Tutorat de Mathématiques
Tutorat 1: Equation des films minces

On s’intéresse aux propriétés d’une équation aux dérivées partielles décrivant la relaxation des films minces

purement visqueux.
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Figure 1: Schéma

Dans le cadre de approximation de lubrification, I’évolution spatiotemporelle de I’épaisseur h(r,t) d’un film
liquide mince posé sur un substrat plan (voir Fig. 1) est régie par I’équation ci-dessous:

8th+%V~(h3VAh) = 0, (1)

ou «y désigne la tension de surface liquide-air, 7 la viscosité dynamique du liquide et A = V2 Popérateur laplacien
scalaire. Afin d’obtenir cette équation, les effets liés & la gravité ainsi que les effets inertiels ont été négligés, les
conditions aux limites ont été choisies de non-glissement au substrat et de non-contrainte a la surface libre, et
enfin les pentes de la surface ont été supposées faibles a tout instant.

I Recherche bibliographique

1. Effectuer une recherche bibliographique précise et bien documentée sur 1’équation des films minces (thin
film equation). Cela veut dire présenter un petit nombre d’ouvrages, articles et articles de revue judicieusement
choisis et résumer leur contenu en quelques mots.

IT Equation des films minces

2. A l'aide de la bibliographie, donner une démonstration rigoureuse de I’équation des films minces.

Afin de simplifier les calculs, on choisit de limiter I’étude & une dimension. Le probleme est alors supposé
invariant suivant la direction y, de sorte que h(r,t) = h(z,t).

3. Montrer que I’équation (1) devient:
Y 3
ath+—(hh) = 0, (2)
31
ou “’ 7 signifie la dérivée spatiale.
4. Adimensioner I’équation (2) et absorber les facteurs numériques. On notera hg I’épaisseur du film & ’équilibre.

5. Montrer qu’en linéarisant ’équation obtenue autour de 1’équilibre on obtient une équation de la forme:
aHC+" = 0, (3)

ou ( est le déplacement adimensionné de la surface libre par rapport & ’équilibre. Commenter.

III Conditions aux limites et unicité des solutions

On considére maintenant le probléeme aux limites que constitue I’équation (3) avec:

((z,t=0) = f(x) reR avec /dxf(x)<oo (4)
mggloo C(x,t) = 0 pour tout ¢ . (5)

6. Comment appelle-t’on ce type de conditions aux limites ?

7. Démontrer 'unicité des solutions de ce probleme.

Mathématiques - Tutorat en 2éme année - ESPCI ParisTech PSL Research Univ. - michael.benzaquen@espci.fr



IV Solution générale
8. Discuter brievement de Iexistence de solutions de 1’équation (3).
9. Montrer que la fonction de Green de I'opérateur linéaire décrivant 1’équation (3) s’écrit:

6o.t) = G [arerens, (6)

oll © désigne la fonction d’Heaviside.

10. Donner sous la forme d’un produit de convolution la solution au probléme posé en partie III.

V Solutions auto-similaires

11. Donner quelques examples de problemes physique admettant des solutions autosimilaires!.

On cherche maintenant des solutions autosimilaires de I"équation (3) de la forme ((x,t) = t* f(u) avec u = zt”.
12. Déterminer les valeurs de « et 8. Commenter.

13. Donner ’équation différentielle ordinaire vérifiée par f(u). La résoudre & ’aide d’un logiciel de calcul formel,
puis représenter la solution.

14. En posant le changement de variable u = 2t?, ¢ = kt~?, montrer que la fonction de Green peut s’écrire
sous la forme G(z,t) = t#O(t)¢(u) ont ¢(u) est une fonction & determiner.

VI Solution asymptotique intermédiaire et universalité

15. Dans le cas ou [dz f(z) = Mg # 0, montrer que (t°Mq)~!((z,t) converge uniformément? par rapport a
la variable t vers ¢(u).

16. Discuter des termes solution asymptotique intermédiaire et universalité a la lumiere de la réponse a la
question précédente.

17. Représenter a l'aide d’un logiciel de calcul formel 1’évolution d’une condition initiale f(z) de votre choix,
ainsi que la convergence de la solution correctement normalisée vers la solution intermédiaire asymptotique en
variable w.

VII Un peu de physique

18. Discuter de I'analogie que existe entre cette étude de ’équation des films minces et I’étude de 1’explosion
atomique par G. I. Taylor. On pourra a cet effet s’aider de I'introduction de 'ouvrage de Barenblatt fournie en
annexe. Citer d’autres examples.

19. Montrer en utilisant I’équation (2) que l’énergie initialement disponible sous forme d’énergie de surface est
intégralement dissipée sous forme visqueuse pendant la relaxation. Discuter de la validité du résultat obtenu a
la question 15. pour les solutions 1’équation (2).

20. Question bonus Démontrer que pour tout © € R on a:

1 y 1_(5 13 ut u? (3 53] ut
— —teire = S (2) omy|ds, 2t () g |42, 2
27r/dqe ¢ 7 (4) 0 2[{2’4}’256} 8 (4) 0 2[{4’2}’256} ’ Q

ou la fonction hypergeometric de classe (0,2) est définie par:

off2 ({a,b},w) = Zmﬂ» (8)

k>0

et ou () est la notation dite de Pochhammer signifiant la factorielle croissante.

1 Autosimilaire = qui conserve sa forme par une transformation simple des variables d’espace et de temps.

20n rappelle qu’une fonction de deux variable g(z,y) converge uniformément par rapport & la variable y vers la limite I(x) si et
seulement si limy 00 ||g(z,y) — U(2)]|co,z = 0, ol |...||co, = sup{|...|, z € R}.



xiv Preface .

similarity, in only slightly modified form. However, the central part of this
book is entirely new: in particular  have replaced some complicated and difficult
basic examples with simpler ones.

I want to express my thanks to Cambridge University Press (Dr D. Tranah
and Dr A. Harvey). In fact, the very idea that I should write such an ‘intermedi-
ate’ book matching my inaugural lecture (Barenblatt 1994) and the large book
(Barenblatt 1996) belongs with these gentlemen.

I want to express my gratitude to Professor V.M. Prostokishin, who attended
all my lectures and gave me important advice both about the lectures and the
present book. I am grateful to Professor L.C. Evans and Professor M. Brenner for
reading the manuscript and for valuable comments. 1 want to thank Professors
S. Kamin, R. Dal Passo, M. Bertsch, N. Goldenfeld, D.D. Joseph, L.A. Peletier,
G.I. Sivashinsky and J.L. Vazquez for the stimulating and friendly exchange
of thoughts concerning the subjects presented in this book over many years. I
thank Mrs Deborah Craig for processing the manuscript.

To my friend Alexandre Chorin I want to express special thanks for our
remarkable time in Berkeley. I have learned from him a lot, in particular his
basic paradigm of computational science: this is a different, independent and
very productive way of mathematical modelling. I hope to be able to use this

knowledge in my future work.

Introduction

The term scaling describes a seemingly very simple situation: the existence of
a power-law relationship between certain variables y and x,

y = Ax®%, 0.1

where A, « are constants. Such relations often appear in the mathematical mod-
elling of various phenomena, not only in physics but also in biology, economics,
and engineering. However, scaling laws are not merely some particularly sim-
ple cases of more general relations. They are of special and exceptional im-
portance; scaling never appears by accident. Scaling laws always reveal an
important property of the phenomenon under consideration: its self-similarity.
The word ‘self-similar’ means that a phenomenon reproduces itself on different
time and/or space scales — I will explain this later in detail.

I begin with one of the most illuminating examples of the discovery of scaling
laws and self-similar phenomena; G.1. Taylor’s analysis of the basic interme-
diate stage of a nuclear explosion. At this stage a very intense shock wave
propagates in the atmosphere and the gas motion inside the shock wave can be
considered as adiabatic.

This work started in one of the worst and most alarming days of the
Battle of Britain, in the early autumn of 1940. Cambridge professor Geoffrey
Ingram Taylor was invited to a business lunch at the Athenaeum by Professor
George Thomson, chairman of the recently appointed MAUD committee (the
name ‘MAUD’ originally appeared by chance, but later it was interpreted as the
acronym for ‘military application of uranium detonation’). G.1. Taylor was told
that it might be possible to produce a bomb in which a very large amount of en-
ergy would be released by nuclear fission — the name ‘atomic bomb’ had not yet
been used. The question was: what mechanical effect might be expected if such
an explosion were to occur? The answer would be of crucial importance for the
further development of events. Shortly before this conversation the confidential
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Figure 0.1. A very intense shock wave propagating in quiescent air.
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Figure 0.2. Photograph of the fireball of the atomic explosion in New Mexico at
t = 15 ms, confirming in general the spherical symmetry of the gas motion (Taylor
1950b, 1963).

report of G.B. Kistyakovsky, the well-known American expert in explosives,
had been received. Kistyakovsky claimed that even if the bomb were success-
fully constructed and exploded, its mechanical effect would be much less than
expected because the main part of the released energy would be lost to radiation.
As R.W. Clark wrote in his instructive book (Clark 1961), in the whole of Britain
there was only one man able to solve this problem ~ Professor G.I. Taylor.

To answer this question, G.I. Taylor had to understand and calculate the
motion of the ambient gas after such an explosion. It was clear to him that, after
a very short initial period (related as we now know to thermal-wave propagation
in quiescent air), a very intense shock wave would appear (Figure 0.1). The
motion was assumed to be spherically symmetric, that is, identical for all radii
going out from the explosion centre. (This simplifying assumption later received
excellent confirmation in the first atomic test; see Figure 0.2.) For constructing

—~ground

a complete mathematical model the following partial differential equations of
motion inside the shock wave had to be considered:

1. the equation for the conservation of mass;
2. the equation for the conservation of momentum;
3. the equation for the conservation of energy.

It was intuitively clear to G.I. Taylor that at this early stage in the explosion
viscous effects could be neglected and the gas motion could be considered
as adiabatic. The above equations of motion had to be supplemented by the
following boundary conditions at the shock-wave front:

1. the condition for the conservation of mass;
2. the condition for the conservation of momentum;
3. the condition for the conservation of energy.

Also, the initial conditions, at the beginning of the very intense shock-wave-
propagation stage of a nuclear explosion, had to be prescribed.

In fact, this primary mathematical model is so complicated that even now
nobody is able to treat it analytically. Adequate computing facilities at that
time were non-existent. Moreover, the problem formulation outlined above is
incomplete, because nobody knew then or knows now how the air density, air
pressure and air velocity are distributed inside the initial shock wave at the
time when the shock wave just outstrips the thermal wave and the adiabatic gas
motion begins.

G.1. Taylor, however, was astute. His ability to deal with seemingly unsolv-
able problems, by apparently minor adjustment converting them to problems
admitting simple and effective mathematics, was remarkable. And here also
he took several steps, of crucial importance, which allowed him to obtain the
solution that was needed in a simple and effective form. In addition his formu-
lation allowed him to overcome the lack of detailed knowledge of the initial
distribution of the gas density, pressure and velocity. G.I. Taylor’s steps were
as follows:

1. He replaced the problem by an ‘ideal’ one. As he wrote (see Taylor 1941,
1950a, 1963), this ideal problem is the following: ‘A finite amount of
energy is suddenly released in an infinitely concentrated form.” This means
that g, the initial radius of the shock wave (the radius at which the shock
wave outstrips the thermal wave), is taken as equal to zero, that is, the
explosion is considered as instantaneous and coming from a point source
of energy. It is clear that neglecting the initial radius of the shock wave ry is
allowable (if at all!) only when the motion is considered at a stage when
the shock front radius r¢ is much larger than #y. If the initial shock-wave
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radius is taken as equal zero then the initial distributions of the air density,
pressure and velocity inside the initial shock wave disappear from the
problem statement: a great simplification.

2. At the same time, he restricted himself to consideration of the motion at the
stage when the maximum pressure of the moving gas, reached at the
shock-wave front, is large, much larger than the pressure py in the ambient
air; this allowed him to neglect the terms involving the initial pressure py
in the boundary conditions at the shock-wave front and in the initial
conditions. Note that, namely, this stage determines the mechanical effect
of the explosion.

The first question G.1. Taylor addressed was: what are the quantities on which
the shock-wave radius 7; depends? In the original ‘non-ideal’ problem they are
obviously:

1. E, the total explosion energy, concentrated in the sphere of radius ro where
the shock wave outstrips the thermal wave (according to the second
assumption above the initial internal energy of the ambient quiescent air is
negligible);

. po, the initial density of the ambient air;

. 1, the time reckoned from the moment of explosion;

. 1o, the initial radius of the shock wave;

. Do, the pressure of the ambient quiescent air;

. ¥, the adiabatic index.

N BN

The units for measuring these quantities in the c.g.s. system of units are

g cm?

[E]=’-2_,[/00]=—i3,[t]=s, [ro]zcm, [po]: g 2;
S cm cm s

0.2)

v is a dimensionless number. We shall see later how important it was that G.I.
Taylor neglected the last two quantities ro and po, thus replacing the problem
by an ideal one.

The reader may ask a natural question: in the real explosion ro and py are
certain positive numbers which definitely influence the whole gas motion from
the very beginning to the end. How can their values be taken to be equal to
zero?

In fact (and this comment will be important in our future analysis), the real
content of Taylor’s assumption was that at the intermediate stage under con-
sideration, where the mechanical effect occurs, the motion remains the same
if we replace ry by Arg, and pp by upg. Here A and p are arbitrary positive
numbers ‘of order unity’. This will be explained in detail in Chapter 5, but

those who are familiar with the idea of a transformation group even vaguely,
will recognize that in fact this was an assumption of group invariance at the
all-important intermediate stage.

Taylor’s next step can be represented in the following way. He introduced
the quantity

2\ 1/5 "
R:(EJ , 0.3)
Lo

which is measured according to (0.2) in units of length. Then, if we replace
centimeters, cm, by another unit of length, m, mm, xm, km, . . ., orin general by
cm divided by an arbitrary positive number L, the value of R will be magnified
by L, as will also the value of rr, whereas the quantity

== (0.4)

obviously will remain unchanged.
The quantity / depends in principle on the same quantities as rr, and this
dependence can be represented, neglecting ro and py, as

I="=F(R pot,y) (0.5)
R
where F is a certain function which is not known. The arguments ry and
were neglected by Taylor: this was, as we will see, a step of crucial importance.
The argument y is an numerical constant.

The first three arguments of F have independent dimensions. This means,
in particular, that time ¢ is measured in time units, i.e., seconds or otherwise
s/T where T is an arbitrary positive number. Units of time are absent in the
dimensions of the first two arguments; therefore, by varying the number T we
can vary the numerical value of the argument ¢ while leaving the values of /
and those two other arguments of [ invariant (all three others, in fact, since y
is a fixed number). But this means exactly that I cannot depend on ¢. Similarly
with pg: if we vary the unit of mass then the value of py will vary arbitrarily,
leaving I and the first argument R invariant. That means that [ likewise does not
depend on py. Furthermore, I does not depend on the argument R: by varying
the unit of length we vary R, but the value of 7 remains invariant. Thus, the
function F is simply a constant depending on the value of y, and so Taylor's
famous scaling law for the radius of the shock wave was obtained:

25\ 1/5
re=C(y) (5’—> , (0.6)
Po
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Figure 0.3. Logarithmic plot of the fireball radius, showing that rf5 2is proportional
to the time ¢ (Taylor 1950b, 1963).

or, in the logarithmic form that he used,

5 1 5 1 E
3 0o rr = 3 log,, C + 5 log,q E) + log,, ¢. 0.7)

Later, Taylor’s processing of the photographs taken by J.E. Mack of the first
atomic explosion in New Mexico in July 1945 (Taylor 1950b, 1963) confirmed
this scaling law (Figures 0.2 and 0.3) — a well-deserved triumph of Taylor’s
intuition. We can see how important it was to neglect the arguments rq and py,
the initial radius of the shock wave and the initial pressure. If not, additional
variable arguments would have appeared in the function F and we would have
returned to the hopeless mathematical model that we faced at the outset. But the
outcome for the simplified situation was different. Taylor was able to obtain in

the same way scaling laws for the pressure, velocity and density immediately
behind the shock-wave front:

2,3\ 1/5 1/5
P E
Pt = Cp(}/) ( 6 0) s pPr = Cp()/)po, U = Cu()/)( ) .

By
(0.8)

ﬁ
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Inside the shock wave an additional argument, the distance r from the center
of the explosion, appears, so that the relationships for the pressure, density and
velocity inside the shock wave can be represented in the form

r r r
P=PfP(—’V>» p = peR (—,y>, u=uiV <—,y). 0.9)
re rg re

The structure of the relationships (0.9) obtained by Taylor is instructive. It
demonstrates that the phenomenon has the important property of self-similarity.
This means that the spatiat distribution of pressure (and other quantities) varies
with time while remaining alwaysgeometrically similar to itself (Figure 0.4(a)):
the distribution at any time can be obtained from that at a different time by a
simple similarity transformation. Therefore in ‘reduced’ coordinates using py,
pr, ug and ry as corresponding scales,

L

pe o ug e

the spatial distributions of pressure, density and velocity remain invariant in
time (Figure 0.4(b)). The property of self-similarity greatly simplifies the in-
vestigation: instead of the two independent variables r and ¢ in the system of
differential equations, boundary conditions and initial conditions mentioned
above, Taylor obtained one single variable argument, r/ry, in his solution and
so was able to reduce the original problem, which required the solution of partial
differential equations to the solution of a set of ordinary differential equations.
The method of solution was sufficiently simple that he himself was able to
make all the necessary numerical computations using a primitive calculator. In
particular, he showed that the constant C in the scaling law (0.6) is close to
unity: for y = 1.4, C = 1.033.

G.I. Taylor submitted his paper on Friday 27 June 1941. The great American
mathematician J. von Neumann, who was also involved in the atomic prob-
lem and asked the same question independently, submitted a paper three days
later, on Monday 30 June 1941 (von Neumann 1941; see also von Neumann
1963). His solution complemented Taylor’s solution — he noticed an energy
integral for the set of ordinary differential equations and was able to obtain
the solution in closed form. Later, the solution of this problem was published
in the Soviet Union by L.I. Sedov (Sedov 1946, 1959), who also found the
energy integral, and by other authors, R. Latter (1955) and J. Lockwood Taylor
(1955).

We have seen that in obtaining the scaling law (0.6) and achieving the prop-
erty of self-similarity an important role was played by dimensional analysis:
the construction of dimensionless quantities from the arguments of the function
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Figure 0.4. (a) Air pressure as a function of radius at various instants of time for the
motion of air following an atomic explosion. The pressure distributions at various
times are similar to one another. (b) Spatial distributions of the gas pressure, density

and velocity in the reduced ‘self-similar’ coordinates p/ pr, p/ps, u Jus and r/r¢
do not depend on time.
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F with subsequent reduction in the number of arguments. The idea on which
dimensional analysis is based is fundamental, but very simple: physical laws
cannot depend on an arbitrary choice of basic units of measurement. The formal
recipe for using dimensional analysis is very simple also. The main art, how-
ever, is not in using this simple tool but in finding, as G.I. Taylor did, the proper
formulation or idealization of the problem in hand — an instantaneous concen-
trated very intense explosion in his case — that allows effective use of this tool.
Here the key point is the concept of intermediate asymptotics: consideration of
the phenomenon in intermediate time and space intervals.

It is important, however, to note that dimensional analysis is not always
sufficient for obtaining self-similar solutions and scaling laws. Moreover, it can
be claimed that as a rule it is not so and that the Taylor—von Neumann solution
to the explosion problem was in fact a rare and lucky exception.

Here an instructive role is played by the paper by K.G. Guderley (1942)
where, in a certain sense, the mirror image of the problem of a very intense
explosion was considered. The formulation of this implosion problem is as
follows.! On the wall of a spherical cavity of radius ro in an absolutely rigid
vessel filled by gas of density py (Figure 0.5) there is a uniform thin layer
of a strong explosive. The latter is exploded instantaneously and uniformly
over the wall and a strong spherical shock wave is formed. The shock wave
converges to the center of the cavity. It is very intense, as in the case of a very
intense explosion, so that the pressure behind the wave is much larger than the
initial gas pressure po, which, as in the case of a very intense explosion, can
be neglected. The shock wave comes to a focus at the center of the cavity at a
time which we take as ¢ = 0, so that the time before focusing will be negative,
t < 0. Similarly to the case of an intense explosion, dimensional analysis gives
for the radius of the shock wave

— [F(—p)> 1/5 . h
re=[E(—=1)"/po]l ", ¥), n= ECD2 ol
where as before E is the energy of the explosion and y is the adiabatic index.

Seemingly the application of reasoning analogous to that for the case of an
intense explosion would suggest that the argument # goes to infinity at t — 0
and therefore can be neglected close to the focus, so that a formula analogous
to (0.6) could be obtained:

(0.10)

2178
E( t)] ©.11)

rf= C(V)[
00

I A detailed discussion of the Guderley problem can also be found in the books by Zeldovich and
Raizer (1967) and Landau and Lifshitz (1987).
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Figure 0.5. A very intense implosion in a spherical cavity. The explosive is placed
on the wall of the cavity. The black dot shows the shock front as it comes to a
focus at the centre of the cavity at 1 = 0.

In fact, this is not the case, for the following reason. In the case of implosion
the function ®(», ) at n — oo does not tend to a finite non-zero limit as
was the case for an explosion! However, it happens that at 7 — oo the function
(7, y) has a power-law-type behavior, ®(, y )~C(y)n~*f where 8 = Bly) =
const > 0, so that at + — 0, that is, close to the focus, the expression for the
radius of the shock wave assumes the form

s [E(—1)? 1"
rf=C(y)r0ﬁ[ (p t)] — A(=1)",
0

2 i E /2
o= 5(1 +B), A=CWyr, (—) . 0.12)
Lo

Itis important to note that the exponent « cannot be obtained by dimensional
analysis, as it was in the case of an intense explosion, but requires a more
complicated technique, the solution of a nonlinear eigenvalue problem.
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The Guderley (1942) solution as well as the solution to the ‘impulsive load’
problem which is in fact a one-dimensional analog of the implosion problem,
obtained by von Weizsicher (1954) and Zeldovich (1956), introduced a new
class of self-similar phenomena: incomplete similarity and self-similar solu-
tions of the second kind. These problems are closely related to the concept of
the renormalization group, well known in theoretical physics.

In what follows we will present in detail the ideas of dimensional analysis,
physical similarity, self-similarity, intermediate asymptotics and the renormal-
ization group. Our goal is to demonstrate in detail the many possibilities for
application of these ideas and also the difficulties which can occur — throughout
using many examples. Most of the examples in the present book are related
to fluid dynamics: my experience shows that the elements of fluid mechanics
are familiar to engineers, mathematicians and physicists. Those who are more
interested in elasticity, fracture, fatigue or geophysical fluid dynamics can find
additional examples in my book Barenblatt (1996). The examples (‘Problems’)
considered in the present book should be considered as an essential part of the
whole text.




