices by O (n), the set of
real non-singular n by n matrices by GLn(R), the set of real n by n symmetric positive semi-definite matrices by S +

n (R),
and the set of real n by n symmetric positive definite matrices by S ++

n (R). Further, given a matrix A in Mn(R), A> denotes
its transpose. Given A in S +

n (R), we write A1/2 for a matrix such that A1/2(A1/2)> = A and
p

A for the matrix square root,
the unique positive semi-definite symmetric matrix such that (

p
A)2 = A. We write ker(M) for the null space of a matrix

M ∈Mn ,ΠV for the projector on a linear subspace of V ∈Rn and Π̄V = I−ΠV for the orthogonal projector. Finally, given a
vector v ∈Rn , we write v = (v1, . . . , vn) and diag(v ) for the diagonal matrix with diagonal components the components of v .

All stochastic processes in the text are defined on a probability space (Ω,F , (Ft )t∈R ,P) and will be adapted to the
filtration (Ft )t∈R unless stated otherwise. Standard Brownian motions are defined with respect to the probability measureP.
All stochastic differential equations introduced will be assumed to have a unique strong solution and correspondingly the
functions appearing in these equations will be assumed to be sufficiently regular for this to be true. We denote by E the
expectation with respect to the probability measure P and Et [. . . ] will denote the conditional expectation E[. . . |Ft ].

3 The model

We consider a universe comprising two classes of financial instruments, that we will refer to as underlying and derivatives.
With some abuse of language, the notion of underlying will apply to a set of N stochastic processes, that might describe indis-
tinctly a set of tradable financial instruments or an ensemble of stochastic factors. The prices of these N instruments will be
denoted pt = (p1

t , . . . , pN
t ). We define as derivatives a set of M instruments, whose prices P (pt , t ) = (P 1(pt , t ), . . . ,P M (pt , t ))

are deterministic functions of the underlying price process pt .

We assume that impact is linear in the traded order flows and we denote by qt = (q1
t , . . . , q N

t ) the stochastic process cor-
responding to the net traded order flows on the underlying and by Qt = (Q1

t , . . . ,QM
t ) the stochastic process corresponding

to the net traded order flows on derivatives. Such flows are not associated to any specific agent, and rather denote aggregate
market order flow. Since only the non-predictable component of order flows contributes to impact, up to replacing qt by
qt −Et−[qt ] and Qt by Qt −Et−[Qt ] in the following, we assume that Et−[qt ] = 0,Et−[Qt ] = 0.

Section 3.1 introduces the underlying and derivative price dynamics with cross-impact. Section 3.2 presents the
proposed cross-impact model and Section 3.3 discusses the properties of this cross-impact model.

3.1 Price dynamics

We assume that the dynamics of the underlying are

dpt =µp (pt , t )dt +Gp (pt , t )dwt +Λpq (pt , t )dqt +ΛpQ (pt , t )dQt , (1)

where w is a standard N -dimensional Brownian motion, µp : RN ×R → RN is the drift, Gp : RN ×R → GLN (R) is the
diffusion matrix,Λpq : RN ×R→MN ,N (R) is the underlying-underlying cross-impact matrix andΛpQ : RN ×R→MN ,M (R)
is the underlying-derivative cross-impact matrix. The underlying dynamics of Equation (1) could be enriched by jump
processes, but for the sake of simplicity we chose a simple continuous framework which covers several well-known models
of derivatives pricing.

Since derivative prices are deterministic functions of the underlying, without loss of generality, the derivative dynamics
can be written as

dPt =µP (pt , t )dt +GP (pt , t )dwt +ΛP q (pt , t )dqt +ΛPQ (pt , t )dQt , (2)

where µP : RN ×R→RM is the derivative drift, GP : RN ×R→MM ,N (R) is the derivative diffusion matrix,ΛP q : RN ×R→
MM ,N (R) is the derivative-underlying cross-impact matrix and ΛPQ : RN ×R → MN ,M (R) is the derivative-derivative
cross-impact matrix.

For convenience cross-impact matrices can be compactly rearranged into a single matrix,Λ, which we refer to as the
cross-impact matrix since it describes the cross-impact of the complete system

Λ(pt , t ) :=
(
Λpq ΛpQ

ΛP q ΛPQ

)
(pt , t ) . (3)
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Similarly drift and diffusion terms can be grouped as

µ(pt , t ) = (µp (pt , t ),µP (pt , t )) G (pt , t ) = (Gp (pt , t ),GP (pt , t )) . (4)

Obviously, not all the terms appearing in Equations (3) and (4) are independent, given that the function P (pt , t) fixes
the derivative prices as a function of the underlying. In Sec. 3.3.1 we will discuss the conditions required to prevent arbitrage.

We also draw the reader’s attention to the fact that one may directly obtain an equation for the derivatives’ prices by
applying Ito’s formula and using the underlying dynamics of Equation (1). This would yield expressions forΛP q andΛPQ as
a function ofΛpq andΛpQ . However, not all cross-impact models give expressions ofΛP q andΛPQ consistent with Ito’s
formula and it is thus more convenient to choose a cross-impact model which, by construction, yields this result instead of
imposing it a priori. Our choice of cross-impact model is discussed in the next section.

3.2 Impact model

The impact model we propose involves two parameters, the return covariance matrix and the order flow covariance matrix.
The underlying-underlying return covariance matrix Σpp : RN ×R→S +

N (R) is defined as

Σpp (pt , t )dt := Et [dpt dp>
t ]−Et [dpt ]Et [dp>

t ] , (5)

and we similarly denote ΣpP ,ΣP p =Σ>
pP ,ΣPP for the underlying-derivative, derivative-underlying and derivative-derivative

return covariance matrices. Naturally, since derivative prices are deterministic function of the underlying, these matrices
are all related to Σpp . We denote byΩqq : RN ×R→S +

N (R) the underlying-underlying order flow covariance matrix

Ωqq (pt , t )dt := Et [dqt dq>
t ]−Et [dqt ]Et [dq>

t ] , (6)

and we denoteΩqQ ,ΩQq =Ω>
qQ andΩQQ for the underlying-derivative, derivative-underlying and derivative-derivative

order flow covariances. Contrary to return covariance matrices, there are no constraints betweeen these order flow
covariance matrices and Ωqq . The covariance structure of returns and flows for the whole system can be arranged
compactly as

Σ(pt , t ) =
(
Σpp ΣpP

Σ>
pP ΣPP

)
(pt , t ) Ω(pt , t ) =

(
Ωqq ΩqQ

Ω>
qQ ΩQQ

)
(pt , t ) .

The impact model that we propose, first derived in [5], has been analyzed in this context in [6, 16], where it was referred as
the Kyle cross-impact model. The model prescribes using aΛ of the form

Λ=
p

Y Λkyle(Σ,Ω) :=
p

Y (Ω−1/2)>
√

(Ω1/2)>ΣΩ1/2Ω−1/2 , (7)

where we have omitted the dependence on (pt , t) for convenience, and where we have introduced Λkyle : S +
N+M (R)×

S ++
N+M (R) → MN+M ,N+M (R). We introduced 0 < Y < 1 whose interpretation will appear clearly in the next section. The

next section emphasizes the properties that motivate the usage of the Kyle cross-impact model.

3.3 Properties

The Kyle cross-impact model (i) ensures derivatives are priced consistently with the underlying dynamics, (ii) reduces the
dynamics of the system to a classic SDE when flow degrees of freedom are integrated inside volatility terms, (iii) allows for
dimensionality reduction, (iv) properly aggregates liquid and illiquid instruments and (v) does not need to know which
instruments belong to the set of underlyings and which ones are derivatives. We show these properties below and discuss
their implications.

3.3.1 Price efficiency

In order for the model to be self-consistent (i.e., for the derivative to be efficiently priced at all times), one should make sure
that the dynamics that we have postulated in Equation (2) are consistent with the one obtained by applying Ito’s formula to
the dynamics of the underlying via the relation P (pt , t ) . This requirement prescribes that the following conditions should
hold.
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Diffusion In order for the diffusion dynamics to be consistent, one should have

GP (pt , t ) =Ξ(pt , t )Gp (pt , t ) , (8)

where Ξ : RN ×R→MM ,N (R) is a sensitivity matrix defined as

Ξi j (pt , t ) = ∂Pi

∂p j
(pt , t ) .

Impact By the same token, the cross-impact matrix should satisfy the condition

Λ(pt , t ) =
(
Λpq ΛpQ

ΞΛpq ΞΛpQ

)
(pt , t ) , (9)

indicating that the price response of the derivative should be completely fixed by the one on the underlying.

Drift Finally, the drift term should also match the one obtained via Ito’s formula, so that

µP (pt , t ) =Θ(pt , t )+Ξ(pt , t )µp (pt , t )+ 1

2

∑
j k
χ j k (pt , t )(Σpp (pt , t )) j k , (10)

where

Θi (pt , t ) = ∂Pi

∂t
(pt , t )

χi , j k (pt , t ) = ∂Pi

∂p j∂pk
(pt , t ) ,

are sensitivities, of nature similar to Ξ defined above.

We will assume in the following that the conditions for drift and diffusion hold by construction, taking Equations (8)
and (10) as definitions of respectively GP and µP . On the other hand, since Equation (9) is not guaranteed a priori under
our choice of the cross-impact model, we will be required to prove that our model satisfies Equation (9) above, and thus
that our construction is consistent.

In order to do so, we need to discuss a crucial property of the Kyle model, that is referred in [16] as strong fragmentation
invariance. With strong fragmenation invariance, we denote the fact that for any ;⊂V ⊆ ker(Σ) we have

ΠVΛkyle(Σ,Ω) = 0 (11)

Λkyle(Σ,Ω)ΠV = 0 (12)

Λkyle(Σ,Π̄VΩΠ̄V ) =Λkyle(Σ,Ω) . (13)

Equation (11) shows that linear combinations of instruments with constant price (zero volatility) are not impacted by the
order flow. In our setting, this guarantees that derivatives are always priced efficiently even in the presence of order flow
pressure. Equation (12) maintains that order flow pressure on non-fluctuating modes should not be able to influence
the price of any other combination of products. This prevents pushing the price of fluctuating instruments by trading
zero-volatility (free) linear combination of instruments. Finally, Equation (13) shows that the way non-fluctuating modes
are traded has no influence the price of any instrument.

In our context, strong fragmentation invariance and symmetry imply that

Λ(pt , t ) =
(
Λpq ΛpqΞ

>
ΞΛpq ΞΛpqΞ

>
)

(pt , t ) . (14)

Thus the Kyle model satisfies the condition of Equation (9) above, thus guaranteeing that (along with the conditions of
Equations (8) and (10) which we impose and are independent of the impact model) the derivative is efficiently priced.

At this moment, it is worth emphasizing a central point of our approach: we are postulating that derivatives are
efficiently priced at all times despite the presence of finite liquidity. This hides the implicit assumption that some market
actors are able to arbitrage away the spread between underlying and derivatives very quickly, and that those market
directions are effectively frictionless for such actors. Inefficiencies can be implemented in this framework by relaxing the
assumption that Pt = P (pt , t ), rather assuming that derivative prices mean-revert with a finite velocity to their theoretical
value. On long enough time scales, we expect the empirical estimate for Σ to nevertheless be close to the value given by
no-arbitrage so that these considerations can be ignored. For pedagogical clarity, hereafter we will stick to the idealized
case in which derivatives are efficiently priced.
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3.3.2 Consistency of frictionless and impacted dynamics

We now want to show that the dynamics with impact are consistent with the frictionless dynamics that would be observed
when disregarding the flows degrees of freedom. The term frictionless in this context does not indicate absence of impact,
but rather identifies the effective system in which the degrees of freedom related to flows (qt and Qt ) are integrated inside
volatility contributions.

To prove this, we first remark that the Kyle model is the only linear, symmetric positive definite impact model that is
consistent with the covariance structure of the system (see [16]), namely the fact that

Y Σ(pt , t ) =Λ(pt , t )Ω(pt , t )Λ>(pt , t ) . (15)

This property is not surprising, given ubiquity of the inconspicous equilibrium property in theoretical frameworks in
which market efficiency is achieved by rational agents that attempt to forecast future returns [5, 6]. In these frameworks,
predictions are optimal when Equation (15) is verified. The prefactor Y expresses that a fraction Y of the total covariance is
due to trading activity while the remainder comes from shocks unrelated to the order flow.

Now, let us relate a frictionless dynamics to the one that we have postulated in our model thanks to the covariance
consistency condition (Equation (15)). To do so, consider the dynamics without impact

dp̃t =µ̃p (p̃t , t )dt + G̃p (p̃t , t )dw̃t (16)

dP̃t =µ̃P (p̃t , t )dt + G̃P (p̃t , t )dw̃t (17)

where w̃ is a standard Brownian motion, µ̃p : RN ×R→ RN is the frictionless underlying drift, µ̃P : RN ×R→ RM is the
frictionless derivative drift, G̃p : RN ×R→ GLN (R) and G̃P : RN ×R→MM ,N (R) are the frictionless diffusion matrices. Then
it is simple to verify that thanks to Equation (15) one can recover the equivalence between frictionless and impacted
dynamics if G =p

1−Y G̃ and µ= µ̃. In intuitive terms, our price dynamics reduces to the vanilla stochastic evolution of
derivatives and underlying for any observer that does not possess information about the order flows. This stems from the
Gaussian nature of both order flow processes and underlying increments, along with the covariance consistency condition
(Equation (15)) that is implicitly contained in the definition of the Kyle model.

3.3.3 Dimensionality reduction

The strong fragmentation property introduced in Sec. 3.3.1 has another important implication in our setting: by imposing
the structure of the impact matrix to the form of Equation (14), it explicitly shows that rank(Λ) = rank(Λpq ) = N . This has
the consequence of making explicit that no more than N distinct liquidity pools are necessary in order to compute impact.
In particular, we will show that it is enough to estimate Π̄VΩΠ̄V instead of the (potential) rank N +M matrixΩ in order to
fully determine the cross-impact matrix, where with V we denote the subspace spanning the direction Pt −P (pt , t ), which
obviously belongs to ker(Σ) if we assume that derivatives are consistently priced. In intuitive terms, it is only the liquidity
in the direction of the fluctuating degrees of freedom that contributes to the overall liquidity pool, whereas any trading in
the direction of the mispricing has no effect on the system.

To show this, remark that Equation (14) allows us to express the full cross-impact matrixΛ once an expression for the
lower-rank Λpq object is available. We will thus derive the expression of Λpq . Writing p̂ and P̂ for the underlying and
derivative impact component of the price, one has dP̂t =Ξdp̂t and(

dp̂t

dP̂t

)
=

(
I 0
Ξ I

)(
dp̂t

0

)
=

(
I 0
Ξ I

)(
Λpq 0

0 0

)(
I Ξ>
0 I

)(
dqt

dQt

)
,

so that the impacted underlying price is

dp̂t =Λpq (dqt +Ξ>dQt ) .

SinceΛ is symmetric and positive-definite, one can easily show thatΛpq is symmetric and positive-definite. Furthermore,
Λpq is covariance-consistent and

Y Σpp =ΛpqΩΞΛ
>
pq ,

where we have introduced the aggregated order flow covariance matrix

ΩΞ := Et [(dqt +Ξ>dQt )(dqt +Ξ>dQt )>] =Ωqq +Ξ>ΩQQΞ+Ξ>ΩQq +ΩqQΞ .
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Therefore, since these properties imply thatΛpq is the Kyle cross-impact model with return covariance Σpp and order flow
covarianceΩΞ one has

Λpq =
p

Y Λkyle(Σpp ,ΩΞ) =
p

Y (Ω−1/2
Ξ )>

√
(Ω1/2
Ξ

)>ΣppΩ
1/2
Ξ
Ω−1/2
Ξ .

This property is very useful in practice since it gives a recipe for computingΛpq . It also tells us that the aggregated order
flow covariance matrix combines direct trading of underlying and indirect trading through derivatives exposures to the
underlying. In particular, even if an underlying is not tradeable, as long as derivatives which are exposed to that factor are
tradeable its aggregated liquidity will be non-zero.

3.3.4 Cross-stability and spurious liquidity effects

The Kyle-model is also cross-stable (see [16]), meaning that trading an illiquid combination of products cannot move liquid
products by a disproportionate amount. To make this property explicit, let us introduce a subset of illiquid instruments W ,
on which we assume to measure a modified covariance matrix

Ωε := (Π̄W +εΠW )Ω(Π̄W +εΠW ) ,

where ΠW = I− Π̄W is a projector on the space W . The covariance matrix above is the one we would have observed if
liquidities of instruments belonging to W were multiplied by ε. Then, for any (Σ,Ω) ∈ (S +

n (R)×S ++
n (R)), the Kyle model

satisfies

Π̄WΛkyle(Σ,Ωε)ΠW =
ε→0

O(1) (18)

Π̄WΛkyle (Σ,Ωε)Π̄W →
ε→0
Π̄WΛkyle

(
Π̄WΣΠ̄W ,Π̄WΩΠ̄W

)
Π̄W . (19)

Equation (18) indicates that volumes traded on illiquid products cannot move by a disproportionate (diverging in ε) the
price of liquid instruments, whereas Equation (19) indicates that the impact of the flows of liquid instruments is not
affected by the presence of other, illiquid, instruments.

These properties allow one to include non-tradeable instruments (such as implied volatilities) within the definition of
the underlying because even though the quantitiesΩ−1/2 appearing in Equation (7) are divergent whenever an illiquid
product appears, this property implies that the divergence is restricted to the subspace of zero-liquidity products. This is
convenient also for cases in which liquidity is fragmented in a large set of products that might display weak liquidity (e.g.,
out-of-the money options) as this property guarantees that such behavior won’t induce spurious features on the overall
liquidity pool of the system.

3.3.5 Universality

Throughout our approach, we have split instruments between underlyings and derivatives. However, a compelling property
of the chosen cross-impact model is that Equation (7) does not need to know which is which in the universe of instruments.
This may be convenient when dealing with a large number of instruments where it would be time-consuming to make
explicit which instruments are derivatives and the associated sensitivity matrix Ξ.

4 Examples

To illustrate the flexibility of our setup and the usefulness in practice of the properties of the Kyle cross-impact model, we
discuss examples in increasing complexity below.

4.1 Futures

For our first example, we consider a universe of N = M = 1 instruments, consisting in a spot with price pt and a futures con-
tract expiring at a later time T , quoting a price P (pt , t ). By assuming a constant, continuously compounded, deterministic
interest rate r one has

P (pt , t ) = er (T−t )pt .

In this case Ξ(pt , t ) = ∂p P (pt , t ) = er (T−t ) and Equation (14) yields

Λ(pt , t ) =
p

Y pt
σ(pt , t )

ω(pt , t )

(
1 er (T−t )

er (T−t ) e2r (T−t )

)
,
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where

σ2(pt , t ) := Et [p2
t ]−Et [pt ]2

p2
t

ω2(pt , t ) := (1,er (T−t ))>Ω(pt , t )(1,er (T−t )) .

The meaning of this formula is rather simple: when dealing with a spot and a future market, there is a single relevant
liquidity pool. Such liquidity pool should mix the flow traded on the future and the one traded on the spot. Volumes traded
on the futures market should be properly adjusted for the interest rate.

4.2 Black-Scholes model

We now consider a system with a single underlying N = 1 and M derivatives. The underlying is a spot with price pt , whereas
the derivatives are a set of European call or put options labeled by i = 1, . . . , M , differing for either their strike or their
maturity. We assume the price pt follows the usual log-normal dynamics, with risk-free rate r and implied volatility σ

dpt = r pt dt +σpt dwt .

Then, with the usual notation for the Black-Scholes ∆, we have

Ξi (pt , t ) = ∂p P i (pt , t ) :=∆i
t (pt , t ) ,

and, writing∆ := (∂p P 1(pt , t ), · · · ,∂p P M (pt , t )), Equation (14) yields

Λ(pt , t ) =
p

Y pt
σ

ω(pt , t )

(
1 ∆>
∆ ∆∆>

)
(pt , t ) ,

where
ω2(pt , t ) = (1,∆(pt , t ))>Ω(pt , t )(1,∆(pt , t )) .

Thus, as in the previous example, there is a single liquidity pool, with volumes traded on options adjusted for the options’
∆. Volume traded on deep in-the-money options (∆i ≈ 1) contribute to the overall liquidity pool as if it was the spot itself
that was traded, whereas deeply out-of-the-money options (∆i ≈ 0) give negligible contributions.

4.3 Volatility factors

Building on our previous example, we want to focus on the same class of instruments (one spot and a strip of M European
options) in the case in which it is necessary to add an implied volatility term to the Black-Scholes formula to obtain their
price. One is required to use a pricing formula P i (pt , σ̂i

t , t ) in order to accurately describe the price of the options, where
σ̂i

t is an implied volatility.

In order to reduce the dimensionality of the M implied volatilities σ̂i
t , we assume that they lie on a low dimensional

surface, so that we are allowed to write
σ̂i

t = F i (ςt ) ,

where ςt = (ς1
t , . . . ,ςQ

t ) is a set of volatility factors that completely describe the volatility surface through a set of M functions
(F i (ς))M

i=1. Note that with some abuse of notation, we will often write

P i (pt , F̂ i (ςt ), t ) = P i (pt ,ςt , t ) ,

and we will employ a similar notation for other functions of the implied volatility σ̂i
t . We then have an underlying

consisting of N = 1+Q instrument, of which only one is tradeable (the spot), and where the other Q factors correspond to
non-tradeable volatility factors. The sensitivities of the system in this case correspond to

Ξi 1
t (pt ,ςt , t ) =∆i

t (pt ,ςt , t ) := ∂P i (pt ,ςt , t )

∂pt

Ξ
i (q+1)
t (pt , σ̂i

t , t ) = ∂P i (pt , σ̂i
t , t )

∂σ̂i
t

∂F i (ςt )

∂ςq := V i
t (pt ,ςt , t )βi q (pt ,ςt , t ) =:Υi q ,

8



where q = 1, . . . ,Q and where, as it is customary in the literature on option pricing, we have introduced the vega

V i
t (pt , σ̂i

t , t ) = ∂P i
t (pt , σ̂i

t , t )

∂σ̂i
t

,

and the sensitivities of the volatility surface to ςt

βi q (pt ,ςt , t ) = ∂F i (ςt )

∂ςq .

For convenience, we write the sensitivity matrix in block

Ξ= (
∆ |Ξ·1 | · · · |Ξ·Q)=:

(
∆ |Υ)

.

At this point, the most general expression for the cross-impact matrix that we can write is

Λ(pt ,ςt , t ) =
 Λpp Λpς Λpp∆

>+ΛpςΥ
>

Λ>
pς Λςς ΛςςΥ

>+Λ>
pς∆

>

∆Λpp +ΥΛ>
pς ΥΛςς+∆Λpς ∆Λpp∆

>+ΥΛςςΥ>+∆ΛpςΥ
>+ (∆ΛpςΥ

>)>

 .

Single-factor model It is instructive to understand the behavior of the system in the case in which Q = 1, and the volatility
surface is parametrized by a single level factor:

σ̂i
t (ςt ) = F (ςt ) = ςt ,

so that one has
Ξi 1(pt ,ςt , t ) = V i

t (pt ,ςt , t ) .

In this case the rank two cross-impact matrix can be written as

Λ(pt ,ςt , t ) =
 Λpp Λpς Λpp∆

>+ΛpςV>
Λpς Λςς ΛςςV>+Λpς∆

>
∆Λpp +VΛpς VΛςς+∆Λpς Λpp∆∆

>+ΛςςVV>+Λpς(∆V>+V>∆)

 .

In the case where the ∆ order flow and V order flow are not correlated, i.e. writing ∆c := (1,0, ∂P 1

∂p , · · · , ∂P M

∂p ), Vc :=
(0,1, ∂P 1

∂ς1 , · · · , ∂P M

∂ς1 ) we have ∆>
c ΩVc = 0, we can obtain the expression of the kyle cross-impact matrix for the underly-

ing: (
Λpp Λpς

Λpς Λςς

)
(pt ,ςt , t ) = 1√

σ2ω2
∆
+ξ2ω2

V
+2σξρω∆ωV

(
σ2 + ωV

ω∆
σξ

√
1−ρ2 σξρ

σξρ ξ2 + ω∆
ωV
σξ

√
1−ρ2

)
(pt ,ςt , t ) , (20)

whereω2
∆ :=∆>

c Ω∆c is the delta-aggregated liquidity,ω2
V

:=V>
c ΩVc is the vega-aggregated liquidity, σ2(pt ,ςt , t ) := Et [p2

t ]−
Et [pt ]2 is the spot volatility, ξ2(pt ,ςt , t ) := Et [ς2

t ]−Et [ςt ]2 is the volatility of volatility and ρ is the spot-vol correlation.

5 Empirical Results

We now illustrate Section 3 with an empirical analysis of cross-impact on derivatives markets. Section 5.1 describes the
universe of instruments and the chosen derivative modeling. Section 5.2 shows the empirical observables Σpp andΩΞ used
in Section 5.3 to compute the resulting cross-impact matrix Λpp . Finally, Section 5.4 stress-tests the fit of cross-impact
models and Section 5.5 examines non-parametric evidence of cross-impact.

5.1 Setup

The universe of instruments is made up of (i) the front-month E-mini future, (ii) the two front-month VIX futures, (iii) a set
of M −2 call and put options on the E-mini. We thus have M derivatives. We model the implied volatility surface with Q
volatility factors, as discussed in Section 4.3. We aggregate returns and order flows on a time window of five minutes, so that
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dpt is approximated by the price change on the timeframe of five minutes and (dqt ,dQt ) is approximated by the signed
traded order flow during this time window. To avoid confusion, we write δpt , δqt and δQt for these empirical quantities in
the rest of this section. Prices and order flows for these instruments are taken from trades and quotes data and more detail
on the dataset is provided in Appendix A.

We consider a linear approximation of the implied volatility surface with volatility factors, so that using the notations
of Section 4.3, we have F i (ς) = ∑Q

q=1β
i qςq where i = 1, . . . , M . To fit surfaces, we choose M = 3 and describe volatility

factors in Figure 1. The first factor is a classic implied volatility level factor and we make the rough approximation that
VIX futures are solely explained by such level factor. The second factor corresponds to the skew of the implied volatility
surface, referred to as the skew factor hereafter. The third factor explains the term structure of the implied volatility, hence
the name the term factor in the following.
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Figure 1: Effect of the different volatility factors on the implied volatility surface.
Starting from a historical implied volatility σ̂i , we show the modified implied volatility surface after with a small contribution from the
factor q : σ̂i +εβi q . The original (non-modified) implied volatility surface is shown in light opacity for reference.

5.2 Relevant observables

Using Section 3.3.3, it suffices to compute the Kyle model associated to the underlying return covariance matrix Σpp (pt , t )
and the aggregated order flow covariance matrixΩΞ(pt , t ) to obtain the full cross-impact matrix. As we have approximated
the behaviour of the system with 4 underlyings, these observables are 4 by 4 matrices. To estimate them, we make the
additional assumption that Σpp and ΩΞ are stationary and independent of pt . Figure 2 displays the underlying return
correlation matrix %pp := diag(σ)−1Σpp diag(σ)−1 and the risk order flow covariance matrix Ωrisk

Ξ := diag(σ)ΩΞdiag(σ)
where σ= ((Σ11

pp )1/2, · · · , (ΣN N
pp )1/2) is the underlying volatility.

The traded risk (volatility times liquidity) is concentrated on the spot and level directions. This justifies approximating
cross-impact on options using solely spot and level underlyings, which we delve in more detail in Section 5.3. The traded
risk in the skew direction is much smaller than all other directions and skew order flow is thus expected to contribute less
to cross-impact. The underlying return correlation matrix correlation matrix shows strong negative correlation between
the spot and level mode. This is a well-known stylised fact, sometimes referred to as the "leverage effect". This will play
an important role in the form of the cross-impact model, as highlighted in Equation (24). Unsurprisingly, the correlation
between spot and level order flow is much smaller, although still noticeable (around -0.15%).

5.3 Cross-impact models

We can now use the empirical estimates of Σpp andΩΞ from the previous section to compute the cross-impact matrixΛ.
For comparison purposes, we also introduce other cross-impact models. The first cross-impact model used for comparison
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spot level skew term

spot

level

skew

term

1.00 -0.88 -0.26 0.72

-0.88 1.00 0.31 -0.91

-0.26 0.31 1.00 -0.27

0.72 -0.91 -0.27 1.00

pp

spot level skew term

129.02 -4.85 0.19 -1.95

-4.85 12.98 -0.23 4.33

0.19 -0.23 0.02 -0.08

-1.95 4.33 -0.08 1.49

Figure 2: Empirical estimates of return correlation matrix % and order flow covarianceΩ.
The return correlation matrix % (left) and the order flow covariance matrixΩ (right) estimates on our dataset. The order flow is reported
in thousands of dollars of risk.

is the Black-Scholes cross-impact model introduced in Section 4.2 which has a single underlying: the spot. It is defined as

Λbs(pt , t ) := σ√
∆>

c Ω∆c

∆c∆
>
c . (21)

The Black-Scholes model coincides with the Kyle cross-impact model if all the liquidity is concentrated on the spot. In
particular, this model is unable to account for changes in the volatility factors. We thus introduce the two-dimensional
direct modelΛdirect-2d which accounts for the spot and implied volatility factor but ignores cross-sectional effects, defined
as

Λdirect-2d(pt , t ) := σ√
∆>

c Ω∆c

∆c∆
>
c + ξ√

V>
c ΩVc

VcV>
c . (22)

To account for all underlyings without correcting for cross-sectional effects, we introduce the four-dimensional direct
model

Λdirect-4d(pt , t ) := σ√
∆>

c Ω∆c

∆c∆
>
c + ξ√

V>
c ΩVc

VcV>
c +

Q+1∑
i=3

√√√√Σi i
pp

Ωi i
Ξ

Ξ·i (pt , t )(Ξ·i (pt , t ))> . (23)

Direct models ignore the off-diagonal structure of Σpp andΩΞ. In particular they do not account for the leverage effect,
which is an essential characteristic of the underlying return covariance matrix Σpp . To fix this, we introduce the two-
dimensional Kyle cross-impact model Λ2d which captures the two dominating underlyings of the system: the spot and
level factor. Since Figure 2 shows that the delta and vega order flow correlation is small (around −0.15%) and ξωV ¿σω∆,
we can use Equation (20) to obtain the approximation

Λ2d(pt ,ςt , t ) ≈ σ√
∆>

c Ω∆c

∆c∆
>
c + ξ

√
1−ρ2√

V>
c ΩVc

VcV>
c + ξρ√

∆>
c Ω∆c

(Vc∆
>
c +∆cV>

c ). (24)

The two-dimensional Kyle cross-impact model predicts that when trading options, one pushes the price in the amount of
notional V traded divided by the typical V liquidity, which is compatible with findings from the meta-order study [18]. The
prefactor

√
1−ρ2 ≈ 0.4 is close to the empirical value of 0.33−0.4 reported in [18]. Further, because of the leverage effect,

trading delta-hedged portfolio impacts the spot price.

The full, four-dimensional Kyle cross-impact modelΛ4d is shown in Figure 3. Compared to the two-dimensional Kyle
cross-impact model, it decouples the contribution of options on the level mode depending on the direction. This increases
the explanatory power of the model, as shall be evidenced in Table 1.

5.4 Explanatory power of cross-impact models

For practical applications, a good cross-impact model should explain realized price changes from order flows. Thus to
compare the models previously introduced, we now examine their explanatory power on empirical data. Given a realization
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spot level skew term

spot

level

skew

term

0.04 -0.03 -0.01 0.03

-0.03 0.27 0.06 -0.57

-0.01 0.06 3.33 0.03

0.03 -0.57 0.03 1.53

4d

Figure 3: Four dimensional Kyle cross-impact model on options.
We report the four dimensional Kyle model estimated using empirical estimates of the covariances of Figure 2. The cross-impact matrix
are reported in units of risk and in basis points so thatΛi j encodes by how many basis points of volatility Asset i is pushed by trading
one dollar of risk on Asset j .

of the underlying price process (δpt )1≤t≤T of length T , a corresponding series of predictions (δ̂p t )1≤t≤T and a symmetric
positive semi-definite matrix M , we introduce the generalized R2(M) error as

R2(M) := 1−
∑

1≤t≤T (δpt − δ̂p t )>M(δpt − δ̂p t )∑
1≤t≤T δp>

t Mδpt
.

The matrix M is used to examine a model’s predictive power for different portfolios. As the underlyings of our system are
natural directions to consider, we report the R2(M) in Table 1 forΠ(1,0,0,0) =:Πspot,Π(0,1,0,0) =:Πlevel,Π(0,0,1,0) =:Πskew and
Π(0,0,0,1) =:Πterm.

Model Scores

R2(Πspot) R2(Πlevel) R2(Πskew) R2(Πterm)

Λbs 0.18±0.01 −0.00±0.02 −0.00±0.01 −0.00±0.02
Λdirect-2d 0.18±0.01 −0.03±0.02 −0.01±0.01 0.00±0.02
Λdirect-4d 0.18±0.01 −0.03±0.02 −0.14±0.02 −0.26±0.02
Λ2d 0.20±0.01 0.12±0.01 −0.01±0.01 0.01±0.02
Λ4d 0.20±0.01 0.14±0.01 −0.12±0.02 0.04±0.01

Table 1: Scores of different cross-impact models.
All scores were computed in-sample using the same data used for the calibration of the cross-impact models.

Looking at R2(Πspot), we see that all models show similar scores on the spot, with cross-impact models being slightly
better. Furthermore, there is no difference betweenΛ2d andΛ4d. This is consistent with the liquidity reported in Figure 6.
Indeed, most of the liquidity is placed on the spot and the order flow traded on other factors is small in comparison.
Models which only take into account the spot thus capture most of the order flow explanatory power. There is also a
small advantage in using order flow on the level mode sinceΛ2d andΛ4d score better, but using term and skew order flow
provides no improvement.

While using solely spot liquidity to explain spot returns is a good approximation, R2(Πlevel) shows the same is not true
for the level underlying. Indeed, only models with spot-level cross-impact are able to account for returns of the implied
volatility level. Therefore, to explain price changes on the level underlying we need to use order flow traded on the spot.
This is natural as most of the traded order flow is on the spot but there is a high negative correlation between spot and level
underlying (see Figure 6). Unfortunately, all models fail to explain skew returns. We suspect this comes from the low signal
to noise ratio and low liquidity (in risk terms) of the skew underlying (see Figure 6).

On all metrics,Λ4d performs at least as well asΛ2d, which shows that the model is able to combine additional factors
without suffering from noise. The additional underlying also help weigh trades appropriately on the implied volatility
surface, which improves the R2(Πlevel) score.

Finally, we report the expected realized return conditional on the prediction ofΛ4d in Figure 4. This shows that, skew
aside,Λ4d provides a good fit for the realized returns of the different underlying as Et [δpt | δp̂t ] ≈ δpt .
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Figure 4: Predictions of the four-dimensional Kyle model on the main directions of the system.
We report the expected price change conditional on the predicted price change of the four-dimensional Kyle model for the four main
directions of the system: in red for the spot, blue for the level, green for the skew and purple for the term structure. Predicted price
changes and conditional averages are both normalized by the standard deviation of price changes along the given direction.

5.5 Evidence of cross-impact on options

Section 5.4 showed that only cross-impact models are able to explain returns for the level and term underlying. Aside from
this explanatory power, this section tests their ability to explain other features of our data. To do so, we introduce the cross
aggregate impact metric. The cross aggregate impact induced from the portfolio u ∈RN+M on the return of the portfolio
v ∈RN+M is

Aggu,v (x) := Et [v>(δpt ,δPt ) | u>(δqt ,δQt ) = x] .

If returns are given by a linear cross-impact modelΨ and if we further assume (δqt ,δQt ) is a zero-mean Gaussian, then

Aggu,v (x) = Et [v>Ψ(δqt ,δQt ) | u>(δqt ,δQt )] := AggΨu,v (x) = aΨx ,

where the slope aΨ depends on the cross-impact model Ψ and on the order flow covariance. Even in the absence of
cross-impact, the presence of order flow correlations between two portfolios u and v may lead to a non-zero cross aggregate
impact. Thus, to test whether there is cross-impact, we compare the empirically measured Aggu,v to the prediction AggΨu,v
for different cross-impact modelsΨ. We differentiate models between those which have no off-diagonal contributions
(Λbs,Λdirect-4d,Λdirect-2d) and thus ignore cross-impact and those that take it into account (Λ2d,Λ4d).

We report Aggu,v in Figure 4 for different portfolios u, v described in Table 2. Diagonal plots show aggregate direct
impact. As expected, buying the E-Mini increases, on average, the price of the E-Mini as shown by the u, v = spot plot (first
row, first column). We see from the u, v = level plot (second row, second column) that buying options and VIX futures
increases, on average, the implied volatility. Furthermore, buying options and VIX futures decreases, on average, the E-Mini
price as shown by the u = level, v = spot plot (first row, second column). This same plot, among others of Figure 4, shows
that direct models provide a poor fit for cross aggregate impact. This suggests that the cross aggregate impact can only be
explained by using a cross-impact model with off-diagonal elements, such asΛ4d. Further, the fit is noticeably better for
Λ4d thanΛ2d which highlights the importance of taking into account the skew and term factors.

6 Conclusion

Let us summarize what we have achieved. Our main objective was to examine cross-impact when some instruments,
derivatives, are deterministic functions of others, underlying. This posed modeling challenges on two fronts. First,
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Name Components

spot VIX0 VIX1 options

spot (1, 0, 0, 0, · · · ,0)
level (0, β11, β21, β31, · · · ,βM1)
skew (0, β12, β22, β32, · · · ,βM2)
term (0, β13, β23, β33, · · · ,βM3)

Table 2: Description of different directions used in this section.
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Figure 5: Normalized cross aggregate impact curves.
We report the cross aggregate cross impact curves for the spot, level, skew and term structure directions. Aggregate traded volumes are
normalized by the typical deviations ω2

u := Et [(u>(δqt ,δQt ))2] and portfolio returns by the typical deviations σ2
v := Et [(v>(δpt ,δPt ))2].

Estimated cross aggregate impact Aggu,v is reported along with predicted cross aggregate impact AggΨu,v for different choices of linear
cross-impact modelsΨ.

derivative prices with impact must be locked-in by no-arbitrage. Second, the liquidity of derivative instruments may be
very small and heavily non-stationary.

Leveraging the results of [16], we introduced the Kyle cross-impact model on derivatives. We showed in Section 3.3 that
this model (i) prevents arbitrage, (ii) provides impact dynamics which can be factored to recover frictionless dynamics, (iii)
aggregates traded order flow to a few liquidity pools, (iv) is well-behaved even if some instruments are highly illiquid, and
(v) can be applied without specifying which instruments are derivatives. The Kyle cross-impact model is thus theoretically
satisfying and practical for applications. This justifies its use compared to other cross-impact models (see [16] for examples
of other models).

To stress-test our framework on empirical data, we used the front-month E-Mini future, E-Mini vanilla options and VIX
futures. Despite our simplistic approach to model implied volatility dynamics, we showed (see Figure 5 and Table 1) that
the Kyle model better explains returns than models which ignored cross-impact, and that the Kyle model can be improved
by more precise modeling of the implied volatility surface. This points at the effectiveness of the proposed framework to
aggregate liquidity and suggests more sophisticated implied volatility modeling may further improve results. Aside from
explanatory power, cross-impact models are consistent with some empirical observations noted in [13, 18]. We provided
evidence of cross-impact in derivative markets by studying price responses conditional on traded order flow and showing
models which ignore cross-impact are unable to provide an adequate fit (see Figure 5).

On both theoretical and empirical grounds, the simple static, linear framework presented here thus accounts for
important properties of impact on derivative markets. The methodology is flexible and can be readily adapted to handle
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complex price dynamics and exotic derivatives. The cross-impact estimates may be used in practice for estimating
execution costs, in particular hedging costs.

While this work provides a first proof of concept which captures many features of cross-impact on derivatives, it fails
to capture the auto-correlations of order flows. A multi-period cross-impact model, apart from providing more accurate
descriptions of cross-impact, would yield insight into the cross-impact of meta-orders, another topic left unexplored
to this date and particularly difficult to measure on options. We leave this extension to future work since it raises new
challenges. For example, multi-period, cross-sectional arbitrages yield new constraints for the chosen cross-impact model.
Furthermore, to remain tractable, such models need to find the proper way to aggregate traded order flow in liquidity pools.
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A Data

This section gives motivation about our choice of instruments, details on the data and methodology which were omitted in
the main text for conciseness.
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Figure 6: Distribution of liquidity among VIX futures and options.

Choice of instruments To stress-test our approach, we sought an actively traded derivative market with many derivatives.
Thus we considered E-mini vanilla options and their underlying (both quoted on the CME), the front-month futures
contract. However, a large fraction of the traded risk in derivatives comes from VIX futures (quoted on the CBOE) as shown
in Figure 6. The VIX index is computed using options with maturities between 23 and 37 days and is meant to track the
level of the implied volatility for options expiring in one month. Thus, because of their liquidity and close relationship with
the implied volatility of options, order flow traded on VIX futures play an important role and should not be ignored.

Filtering instruments Given the very large number of options quoted on the market, we kept options within a given
range of strikes and maturities to limit the size of the data set.

Resolution and time frame Our dataset contains the trades and quotes of all previously selected products, at the five
minute time scale, from January 2019 to September 2019. This time frame was chosen because of the large level of noise on
derivatives’ prices and the size of the data set which encumbered analysis. In a given five minute bin, signed trades were
aggregated on their volumes, so that we have the opening and closing prices of instruments along with the aggregated
signed traded order flow. We considered hours where both options and their underlying are liquid, further removing 30
minutes around opening and closing for stationarity purposes. Doing so, data ranges between 3PM and 8:30PM UTC.

Implied volatility and greeks We now explain how implied volatility and Greeks were computed. For a given day and
for a particular option, we have access to the opening bid and ask prices of that option for each five minute window.
Furthermore, the bid and ask Black-Scholes implied volatilities are computed using the bid and ask price of the option and
the price of the E-mini future contract with closest maturity. Correspondingly, the usual Black-Scholes Greeks ∆ and V are
computed for both the bid and ask sides. In our analysis, we use the mid of bid and ask quantities (option prices, implied
volatilities and greeks) to perform computations.
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