Tutorat de Mathématiques
Tutorat 3: Percolation

On s’intéresse a la description probabiliste du phénomeéne de percolation sur réseau, ainsi qu’a la diffusion
dans un systeme désordonné.

I Travail préliminaire

1. Lire le texte en annexe, puis présenter succinctement quelques exemples pratiques de percolation.

IT Vocabulaire

Considérons un réseau de taille infinie pour lequel les sites peuvent étre occupés avec une probabilité p, ou

inoccupés avec une probabilité 1 —p. On appelle amas de masse s tout ensemble de s premiers voisins occupés.

On appelle seuil de percolation la probabilité p = p. au dela de laquelle il existe un amas percolant, c’est a dire
un amas rejoignant les extrémités du systeme.

On définit également la taille caractéristique des plus grands amas £, la fraction des sites dans ’amas infini ou
parametre d’ordre P, et enfin la masse moyenne des amas finis M. On note v, 8 et v leurs exposants critiques
respectifs au voisinage du seuil de percolation:

£ ~ |p—pc|™ (1)
P ~ |p_pc|ﬁ (2)
M ~ |p_pc|_’y' (3)

IIT Percolation 4 une dimension

Afin de bien poser les bases et le vocabulaire, on étudie dans un premier temps le cas trivial d’un réseau infini
a une dimension (voir Fig. 1).

.......

Figure 1: Réseau 1D. Les sites occupés sont signalés en rouge.

2. Montrer que la probabilité 7(s) qu’un site quelconque appartienne & un amas de masse s s’écrit:

n(s) = sp"(1-p)*. (4)
3. En déduire que la densité n(s) des amas de masse s (c’est a dire le nombre d’amas de mass s par site) s’écrit:
n(s) = p"(1-p)?*. (5)

4. Que vaut ici le seuil de percolation p. ?

5. Afin d’étudier plus précisément le comportement critique au voisinage de p., on pose p = p. — € avec € < 1.
Montrer que 'on a:

n(s) ~ g2 . (6)
puis déterminer la valeur de ’exposant critique v.

6. On définit communément la masse moyenne des amas finis par la relation M = Y07/ s7(s). Montrer que
I'on a:

M~ 622826786 ) (7)

puis déterminer la valeur de l'exposant critique . On pourra penser a transformer la somme discrete en une
somme continue.
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7. Que dire de I'exposant critique § 7
IV Percolation & deux dimensions

On s’intéresse dans un premier temps au cas du réseau carré (voir Fig. 2).
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Figure 2: Réseau carré.

8. Montrer que la probabilité 7(s) qu’un site quelconque appartienne & un amas de masse s s’écrit maintenant:
w(s) = Y sp’(1—p)'gu, (8)
t

ou t est le nombre de sites vides encadrant I’amas de taille s, et g4 est facteur de dégénérescence dont on donnera
le sens. On pourra traiter les cas s = 3 et s = 4 en guise d’exemple.

A ce jour, on ne sait pas calculer analytiquement le facteur gs;. Nous allons donc regarder un réseau particulier,
dit de Bethe, dont la topologie nous permettra d’aller plus loin dans I’étude de la percolation a deux dimensions
(voir Fig. 3). Le réseau de Bethe est un réseau arborescent, c’est a dire qu’il existe un unique chemin reliant deux
sites donnés du réseau. Le réseau de Bethe n’est défini que par sa coordinence z, il n’a pas de métrique et donc
le calcul de la quantité £ n’a aucun sens. Enfin, étant donné un site du réseau, on appelle branche ’ensemble
des sites qui lui sont connectés par I’'un de ses z bras.

z=3 z=4
Figure 3: Réseaux de Bethe.
11 est nécessaire ici de poser a nouveau la définition de percolation: on dit d’'une branche du réseau qu’elle percole
des lors que son premier site est occupé et qu’elle porte un amas infini.
9. Etablir une relation polynomiale sur la probabilité @ qu’une branche ne percole pas faisant intervenir p et z.
10. Dans le cas z = 3, déterminer la fonction Q(p) puis la tracer pour p € [0, 1].

11. Dans le cas général, montrer que le seuil de percolation est donné par:

Pe = . (9)

Pour ce faire, on pourra développer la relation obtenue a la question 9. au voisinage de p,.

12. La parametre d’ordre pouvant étre vu comme la probabilité qu’un site appartienne & ’amas infini, déterminer
I’expression de P en fonction de O, z et p.

13. Déterminer I'exposant 8. On pourra a nouveau utiliser le développement au voisinage de p. de la relation
obtenue a la question 9.



14. Montrer que la masse moyenne M de I’amas porté par un site se met sous la forme:

zp
M = 1+ —F— . 10

p( 1—p(z—1)> 10
On pourra dans un premier temps chercher a calculer la masse moyenne de I’amas porté par une branche.

15. Déterminer I'exposant ~.

V Point critique et invariance d’échelle

Au point critique p = p,, les systeémes de percolation sont invariants d’échelle ou fractales. C’est & dire qu’aucune
échelle ne caractérise le systeme, ou encore que les propriétés du systeme seront les mémes quelle que soit la
“distance” & laquelle on se place pour l'observer (voir Fig. 4).

Figure 4: Simulation de percolation au point critique p = p. a gauche, zoom x10 a droite. “FK-Ising model
(Fortuin-Kasteleyn)” aussi connu comme “random-cluster model”.

Définition Une fonction f est dite invariante d’échelle des lors qu’il existe une fonction g telle que:

Va,y ;Ezi - g<Z>. (11)

16. Démontrer qu'une fonction f est invariante d’échelle si et seulement si il s’agit d’une fonction puissance.
Pour la suite de cette partie, on se place dans le cas particulier du réseau de Bethe de coordinence z = 3.

17. Montrer que la densité des amas de masse s s’écrit:

n(s) = g.p°(1—p)*?, (12)
ou gs est une facteur de dégénérescence dont on donnera le sens.

18. On note n.(s) ~ s~7 la densité des amas de masse s au point critique (7 est appelé exposant de Fisher).
Donner le comportement de g, en fonction de s, p. et 7.

19. Montrer qu’au voisinage du point critique et aux grands s on a:
n(s) ~ s Te dpr)’s (13)

20. Tracer n(s) au voisinage du point critique et déterminer la masse caractéristique des plus grands amas.

21. Déterminer ’exposant 7. On pourra chercher a recalculer M de la maniere suggérée a la question 6.

VI Jeux de fourmis

On s’intéresse a la diffusion de fourmis dans un réseau désordonné. A chaque pas de temps ¢, la fourmi choisit
I’'un des sites plus proches voisins. Si le site est occupé (autorisé) alors elle y va, si le site est inoccupé (interdit)
alors elle reste la ou elle est jusqu’au pas de temps suivant. Ce processus est répété de nombreuses fois, puis
moyenné sur un grand nombre de fourmis et sur un grand nombre de réseaux. Les interactions fourmi-fourmi
sont négligées.



On cherche a déterminer la distance moyenne R parcourue par une fourmi en fonction du temps. On note
R ~ t*. Pour k = 1/2 on parle de diffusion normale, alors que pour k # 1/2 on parle de diffusion anormale.
22. A votre avis, quel type de diffusion a t’on pour p < p. 7 pour p > p. 7 et pour p = p. ?

On note P;(t) la probabilité conditionnelle que la fourmi se trouve au site ¢ a I'instant ¢ sachant que Py(0) = 1.
On note o;; la probabilité que la fourmis saute du site ¢ au site j en un pas de temps.

23. Etablir la loi de propagation de P;(t) ou encore equation maitresse:
Pi(t + 1) — Pz(t) = Z [O‘jl‘Pj(t) — O'ijPi(t)] . (14)
Jl(i.)
24. Que vaut o;; pour une fourmi ivrogne (ou aveugle) ? et pour une fourmi sobre ? On note z la coordinence
du réseau et z; le nombre de plus proches voisins occupés du site j.

25. Argumenter que dans un amas fini, on finit par atteindre un état stationnaire pour lequel P;(t) ne dépend
plus du temps.

Pour p < p. proche du seuil de percolation et aux temps longs, on peut montrer que R est indépendant du temps
et se comporte comme R ~ (p. — p)?/?~7. Par ailleurs, pour p > p. on a aux temps longs R? ~ Dt (diffusion
normale). Enfin, proche du seuil de percolation, la diffusivité se comporte comme D ~ (p — p.)H.

Afin de déterminer la loi de diffusion au seuil de percolation, on pose R = t* f [(p — p.)t™].
26. Montrer que f,s,.[2] ~ 22, et que fop.[2] ~ (—2)7F/™.
27. En déduire qu’au seuil de percolation p = p,, la loi de diffusion est donnée par:

R ~ Ww=8/2)/Qv+u=p) (15)

28. En dimension 2, des méthodes analytiques avancées permmettent de déterminer § = 5/36, v = 4/3, et des
simulations numériques donnent p/v ~ 0.975. Conclure sur le type de diffusion.

Figure 5: Marche aléatoire sur 7. 10° pas de temps.



1.1. WHAT IS PERCOLATION?

Imagine a large array of squares as shown in Fig. 1(a). We imagine this array
to be so large that any effects from its boundaries are negligible. Physicists call
such an array a square lattice, mathematicians denote it by Z2; common sense
identifies it with a big sheet of ruled paper. (You may complain that the
square lattice in Fig. 1(a) is not very large, but the publisher did not allow us
to fill all remaining pages of this book with these squares, which would have
greatly simplified our task of writing the book and yours of reading it.) Now
a certain fraction of squares are filled with a big dot in the centre, whereas
the other squares are left empty, as in Fig. 1(b). We now define a cluster as
a group of neighbour squares occupied by these big dots; these clusters are
encircled in Fig. 1(c). From this picture we see that squares are called
nearest neighbours if they have one side in common but not if they only touch
at one corner. Physicists call squares with one common side ‘nearest neigh-
bour sites on the square lattice’, whereas squares touching at one corner only
are ‘next nearest neighbours’. All sites within one cluster are thus connected
to each other by one unbroken chain of nearest-neighbour links from one
occupied square to a neighbour square also occupied by a big dot. The
graphical ‘cluster’ explanation through Fig. 1(c) seems more appropriate for
our purposes here than a precise mathematical definition. Percolation theory
now deals with the number and properties of these clusters; perhaps the reader
will agree with us that there are not many quUISltCS needed to understand
what percolation theory is about.

How are the dots distributed among the squares in Fig. 1? One may
assume that the dots love to cling together, or that they hate each other and
try to move as far away as possible. But the simplest assumption is that they
ignore each other, not unlike scientists working in similar fields. Then the
occupation of the squares is random, that is each square is occupied or empty
independent of the occupation status of its neighbours. We call p the prob-
ability of a site being occupied by a big dot; that means that if we have N
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squares, and Nis a very large number, then pN of these squares are occupied,
and the remaining (1 — p)N of these squares are empty. This case of random
percolation is what we concentrate on here:

Each site of a very large lattice is occupied randomly with probability p,
independent of its neighbours. Percolation theory deals with the clusters thus
Jormed, in other words with the groups of neighbouring occupied sites.

Of course, the reader may replace ‘occupied by a big dot’ with ‘black’
and ‘empty’ with ‘white’ (or ‘red’, if he likes politics); or he may use any other
suitable pair of words denoting two mutually exclusive states of the site.

Figure 2 shows a computer-generated sample of a 60 X 50 square lattice,
with probability p increasing from 10% to 90%. We see that for p > 0-6 one
cluster extends from top to bottom and from left to right of the sample; one
says that this cluster percolates through the system rather like water percolates
through a coffee machine. A large part of this book deals with the peculiar
phenomena of percolation near that concentration p. where for the first time
a percolating cluster is formed. These aspects are called critical phenomena,
and the theory attempting to describe them is the scaling theory.

Historically, percolation theory goes back to Flory and to Stockmayer
who during World War II used it to describe how small branching molecules
form larger and larger macromolecules if more and more chemical bonds are
formed between the original molecules. This polymerization process may lead
to gelation, that is to the formation of a network of chemical bonds spanning
the whole system. Thus the original small molecules correspond to our
squares, the macromolecules to our clusters, and the network to our per-
colating cluster. You may be an experienced researcher in percolation without
having been aware of it, for the boiling of an egg, which is first liquid and
then becomes more solid-like (‘gel’) upon heating is an example. Flory and
Stockmayer developed a theory which today one calls percolation theory on
the Bethe lattice (or Cayley tree) and which will be explained later. But until
recently it was controversial whether critical phenomena for gelation are
described correctly by percolation theory and its assumption that chemical
bonds are formed randomly (de Gennes, 1976; Kolb and Axelos, 1990).

Usually, the start of percolation theory is associated with a 1957 publi-
cation of Broadbent and Hammersley which introduced the name and dealt
with it more mathematically, using the geometrical and probabilistic concepts
explained above. Hammersley, in his personal history of percolation in
Percolation Structures and Processes, mentions that the new computers
which became available to scientists at that time were one of the reasons for
developing percolation theory as a problem where the computers could be
useful. We will see later that even today computers play a crucial role for
percolation, with lattices containing thousands of millions of sites being
simulated and analysed.

The percolation theory as described here, with its particular emphasis on

critical phenomena, was developed since the 1970s; one may regard a note by
Essam and Gwilym in 1971 as one of the starting points of the later avalanche
of publications. Instead of going through the details now we describe three
simple ‘games’ which can be easily simulated on a computer and which may
serve as an introduction to a reader preferring to learn percolation by a
‘hands-on’ approach. These example are somewhat unusual, and the reader
may skip them and proceed with Chapter 2.

1.2. FOREST FIRES

This section introduces a simple model for forest fires. Its aim is not so much
to help fighting fires but to help to understand the idea of a percolation
threshold, the concept of a sharp transition with diverging times, and
computer simulation.

French scientists in Marseilles and elsewhere are interested, for obvious
reasons, in understanding and controlling forest fires. They told us of the fol-
lowing percolation problem which can easily be simulated on a computer.
How long does a forest fire take to either penetrate the forest or to be
extinguished?

As is well known, a diligent student should make hundreds of indepen-
dent experiments to reduce statistical errors before reporting the results in his
thesis. If for every thesis, a hundred fires were initiated in the forests sur-
rounding the university, society’s respect for research might be diminished. It
is much more practical to simulate numerous such fires on a computer. For
this purpose we approximate the forest by a square lattice. Each square in
Fig. 1 is either occupied by a tree, in which case we call that site ‘green’, or
it is empty, in which case we call it ‘white’. The probability for a green square
is p, that for a white square is (1 — p). For p = 1 all squares would correspond
to trees, which would be appropriate to a garden of apple trees but not for
a natural forest. The fact that p <1 allows for holes (white squares) which
cause disorder in the forest. This distribution of white and green sites
(squares) is our initial state.

Now let some trees burn and call those squares which correspond to
burning trees ‘red’ sites. The simplest choice is to light all the trees in the first
row of the lattice, whereas the remaining trees, in lines 2, 3, ..., L of the L X L
lattice, remain green. Does this fire on one side of the forest penetrate through
the whole forest down to line L of our array?

For this purpose we have to clarify how a tree can ignite the other trees.
To simplify the computer simulation we go through our lattice regularly, first
scanning the first line of trees from left to right and checking which neigh-
bours they ignite, then scanning the second line in the same way, and so on
until we reach the last line of trees. During the whole simulation, a green tree
is ignited and becomes red if it neighbours another red tree which at that time
is still burning. Thus a just-ignited tree ignites its right and bottom neighbour



within the same sweep through the lattice, its top and left neighbour tree at
the next sweep. Reaching the end, we start again with the tree at the extreme
left in the first line. Each sweep through the whole lattice (experts call that one
Monte Carlo step per site) constitutes one time unit in our simulation. We
assume that the fire can spread only to green nearest neighbour trees, not to
trees which are farther away. Furthermore, a tree which has burnt during one

time unit is regarded as burnt out (‘black’) and no longer ignites any other

tree. We regard the forest fire as terminated if it either has reached the last
line or if no burning trees are left. (In the first case, the fire would ignite the
next line of trees if a larger lattice had been stored in the computer; in the
second case, only black trees and green trees adjoining white places are left
over, the black trees constituting formerly burning trees which have burnt out,
the green trees never having been touched by the fire since they were separated
safely from the burning trees). The lifetime of the forest fire is defined as the
number of sweeps through the lattice until termination is reached, averaged
over many distributions of trees among the sites of the same lattice at the same
probability p.

Figure 3 shows this lifetime of forest fires as a function of the probability
p that a square is occupied with a tree. These simple computer simulations
indicate that there is a sharp transition, for the above case near p = 0-6, where
the lifetime seems to approach infinity. Of course, in the simulation of finite
lattices the reader cannot expect truly infinite times; but one can simulate the
forest fires at the same ‘critical’ value of p near 0-5928 for different lattice
sizes and show that the lifetime increases with increasing size of the forest.

Why is there a special value of p, which we call the percolation threshold
De, Where the lifetime seems to diverge? For p near unity, each row can imme-
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Fig. 3. Average termination time for forest fires, as simulated on a square lattice. The
centre curve corresponds to the simplest case described in the text. The lefthand curve
gives data if the fire can spread to both nearest and next nearest neighbours. For the

righthand curve two burning trees are needed to ignite a nearest or next-nearest
neighbour.

diately ignite the trees in the next row, and thus after one sweep through the
lattice the fire may already have reached the last row. For p near zero, most
burning trees have no neighbours at all, and the fire stops there after the tree
has burnt out; thus after a few sweeps nothing burns anymore. If we increase
p from small values to large values, then at some critical value p = p. a path
of neighbouring trees appears which connects the top row with the bottom
row for the first time, that is we see a percolating cluster. The shortest path
which, for p slightly above p., this percolating network creates to connect top
and bottom is called the minimal, or chemical path. It will in general be very
different from a straight line. Fig. 4 shows a typical path. (See also Section
5.2))

Because of the simplified way in which we construct our model, the fire
spreads preferentially from top to bottom, or left to right, and needs a much
longer time to move backwards from right to left or from bottom to top. For
four consecutive forward steps, say top to bottom, it needs just one time unit,
whereas four backward steps require four time units, as the reader can easily
check on this figure by going through the above algorithm. Thus now the fire
needs a long time to penetrate the forest. If p is diminished to a value slightly
below pe, then some trees, for example the one marked by an X in Fig. 4, may
be missing. The fire then needs a long time to find out that it cannot penetrate
the forest, and thus only after many sweeps through the lattice will the fire
be extinguished. Therefore the lifetime will become very large if p approaches
pe from below or above.

We also show in Fig. 3 the results for two modifications of the above
model. In one case we allow the fire to spread not only to the nearest neigh-
bour trees (squares which have one side in common) but also to next-nearest
neighbours (squares which have only ore corner in common). Then the critical

Fig. 4. Example of the shortest path connecting the top line of a small square lattice
with the bottom line, for p slightly above p.. The straight sections of this line connect
the centres of occupied squares, the X marks the site which, if missing due to a small
reduction of p, would disconnect top and bottom lines but would still give a long
termination time for the forest fire simulation.



point is shifted to about 0-4; experts have shown that it is at one minus the
above critical value, i.e. 1—0-5928 =0-4072. But even without much
thinking and computing one can understand that now the fire can spread more
easily since it can jump over longer distances; therefore the percolation
threshold is lowered.

The other modification goes in the opposite direction: We assume that the
weather is more like in Nova Scotia (Canada) than in Marseilles (France).
Since it is quite cold, a tree needs two burning neighbours, instead of only
one, before it can ignite. Now it is more difficult for the fire to percolate
through the forest, and the percolation threshold is shifted upwards, as the
simulations in Figure 3 show.

The reader may complain that the above algorithm gives the fire a pre-
ference to spread to the right and the bottom and may dislike these similarities
with political or economic trends, respectively. But for forest fires, such trends
can be justified as representing a wind blowing in one ‘diagonal’ direction. In
reality this preference is introduced to save computer time.

For readers interested in the physics of phase transitions it should be
mentioned that the percolation threshold at p = p. gives the position of a
phase transition (for experts only: without ‘broken symmetry’). At a phase
transition, a system changes its behaviour qualitatively for one particular
value of a continuously varying parameter. In the percolation case, if D
increases smoothly from zero to unity, then we have no percolating cluster for
P < pc and (at least) one percolating cluster for p > p.. Thus at p = p., and
only there, something peculiar happens: for the first time a path of neigh-
bouring green trees connects top and bottom. Also the divergence of charac-
teristic times (in our case the fire lifetime) at the critical point has analogies
in other phase transitions where it is called ‘critical slowing down’. For
example, for a temperature only slightly below the liquid—gas critical tem-
perature, the fluid is quite unsure whether it wants to be liquid or vapour, and
thus takes a lot of time to make its choice; this time can be measured by light

scattering. Similarly, relaxation times near magnetic Curie points are very
large.

1.3. OIL FIELDS AND FRACTALS

Percolation can be used as an idealized simple model for the distribution of
oil or gas inside porous rocks in oil reservoirs. In Fig. 1, imagine that the
unoccupied (white) squares represent regions filled with hard rock, while the
occupied squares represent pores that are filled with oil or gas. The average
concentration of oil in the rock is represented by the occupation probability
p. (In the oil terminology, p is called ‘porosity’.) In real reservoirs, the
mechanisms that created the oil deposits imply some correlations between
occupied pores, owing to the way the rock was originally cracked or the way
the different deposits were put in place. The simple percolation model ignores

these correlations, and assumes that each basic square (or cube, if this is
repeated in three dimensions) is occupied or empty independently of its neigh-
bours. However, the qualitative features described below also hold in the
more realistic models.

It is obvious from Fig. 2, that when p is smaller than pc, the oil is found
only in finite connected clusters. Therefore if we place a well at a random site.,
it will most probably hit a small cluster, produce a finite small amount of oil
and be a very bad investment. To produce a large amount of oil, we need a
reservoir which has p > p., and we need to have the well at a site that belongs
to the largest cluster.

The oil people are very interested in predicting how much oil they would
produce from a well. To help in these predictions, they take out rock samples
from the well. These come in long rock logs, with a typical diameter of order
5—10 cm. One can then measure the porosity (percentage of pores) in a piece
of linear size 5 cm, and try to extrapolate to the reservoir scale, which could
be many kilometres. Is such extrapolation legitimate? o

To address this question, let us identify our ‘well’ as one site sitting in
the square example of Fig. 2 and belonging to the largest cluster for p > pe.
Let us next put a frame of size L X L around this point, and count how many
points within this' frame belong to the same cluster, M(L). The reader can
easily try this exercise with frame sizes L =3,5,7,9, etc. Looking at the last
example in Fig. 2, it is clear that M(L) practically grows linearly with the area
of the frame, L2, and we can define the average density of points connected
to our well as P= M(L)/ L% P is then independent of L, and is mono-
tonically decreasing as p decreases. However, the situation is very different
for p very close to p, e.g. p=0-6. In‘; that case, the largest cluster is rather
ramified, and it has many ‘holes’ in it. Those holes contain other clusters,
which may be quite large, but whose oil is not reachable through our well.
Looking at the picture for p=0-6 in Fig. 2, one sees ‘holes’ on many length
scales. As we shall see later, the occurrence of phenomena on all length scales
is very basic for many of the interesting phenomena, which occur near pe.

If one measures M(L) as function of L at p., the result is no longer linear
in the area L2. In fact, if one plots log M(L) versus log L for bigger lattices
(see also Fig. 15), one finds a straight line with slope 1-9, implying that at pc
one has

M(L) o L'?

(We use the symbol o to indicate proportionality. In many cases this propor-
tionality is meant to be accurate only in the asymptotic limit, here of large L.)
The exponent 19 is called a ‘fractal dimensionality’, or fractal dimension.
You may have noticed with sadness that a small bottle of scotch, half as
high as the customary whisky bottle, does not contain half as much of the pre-
cious fluid but only one eighth; not only the height is reduced by a factor 2
but also the width and the depth, with the volume being the product of these
three lengths. In other words, a bottle is a three-dimensional object. For two



dimensions, a piece of paper which has a length and a width both twice as
large as those of another piece weighs four times as much. Only a one-
dimensional object, like a long wire, is simple. A wire half the length of
another weighs half as much as the longer wire. In all these cases, the mass
M scales with the linear size L as M« L% and d is the usual Euclidean
dimension. Benoit Mandelbrot introduced ‘fractal geometry’ as a unifying
description of natural phenomena which are not uniform but still obey simple
power laws of the form . ’

M« LP

with non-integer dimensions D. For three-dimensional percolation clusters at
pe one finds D=2-5. We shall see more examples of fractals below.

The fact that M(L) grows as L' implies that the average density
M(L)| L? is not constant, but rather decays as L~=9!, Therefore, the average
density of the extractable oil in a field with porosity near De, of size 100 km,
is smaller by a factor of about (106)~%"! = 0-25 than that of a sample of size
10 cm. The remaining 75 per cent is not directly connected to the drill hole.
Such a factor is crucial if we are to base the economy of oil production on
it! The corresponding factor in three dimensions is (10%)~%5 = 1031

In fact, the situation is not so bad, since the density does become uniform
for large L above p.. As we shall see, there exists a typical length £(p), called
the correlation length, such that M(L) o< L' for L < £, and M(L) « L? for
L > £. £is a measure of the largest hole in the largest cluster, and it decreases
as we increase p above p.. However, the oil people should use a sample larger
than £ in order to estimate the correct amount of oil they can get. A more
quantitative discussion of this problem will be given below, in Section 3.4.

The problem of extracting oil from the rock involves not only estimating
the amount of such oil, but also discussing the flow of the fluid inside the
porous medium. This brings up many questions concerning dynamics on
the percolation clusters, that we shall discuss below. The simplest example,
concerning diffusion, is briefly introduced in the next section.

The reader should be warned, however, that both these remarks on oil
flow, as well as the earlier ones on forest fires, are meant as illustrations, not
as proven engineering applications.

1.4. DIFFUSION IN DISORDERED MEDIA

Hydrogen atoms are known to diffuse through many solids, an effect which
might become important for energy storage. If the solid is not a regular
lattice, this diffusion takes place in a disordered, not an ordered medium. A
particularly simple disordered medium is our percolation lattice, where only
a fraction p of all sites (squares) is occupied, the rest are empty. Let us assume
the hydrogen atom can move only from one occupied site of the lattice to a
nearest neighbour which is also occupied. Then the motion is restricted to the

cluster of percolation theory to which the atom belongs initially. It can never
jump to another cluster since then it would have to move at least once over
a distance larger than that between nearest neighbours. This problem was
called the “ant in the labyrinth’ by de Gennes in 1976. At the beginning of the
1980s this problem became very fashionable, particularly at the percolation
threshold p = pe. .

Another useful application of this would concern the diffusion of test
particles through the oil in the porous rock, mentioned above. Such diffusion
is sometimes used to study the properties of the pore structure.

Let us not care whether hydrogen atoms move through solids, an ant tries
to escape a labyrinth, or the reader desperately searches for a way through this
book. We simply have a point, called an ant, which sits on an occupied square
of our square lattice and which at every time unit makes one attempt to move.
This attempt consists in randomly selecting one of its four neighbour squares.
If that square is occupied, it moves to that square; if instead it is empty, the
ant stays at its old place. In both cases the time ¢ is increased by one unit after
the attempt. After a certain time #, one calculates the squared distance
between the starting point and the end point. One repeats the simulation by
giving the ant a different occupied square as a starting point; finally, one aver-
ages the squared distance obtained in this way over many ant movements on
many lattices at the same p and same lattice size. How does R, the square root
of this averaged squared distance (also called the root mean square or rms dis-
placement) depend on time #?

For p=1 one has diffusion on a regular lattice without disorder, and
elementary statistical considerations give R* = ¢ exactly, if our squares have
a length equal to unity. (Proof: For each such random walk, the end-to-end
vector R is the vector sum of ¢ displacerr;lent vectors di,i=1,2,...,¢t. When we
calculate the square of that sum and then its average, we have to calculate the
averages of the scalar products did;. For i = j, this scalar product is simply
the square of the nearest neighbour distance, which is unity. For i and j
different, the scalar product can be +1 or — 1 with equal probability since we
assumed that the motion is completely random. Moreover, in half of the cases
the scalar product is zero since d; and dj are perpendicular to each other. Thus
on average this product cancels out except for i = j where it gives unity. There-
fore the squared sum equals ¢. This proof is not necessary to understand the
remainder of the book since we will mainly deal with problems which are not
exactly solved.)

Figure 5 shows the results of simple computer simulations on the square
lattice. On this double-logarithmic plot one sees the power law R = const X r*
more easily than on a normal diagram. It seems to describe the relation
between distance R and time ¢ for sufficiently large 7. Since
log R =log (const) + k log (¢), power laws show up as straight lines in such
log-log plots, with the slope giving the exponent £ of the power law. We see
that for a concentration p far above p. = 0-59, k is near 1/2 for large times,
whereas for p far below p. the distance R approaches a constant for large
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Fig. 5. Example of the distance R travelled by an ant in a labyrinth, as simulated o1
a square lattice for p < pc, p= p.=0-5928, and P > pe. Note the double-logarithmi:
scales.

times, that is k=0. Right at p., k takes on a value in between these twe
extremes and is roughly equal to 1/3. This effect, that the exponent is neithe:
that for normal diffusion (k = 1 /2) nor that for a constant distance (k= 0) wa:
called anomalous diffusion by Gefen, Aharony and Alexander. Again it ha:
an analogue in critical points near thermal phase transitions. For example
spin diffusion in ferromagnets at T= 7. or mass diffusion at liquid—ga
critical points no longer follows the normal diffusion laws but is ofter
described by an anomalous diffusion exponent k or 1/z.

It is easy to understand why the ant moves so differently for p above anc
below the percolation threshold p.. For b < pc there are only finite cluster.
present, and the ant sits on one of them. Thus it moves only within tha
cluster (if this cluster happens to be an isolated occupied square, the an
cannot move at all.) Therefore its motion is restricted over finite distances
and R approaches a value connected to the cluster radius if t is very large. Fo:
D > pe, on the other hand, the ant can move to infinity if it starts on the per
colating network. There are certain holes in this network; but for distance.
larger than the typical hole size, the ant feels only an average over the smal
holes, just as the tyres of your Rolls-Royce average over the small pores o
the asphalt over which your chauffeur is driving you. Thus the disorder act,

. as a friction which slows down the diffusion process but does not prevent it
k = 1/2 for long times. Only at the border case D = Pc, does the ant not knov
which of the two power laws it should follow.

Considering 7 as the number of steps the ant performs, and R as the linea:
size of the region visited by the ant, the relation # oc R /% can also be inter
preted as stating that the number of steps in a region. of linear size R is Sractal
with a fractal dimension equal to 1/k. For regular lattices, and in the homo
geneous regime describing the largest percolation cluster on large length scale:
above p., this exponent 1/k is equal to 2. At p,, the ant is restricted to move

on clusters which are themselves fractal. It is thus forced to move back and
forth within a small piece of the cluster, until it finds its way out. This takes
a long time and therefore the number of steps within a restricted area is large,
and the fractal dimension of the walk, 1/k, is larger than 2.

At intermediate concentrations, like p = 0-7, the ant feels some fractal
structure on short distances (R < £). On those distances, the slope & is close
to its value at pc, i.e. k= 1/3. Only when R > ¢ does the slope approach the
uniform value k£ = 1/2. As seen from Fig. 5, the curve for p=0-7 has not }.'et
become completely parallel to that of p=1, even at = 500. Better quality
data, on larger samples, are needed to confirm the details of the crossover
from anomalous to normal diffusion. The low-quality data of Fig. 5 are
mainly meant to exhibit results that a student can readily produce on a per-
sonal computer. We shall present a more quantitative discussion of diffusion

in Chapter 6.



