Mathématiques - Travaux Dirigés de Soutien

TD3: Calcul des résidus et intégration

On admettra tout au long du sujet la convergence des intégrales proposées.

I Séries de Laurent et résidus

- 1. Déterminer les singularités puis les résidus respectifs des fonctions $z \mapsto z, z \mapsto \frac{1}{z}, z \mapsto \frac{1}{z^2}$ et $z \mapsto \frac{\sin z}{z^2}$.
- **2.** De même pour les fonctions $z\mapsto \frac{1}{1+z^2}, z\mapsto \frac{1}{z(z-2)^3}, z\mapsto \frac{e^{iz}}{(z^2+1)^2}$ et $z\mapsto \frac{e^{1/z}}{1-z}$.

II Calcul d'intégrales réelles

- 3. Evaluer l'intégrale $\mathcal{I} = \int_{-\infty}^{+\infty} e^{-x^2} \cos(ax) \, dx$. On pourra à cet effet chercher à évaluer l'intégrale de la fonction $z \mapsto e^{-z^2}$ sur le contour rectangle [-R, R, R + ia/2, -R + ia/2].
- **4.** Evaluer l'intégrale $\mathcal{I} = \int_{-\infty}^{+\infty} \frac{(1+x)\sin 2x}{x^2 2x + 2} \, \mathrm{d}x.$
- 5. Evaluer l'intégrale $\mathcal{I} = \int_0^{2\pi} \frac{\cos 2\theta}{a^2 + b^2 2ab\cos \theta} \, \mathrm{d}\theta$ avec b > a > 0.
- **6.** Evaluer l'intégrale $\mathcal{I} = \int_0^{+\infty} \frac{1}{(a^2 + x^2)^4} dx$ avec $a \in \mathbb{R}$.
- 7. Evaluer l'intégrale $\mathcal{I} = \int_0^{+\infty} \frac{1}{x^6 + 1} \, \mathrm{d}x.$
- **8.** Evaluer l'intégrale $\mathcal{I} = \int_{-\infty}^{+\infty} \frac{\cos(\pi x/2)}{x^2 1} dx$.
- 9. Evaluer les intégrales de Fresnel $\mathcal{I} = \int_0^{+\infty} \cos x^2 dx$ et $\mathcal{J} = \int_0^{+\infty} \sin x^2 dx$.

III Fonctions multivaluées

- 10. Montrer que les fonctions $z \mapsto \sqrt{z}$ et $z \mapsto \log z$ sont multivaluées.
- 11. En précisant le choix de la coupure, évaluer l'intégrale $\mathcal{I} = \int_0^{+\infty} \frac{1}{(x+a)^3 \sqrt{x}} dx$ avec a > 0.
- 12. En précisant le choix de la coupure, évaluer l'intégrale $\mathcal{I} = \int_0^{+\infty} \frac{\log x}{1+x^3} \, \mathrm{d}x$.