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The stability of a viscous film flowing down a vertical fiber under the action of gravity is analyzed both
experimentally and theoretically. At large or small film thicknesses, the instability is convective, whereas
an absolute instability mode is observed in an intermediate range of film thicknesses for fibers of small
enough radius. The onset of the experimental irregular wavy regime corresponds precisely to the
theoretical prediction of the threshold of the convective instability.
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The general problem of instability and pattern formation
involving propagating modes has attracted much theoreti-
cal and experimental interest (see, e.g., [1]). Instabilities
can be either convective (disturbances grow in time only in
a moving frame) or absolute (disturbances grow in time
even at a fixed position). This concept was first developed
in the context of plasma physics [2] and later on applied to
optics and hydrodynamics [3].

In particular, transitions between different wave regimes
in open-flow hydrodynamic systems can be understood
within the framework of absolute or convective instabil-
ities. Convectively unstable flows behave as spatial ampli-
fiers of the incoming perturbations, whereas absolutely
unstable flows display intrinsic self-sustained dynamics
or global modes. The transition between these two classes
of flows has been experimentally evidenced in numerous
situations, e.g., wakes or hot jets [4].

Viscous liquid films falling down inclined planes are an
example of convectively unstable open flows [5,6]. On the
other hand, changing the geometry from planar to cylin-
drical, such as with free jets, can make the flow absolutely
unstable [7]. In this Letter, we demonstrate for the first time
that a thin viscous layer, coating the outside of a vertical
cylinder, and flowing under the action of gravity can also
display both convective and absolute instabilities.

While the dynamics of the flow on a cylinder has re-
ceived considerable attention over the last two decades
(see, e.g., [8] for a review), all previous works focused
either on a temporal stability analysis or the fully nonlinear
wave regime [9–12]. Here we examine in detail, both
experimentally and theoretically, the onset of instability
with an emphasis on its spatial growth. Unlike jets where
the absolute instability breaks the flow into drops, in the
present case the flow is always continuous. At the same
time, the Reynolds number is much smaller than for jets,
which makes the problem amenable to theoretical analysis.
Moreover, since the base flow is strictly parallel, a situation
that is quite exceptional (e.g., jets in microgravity or
sheared interfaces in confined geometries [13]), this prob-
lem offers an excellent opportunity to study experimentally
the development of nonlinear global modes [4]. The ex-

periments can achieve a wide range of flow rates and in a
certain regime of the parameter space the flow can be
controlled relatively easily.

A sketch of the experimental setup is shown in Fig. 1(a).
A Rhodorsil silicon oil v50 (density � � 963 kg=m3, kine-
matic viscosity � � 50� 10�6 m2=s and surface tension
� � 20:8� 10�3 N=m at 25 �C) flows axisymmetrically
on Nylon fibers of 1.35 m length and of various radii R
(0.23, 0.25, 0.32, 0.35, 0.47 and 1.5 mm). A weight tied to
the fiber ensures its verticality. The inlet flow rate q is
controlled by varying the gap separating the two cone-
shaped parts of the entrance valve. This design ensures
the axisymmetry of the base flow and limits the entrance
noise (thickness fluctuations of 10�3%; estimation based
on the computation of the maximum spatial growth rate in
the convective regime). The possible range of flow rates is
0:01 g=s< q< 3 g=s, which corresponds to a range of
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FIG. 1 (color online). (a) Experimental setup. (b) and (c) Snap-
shots of the liquid film at the top of the fiber and at 10 cm from
the entrance valve, respectively, showing a nonlinear regular
wave train (R � 0:23 mm, q � 0:0348 g=s and hN � 0:48 mm).
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uniform film thicknesses 0:6R< hN < 3R (corresponding
values of dimensionless parameters will be given later).
The flow rate is measured with computer-controlled scales
placed below the collecting tank. During an experiment,
the liquid height variation in the tank (hence the flow rate
variation) is less than 1%. A linear camera and a fast digital
camera are mounted on micrometric assemblies allowing
for a precise alignment of the field of view with the film for
the linear camera and a precise displacement along the fi-
ber for the fast one. Spatiotemporal diagrams obtained with
the linear camera (using a vertical pixel line) allow for a
sensitive detection of the film-thickness variations. Fluctu-
ations of the film thickness with time at a given position are
also recorded by orienting horizontally the pixel line.

A snapshot of the flow at the inlet is depicted in Fig. 1(b)
for a small flow rate on a thin fiber. A self-sustained dy-
namics is observed. Immediately after the inlet, the axi-
symmetric film of uniform thickness emerging from the
capillary meniscus breaks up spontaneously into a droplike
wave train. Depending on the flow rate and the fiber radius,
two different regimes can be identified from the spatiotem-
poral evolution of the film thickness (see Fig. 2). At low
flow rates and relatively small fiber radii, a regular primary
wave train is observed at a constant distance from the inlet.
Sufficiently close to the inlet, a power spectrum of the time
variations of the film thickness reveals a well-defined
frequency. Further downstream, a secondary instability
disorganizes the flow. However, for even smaller fiber radii
and over a rather narrow interval of (small) flow rates (the
thinner the fiber the wider the range of flow rates), the
waves propagate at constant speed, shape, and frequency
all along the fiber [see Fig. 1(c)]. This global mode regime
was observed initially by Kliakhandler et al. [9]. At larger
flow rates and any radius, the primary wave train is irregu-
lar, its frequency spectrum is much broader and its onset
location fluctuates in time. For thick fibers (R � 0:47 mm)
the regular wave regime was never observed.

A quantity of particular interest is ‘‘the healing length’’
� defined as the distance from the inlet to the location at

which perturbations on the film are noticeable (>4% of the
uniform film thickness). The evolutions of � and frequency
f with the flow rate for R�0:32 mm are shown in Fig. 3.
Bars indicate the extreme values of � and f. The transition
between regular and irregular wavy regimes can be clearly
identified at a critical flow rate 0:042< qc < 0:048 g=s as
a sharp increase of the possible range of values for both �
and f. We shall not address here the question of the secon-
dary stability of the self-sustained nonlinear primary oscilla-
tions in the global mode regime [compare Fig. 1(b) and 2],
but limit ourselves to the linear convective stability of the
constant thickness base flow in an attempt to understand
the transition between regular and irregular wave trains.

Assuming negligible inertia and a small thickness h
compared to R, Frenkel [10] obtained the following evo-
lution equation:
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Here the streamwise coordinate x and h have been made
dimensionless using different length scales, L � �hN and
hN , where hN is the flat film thickness and � is adjusted
such that the gravity acceleration �g equilibrates the pres-
sure gradient induced by the axial curvature gradient
�@x3h. Thus, � � 	�=��gh2

N�

1=3 � �lc=hN�2=3, where lc

is the capillary length. The chosen time scale T �
�hN=�3uN� is one third of the advection time, where uN �
gh2

N=�3�� is the averaged speed of a film flowing down a
vertical wall. With this scaling, Eq. (1) involves a unique
positive parameter � � �L=R�2 that expresses the relative
importance of azimuthal and axial curvatures [Kalliadasis
and Chang [11]; the same study also scrutinized the non-
linear solutions of (1)].

A normal mode decomposition of infinitesimal pertur-
bations around the uniform film h � 1 in (1) leads to the
dispersion relation
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FIG. 2 (color online). Left: spatiotem-
poral diagrams of the film thickness
along the fiber. x is the distance from
the top of the fiber. Right: power spectra.
The locations at which the time series
have been recorded are indicated by ar-
rows. R � 0:32 mm; (a) q � 0:024 g=s
(hN � 0:42 mm); (b) q � 0:077 g=s
(hN � 0:58 mm).
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where k and ! denote the complex wave number and
complex wave frequency, respectively. Hence, perturba-
tions of long wavelengths and of infinite spatial extension
(k real) are simply advected at the kinematic wave velocity
of unity. The linear inception is driven by the classical
Rayleigh-Plateau instability for cylindrical interfaces.
Hence, short waves are damped by the axial curvature
and long waves are amplified by the azimuthal curvature.

The long-time response of the flow to a localized infini-
tesimal perturbation at a fixed location is determined by the
most amplified wave of zero group velocity vg � d!=dk,
which defines the absolute wave pulsation !0 and absolute
wave number k0. Looking for the spatial branches k�!�
(imaginary part !i � cst) in the complex k plane, the
condition vg � 0 occurs at a saddle point that must result
from the pinching of two spatial branches coming from the
opposite side of the horizontal axis [3]. A straightforward
analysis based on (2) then shows that the instability be-
comes absolute (!0i > 0) when �> �ca � 	�9=4���17�

7
���
7
p
�
1=3 � 1:507. With � � �2=3

N �lc=R�
4=3, where �N �

hN=R, an aspect ratio, �>�ca reads

 �N > �3=2
ca �R=lc�

2: (3)

A localized disturbance may therefore invade the spatial
domain whenever the Rayleigh-Plateau instability is
stronger than the advection of the main flow, as reflected
by the threshold �ca. It is quite remarkable that the thresh-
old �ca of the transition from a convective to an absolute
instability (C=A transition) is close to the value �c �
1:413 above which a catastrophic growth of the speed
and amplitude of the nonlinear solitary-wave solutions to
(1) occurs as shown by Kalliadasis and Chang [11]. In their
study the unbounded growth observed for � * 1:413 was
associated with the drop formation process first observed
experimentally by Quéré [8] (the last stage of the nonlinear
evolution for sufficiently thin films). However, the ultimate
details of this process cannot be captured by (1) as the
assumption of a thin film thickness h in comparison to the

fiber radius R is soon violated when the drops reach a size
typically of the order of R. This assumption was relaxed in
the study by Kliakhandler, Davis, and Bankoff [9] (KDB)
who obtained the following equation (referred to hereafter
as KDB)
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where ���� � 	3�4��� 1�4 log��� 1� � ���� 2��
�3���� 2� � 2��
=�16�3� is a geometric factor corre-
sponding to the flow rate per unit length

 qN � gh3
N���N�=�3�� (5)

for a uniform film of thickness hN , and K�h� is the full
mean free-surface curvature. Craster and Matar [12] de-
rived an evolution equation nearly identical to the KDB
model in (4), the only difference being the estimation @x2h
for the axial curvature. Equation (4) is nondimensionalized
using a modified time scale T 0 � T =���N� such that h �
1 still corresponds to a flow rate q � 1=3.

A linear stability analysis of both the KDB and Craster-
Matar equations leads to the same dispersion relation
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where ck � f1� �N�
0��N�=	3���N�
g=�1� �N� is the

speed of the linear kinematic waves of (6) for k! 0.
Equation (2) can be recovered from (6) through the trans-
formation k! k	ck�1� �N�


1=3, !! !c4=3
k �1� �N�

1=3

and �! �c2=3
k �1� �N�

8=3. As a consequence, the thresh-
old above which the instability governed by the dispersion
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FIG. 4. AI and CI regions in the parameter plane �N � hN=R
versus R=lc. Thick solid lines refer to the OS solutions; label 1
refers to Rhodorsil silicon oil v50 and label 2 to water. Dashed
and thin solid lines correspond to Eqs. (7) and (3), respectively.
Regular and irregular primary wave trains reported in the ex-
periment are indicated by crosses and dots, respectively. The
dependence of hN (and thus �N) with the flow rate qN is given in
(5). The inset is a blowup of the diagram for small values of �N .
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relation (6) becomes absolute can be readily obtained from
the analysis of (2). The C=A transition then occurs at

 

�N
ck��N��1� �N�4

>�3=2
ca

�
R
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�
2
: (7)

In Fig. 4 we compare the boundary between convective
instability (CI) and absolute instability (AI) regions given
by (3) and (7) to the one obtained from the linear stability
analysis of the axisymmetric Navier-Stokes equations. The
resulting Orr-Sommerfeld (OS) equation, a fourth-order
ordinary differential equation for the complex stream-
function  �r� with r the radial coordinate and completed
with the linearized stress balance and the no-slip condition
at the fiber, was solved numerically by continuation start-
ing from the planar limit (R! 1) and a very thin film
(Reynolds number Re! 0) in which case the solutions to
the OS equation can be obtained analytically.

The limit of small film thicknesses compared to the fiber
radius, �N ! 0, corresponds to the case of a film flowing
down a vertical wall for which the instability is always
convective [5]. In the case of thick films, i.e. �N large, the
Rayleigh-Plateau instability is weakened by the decrease
of the free-surface azimuthal curvature, 1=�R� hN�. This
effect is not compensated by the lower speed of the kine-
matic waves relative to the mean flow as �N increases, and
the instability is again convective. As a consequence, at a
given value of the radius R, there exists an intermediate
range of �N values for which the Rayleigh-Plateau mecha-
nism dominates over the advection of the waves, the in-
stability being therefore absolute. On the other hand, the
instability is always convective for fibers of larger radii, i.e.
R> 0:28lc. Interestingly, this latter value seems to be
independent of the liquid viscosity. For highly viscous
liquids, such as Rhodorsil silicon oil v50, the locus of the
C=A transition (thick line labeled 1 in Fig. 4) is close to the
zero-inertia limit (7).

Figure 4 summarizes the experimental findings for dif-
ferent fiber radii. Primary sinusoidal wave trains of con-
stant frequencies and healing lengths are reported as
crosses. Wave trains displaying significant fluctuations of
the frequency or the healing length are indicated by dots.
The transition between both regimes is in good agreement
with the C=A boundary (curve 1). In the AI region, the fre-
quency of the primary waves corresponds to the frequency
of the linear absolute mode (see Fig. 3). Therefore we
conclude that the onset of the regular wavy regime coin-
cides precisely with the onset of the absolute instability.

The effects of inertia can be observed for less viscous
fluids, like water (� � 10�6 m2=s and � � 72:5�
10�3 N=m). The OS analysis reveals a C=A boundary in
parameter space (curve 2 in Fig. 4) topologically similar to
what is found with the zero-inertia approximation of the
KDB model in (4). Yet, significant deviations from (7) are
observed at small values of �N , inertia tends to enlarge the
AI region as it reinforces the destabilizing azimuthal cur-
vature that competes with advection. However, at large

values of �N , corresponding to large Reynolds numbers,
the classical hydrodynamic instability of a falling film
dominates over the Rayleigh-Plateau mechanism. Conse-
quently, the characteristics of the instability in this region
are similar to the vertical planar case where the instability
is always convective [5].

To conclude, we have characterized experimentally and
theoretically the primary instability of a viscous film flow-
ing down a fiber. Evidence of both regular and irregular
wavy regimes has been obtained through measurements of
the healing length and frequency of the signal close to the
inlet. A convective stability analysis, based on the approxi-
mate zero-inertia evolution Eqs. (1) and (4), as well as the
linearized primitive equations, has been undertaken. The
threshold of the regular wavy regime is shown to corre-
spond precisely to the linear C=A transition, as suggested
by the Ginzburg-Landau formulation for a supercritical
Hopf bifurcation [4]. The critical flow rate for the CI onset
is in good agreement with the experimental transition from
regular to irregular primary wave trains for all tested fiber
radii. Of particular interest would be the structure and the
stability of the observed global mode. At the same time, for
large �N where the dynamics is driven by both the hydro-
dynamic mode of instability for a film on planar substrate
and the Rayleigh-Plateau instability, we anticipate that the
coupling between the two can lead to some intricate non-
trivial wave dynamics in the nonlinear regime. We shall
examine these and related issues in a future study.
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