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We analyze the coherent-structure interaction and the formation of bound states in active dispersive-

dissipative nonlinear media using a viscous film coating a vertical fiber as a prototype. The coherent

structures in this case are droplike pulses that dominate the evolution of the film. We study experimentally

the interaction dynamics and show evidence for formation of bound states. A theoretical explanation is

provided through a coherent-structures theory of a simple model for the flow.
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Bound states, i.e., composites of two or more building
blocks behaving as single objects, appear in a wide variety
of physical settings, from atomic physics and quantum
mechanics to biological physics and complex fluids [1].
In this Letter, we demonstrate experimentally bound-state-
formation phenomena in low-Reynolds-number interfacial
hydrodynamics. Our experimental system consists of a
viscous film flowing down a vertical fiber. The film is
always unstable and spontaneously breaks up into a drop-
like wave train [2]. Streamwise viscous diffusion plays a
dispersive role that dramatically affects the wave selection,
speeds, and shapes [3]. This system is a simple example of
a nonlinear medium with energy supply, energy dissipa-
tion, and dispersion, and as such it can be used as a
prototype for the study of generic features of the pattern-
formation dynamics of open-flow hydrodynamic and other
systems. For example, the instability can be either absolute
or convective [3]. In the latter case, the interface is domi-
nated by droplike interacting pulses. We demonstrate that
for sufficiently strong dispersion, such pulses can form
bound states.

A qualitative theoretical explanation of the observed
bound-state-formation phenomena is provided with a
coherent-structures theory for the generalized Kuramoto-
Sivashinsky (gKS) equation. This equation has been postu-
lated in the literature as a prototype for the study of pattern-
formation dynamics and spatiotemporal complexity in ac-
tive dispersive-dissipative media. For sufficiently small
dispersion, it exhibits spatiotemporal chaos while suffi-
ciently large dispersion ‘‘regularizes’’ the solution in favor
of a train of solitary pulses which continuously interact
with each other [4]. Such ‘‘dissipative solitons,’’ as they are
referred to by Christov and Velarde [4], are due to a precise
balance between nonlinearity, energy supply at long wave-
lengths, and energy dissipation at short ones, and they
appear in many different contexts [5]. Coherent-structures
theories have been formulated based on the idea of weak
interaction between neighboring structures, e.g., Ref. [6].
For the gKS equation, previous efforts [7] appear to have

overlooked important details, in particular, in relation to
the spectra of the operators of the linearized system around
the pulses and their adjoints. We offer for the first time a
rigorous analysis of the spectra of these operators and
provide precise criteria for the existence of bound states
of pulses of the gKS equation.
A sketch of the experimental setup is shown in Fig. 1(a).

Rhodorsil silicon oil v50 (density � ¼ 963 kg=m3, dy-
namic viscosity � ¼ 48� 10�3 Pa s, surface tension � ¼
20:8� 10�3 N=m, and capillary length ��1 ¼ 1:5 mm at
25 �C) flows on vertical nylon fibers of 1.5 m in length.
Notations are shown in Fig. 1(b). x denotes the streamwise
direction along the fiber. To ensure strong curvature ef-
fects, radii R are chosen to be small compared to the
capillary length, 0:2 mm<R< 0:475 mm, i.e., R=��1 <
0:32. A balance between viscous drag and gravity gives a
characteristic speed U0 ¼ �gh20=2�. The relevant dimen-

sionless groups are the Reynolds number Re ¼ �U0h0=�
and the Weber number We ¼ �=�U2

0h0. Parameters are

chosen so that both surface tension and viscosity effects are
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FIG. 1. (a) Experimental setup, (b) notations, and (c) typical
solitary-pulse shape (R ¼ 0:45 mm).
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important, i.e., 0:6mm<h0<0:95mm giving 3:5 cm=s<
U0 < 8:8 cm=s, 30>We> 3, and 0:4< Re< 1:7.

The initially flat film breaks up into a regular droplike
train of coherent structures, each of which resembles the
pulse shown in Fig. 1(c). This instability results primarily
from the capillary pressure induced by the azimuthal cur-
vature (Rayleigh-Plateau instability); the pressure induced
by the axial curvature has a stabilizing effect. Here we
focus on the regime where the Rayleigh-Plateau instability
competes with the viscous dispersive effect.

Spatiotemporal diagrams are obtained with a linear
camera. The noise-driven dynamics is depicted in Fig. 2.
The primary quasiregular wave train is destabilized by
numerous coalescence and capillary drainage enhanced
events leading to the formation of saturated pulses [see
Fig. 2(a)]. After a certain distance, typically 80 cm, no
more coalescence occurs and the saturated pulses re-
arrange themselves through attractions and repulsions
[see A and B, respectively, in Fig. 2(b)]. Visualization of
these events is obtained with a fast digital camera [see
Figs. 2(c) and 2(d), respectively]. During attraction (repul-
sion) the upstream pulse 1 accelerates (decelerates) while
the downstream pulse 2 decelerates (accelerates). The
pulses then lock on at a given distance, which remains
constant, and both travel at constant speed forming a bound
state. Although no obvious regular pattern is observed
down the fiber, statistics on the separation distances be-
tween successive pulses performed at the bottom of the
fiber (at around x ¼ 1:4 m) and with a large ensemble
averaging reveal a clear reorganization of the system
with certain distances being selected. Indeed, in the histo-
gram presented in Fig. 2(b), we observe that, although the

distribution of distances is broad, four specific distances
stand out: d1 � 1:2 cm, d2 � 1:8 cm, d3 � 2:6 cm, and
d4 � 3:35 cm. The system appears to be heading towards
organization. We have explored the parameter space by
changing the fiber radius and the initial film thickness.
Bound states are always observed with two to four pre-
ferred distances. Pulse rearrangement seems to be mainly
promoted by interaction without substantial mass ex-
change. Waves then only interact through their tails whose
specific structure is responsible for the observed phe-
nomena. The characteristic profile of the waves is shown
in Fig. 1(c). Surface tension and inertia lead to the front
capillary ripples while viscous friction suppresses them.
The steepening of the front is a nonlinear kinematic effect
while inertia, gravity, and viscous drag are responsible for
the gentle monotonically increasing back edge. As two
nearly identical pulses approach each other, the back slope
of the downstream pulse 2 overlaps with a minimum
(maximum) of one of the periodic capillary waves preced-
ing the upstream pulse 1. This generates a negative (posi-
tive) differential capillary pressure in the liquid
(�p���hxx) that drains fluid from 2 to 1 (1 to 2). This
depresses (elevates) the back slope of the front pulse 2 and
increases (decreases) its curvature. The generated differ-
ential capillary pressure then drains a small amount of fluid
out of (into) the crest of 2, slightly changing its amplitude
and its speed, while the back pulse 1 experiences an
opposite change in amplitude. The front pulse then moves
slightly slower (faster) than the back pulse, and the pulses
attract (repel) each other [see Figs. 2(c) and 2(d)]. This
mechanism implies not only the existence of several pos-
sible distances between pulses but also that the distances

FIG. 2 (color online). Experimentally obtained world lines tracking the wave peaks during noise-driven evolution for R ¼ 0:45 mm,
We ¼ 18, Re ¼ 0:56, and � ¼ 0:4: (a) 0:07 m< x< 1 m and (b) 0:65 m< x< 1:4 m; inset: histogram of the distances between
pulses at the bottom of the fiber, 1:2 m< x< 1:4 m. (c) and (d) show consecutive images (height: 9 cm) demonstrating attraction
(We ¼ 5, Re ¼ 1:2, and � ¼ 0:39) and repulsion (We ¼ 3:4, Re ¼ 1:5, and � ¼ 0:42), respectively, for R ¼ 0:35 mm. Time between
two consecutive images is 0.08 s.
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between the neighboring prominent peaks in the histogram
of Fig. 2(b) are roughly the same, i.e., d2 � d1 � d3 �
d2 � d4 � d3, and are related to the period of the oscil-
lations of the front tail of the pulse. An explanation for this
effect is given below.

We start by deriving a simple model for the flow. The
governing equations are the Navier-Stokes in cylindrical
coordinates with the wall and the free-surface boundary
conditions. We assume R=h0 ¼ Oð��1Þ, We ¼ Oð��2Þ,
and Re ¼ Oð�Þ, where � � 1 is the long-wave or film
parameter, e.g., Ref. [8]. Through a weakly nonlinear
expansion in which the amplitude deviation from h0 is
taken of Oð�2Þ, we obtain the following equation:

HT � c�HX þHHX þHXX þ �HXXX þHXXXX ¼ 0;

(1)

already in a frame moving with the velocity of a pulse. X,
T, and H are defined through

x ¼ h0A
�1=2ðX þ c�TÞ þ 3B½2þ 2

3�� 1
2�

2�T; (2a)

t ¼ 3U�1
0 BT; H ¼ 12A1=2Bh�2

0 ðh� h0Þ; (2b)

where A ¼ 8=5Weþ �2, B ¼ h0=WeReA2, and � ¼
h0=R. The second term in (2a) is due to a transformation
into the frame moving with the velocity of an infinitesimal
wave, which is necessary to remove the advective term
appearing in the weakly nonlinear expansion. The addi-
tional transformation into the frame moving with the ve-
locity of the pulse results in the term c�T in the first
brackets in (2a).

Equation (1) is the so-called gKS equation. It is the
simplest possible prototype that retains the fundamen-
tal elements of active-dissipative nonlinear media: the
dominant nonlinear term ðHHXÞ, instability (HXX), sta-

bility (HXXXX), and dispersion (�HXXX), where � ¼
6=WeReA1=2. Let H0 ¼ H0ðXÞ be a stationary pulse sat-

isfying the steady version of (1). We assume that H ¼
P

n
i¼1 Hi þ Ĥ, where HiðX; TÞ ¼ H0ðX � XiðTÞÞ is a

quasistationary pulse located at XiðTÞ; i ¼ 1; . . . ; n, and

Ĥ is an overlap function. We consider weak interaction
assuming that Li � Xiþ1 � Xi ¼ log"þOð1Þ for i ¼
1; . . . ; n� 1, where " � 1, and that the velocities of the

pulses, X0
i, i ¼ 1; . . . ; n, and the overlap function, Ĥ, are of

Oð"Þ. The linearized equation for Ĥ in the vicinity of the
ith pulse takes the form

Ĥ T � X0
iHiX ¼ LiĤ � �iðHi�1HiÞX � �iðHiHiþ1ÞX;

(3)

where �i ¼ �i ¼ 1 for 1< i < n, �1 ¼ �n ¼ 0, and
�n ¼ �1 ¼ 1. Lis are linear operators defined by LiF ¼
c�FX � FXX � �FXXX � FXXXX � ðHiFÞX. The formal
adjoint operators, L	

i s, with respect to the inner product
in L2

C, hf; gi ¼
Rþ1
�1 f �gdX, are given byL	

i F ¼ �c�FX �
FXX þ �FXXX � FXXXX þHiFX. The aim now is to
project the dynamics in the vicinity of the ith pulse onto

the null space ofLi spanned by the translational modeHiX.
Our analysis reveals that the null space ofL	

i is spanned by
a constant and a function �i tending exponentially to
different constants as X ! 
1. Therefore, zero is not in
the point spectrum ofL	

i on an infinite interval. Projections
onto the null space of Li are made rigorously by choosing
an appropriate weighted space, namely, L2

a ¼ ff: eaXf 2
L2
Cg, where a is a positive sufficiently small number, with

the inner product hf; gia ¼ heaXf; eaXgi. Studying the
spectrum ofLi in L

2
a is equivalent to studying the spectrum

of the operator defined byLa
i f ¼ eaXLiðe�aXfÞ in L2

C (see

Ref. [9]). Zero becomes an isolated eigenvalue of both La
i

and La	
i of algebraic and geometric multiplicity unity, and

projections can now be made in the usual way. Assuming

that Ĥ is in the null spaces of the projections, we arrive at
the following system describing the leading-order dynam-
ics of the locations of the pulses:

X0
i¼�iS2ðXi�Xi�1Þþ�iS1ðXiþ1�XiÞ; 1� i�n; (4)

where S1;2ðLÞ � �R1
�1 H0ðX þ 1

2LÞH0ðX � 1
2LÞ�0

XðX 

1
2LÞdX. Thus, the position of the ith pulse is governed by its
interaction with the oscillatory front of the upstream pulse
(i� 1), described by S2, and with the monotonic tail of the
downstream pulse (iþ 1), described by S1. System (4) can
be rewritten in terms of the separation distances Lis and its
fixed points then give the bound states; e.g., for a bound
state of two pulses, we must have S1ðL1Þ ¼ S2ðL1Þ. At the
same time, S1;2 represent the velocities of the first and of

the second pulse relative to c�, respectively. The graphs of
S1 and S2 are shown in Fig. 3(a) for � ¼ 0:4. Depending on
their initial separation distance L, pulses either attract
(S1 > S2) or repel (S1 < S2) each other. As they get closer
or further from each other, their velocity difference de-
creases until both pulses propagate at the same velocity,
forming a bound state. The abscissas of the intersection
points hence indicate the separation distances for which
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FIG. 3. (a) Dependence of S1 and S2 on the separation distance
between two pulses for � ¼ 0:4. (b) Evolution of pulses of the
gKS equation for � ¼ 0:4, in the frame of a solitary pulse
obtained by solving (4). Subplot: histogram of the pulse sepa-
ration distances (the initial distribution was taken to be normal
with mean 18 and standard deviation 3).
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bound states can be formed. By analyzing the behavior of
S1;2 as L ! 1, it can be shown that if � < �	 � 0:85, there
is a countable infinite number of intersections. Otherwise,
the number is finite, but for � * 1:3 there are no intersec-
tions (we note that for � * 1, numerical experiments with
the gKS equation show that we do not have formation of
bound states).

We have solved numerically (4) for two pulses and � ¼
0:4 [as in Figs. 2(a) and 2(b)] and compared the results with
numerical solutions of (1) when the initial condition is a
superposition of two pulses with the same separation dis-
tance as that for (4). We found very good agreement
between the two. Figure 3(b) shows a typical solution of
(4) and the world lines of 24 pulses. We observe both
attractions and repulsions as well as formation of two-
and three-pulse bound states. Also, the world lines are
similar to those obtained in our experiments and shown
in Fig. 2(b). The subplot shows a histogram obtained from
statistics on 3000 pulse separation distances at t ¼ 1000.
We observe three clear peaks formed at ’9:5, 14, and 18.5,
which are in very good agreement with the stable two-pulse
bound state distances shown in Fig. 3(a) (the distance of
’4 is disregarded as it corresponds to a two-hump pulse
which is never observed in the computations). The inset in
Fig. 3(b) reveals a feature that is also present in the experi-
ments [inset of Fig. 2(b)]: the distances between the neigh-
boring prominent peaks in the histograms are roughly the
same. The theoretical explanation for this is in Fig. 3(a): S2
is oscillatory approaching a sinusoidal function for L * 6
while S1 levels off quickly with L. Converting the dimen-
sionless distances 9.5, 14, and 18.5 to dimensional ones
gives 0.42, 0.62, and 0.82 cm. When compared with the
first three peaks occurring in the histogram in Fig. 2(b) at
d1 � 1:2 cm, d2 � 1:8 cm, and d3 � 2:6 cm, we find that
the experimental distances are larger than the theoretical
ones by a factor of ’3. Hence, we have qualitative agree-
ment in that the system appears to select (via both attrac-
tions and repulsions) certain separation distances at large
times (which are also of the same order with the experi-
ments). However, we do not have quantitative agreement,
but this is to be expected as for the theoryRwas assumed to
be large compared to h0, which is not the case in experi-
ments, where � ¼ Oð1Þ. Violation of this assumption af-
fects significantly the constant A and therefore the
rescaling of the distances. Smaller thicknesses are not
reachable experimentally: below a critical film thickness
of ’0:5 mm, no flat film can emerge; instead, dripping of
the liquid from the faucet is observed. The requirement
� � 1 is approached on a larger radius fiber or with
smaller thicknesses on smaller radii; however, under these
conditions either � * 1 and we do not observe the forma-
tion of bound states as noted earlier or � & 0:1, in which
case the behavior is chaotic (we are close to the KS limit).
Experimentally, bound states are observed for 0:1 & � &
1, when both dispersive and dissipative effects are strong.

This also implies that � is indeed the right parameter to
measure dispersive effects.
To conclude, we have examined experimentally pulse

interaction and formation of bound states on the surface of
a film coating a vertical fiber. Theoretical support for these
phenomena was provided with a coherent-structures theory
for the gKS equation. This equation is not strictly speaking
applicable for � ¼ Oð1Þ, the regime in which the experi-
ments were conducted, so that a quantitative agreement is
not quite achieved. However, it is the simplest possible
model for the physical system, containing all its important
elements, and thus capable of describing the experiments
qualitatively.
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