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ABSTRACT: We investigate experimentally the evaporation of
liquid accumulated on a pair of parallel fibers, rigid or flexible.
The liquid wetting the fibers can adopt two distinct
morphologies: a compact drop shape, whose evaporation
dynamics is similar to that of an isolated aerosol droplet, or a
long liquid column of constant cross-section, whose evaporation
dynamics depends upon the aspect ratio of the column. We thus
find that the evaporation rate is constant for drops, while it
increases strongly for columns as the interfiber distance
decreases, and we propose a model to explain this behavior.
When the fibers are flexible, the transition from drops to
columns can be induced by the deformation of the fibers because of the capillary forces applied by the drop. Thus, we find that
the evaporation rate increases with increasing flexibility. Furthermore, complex morphology transitions occur upon drying, which
results in spreading of the drop as it evaporates.

■ INTRODUCTION

The evaporation of a sessile macroscopic droplet is a familiar
phenomenon that enters many industrial processes, such as
spray cooling, particle deposition, and heat exchange. Starting
from the seemingly simple case of an aerosol droplet
evaporating in a quiescent atmosphere,1 the dynamics of
evaporation of a drop resting on a surface has been studied
extensively, both experimentally and theoretically.2,3 Most
studies considered the effect of the wetting properties of the
substrate, i.e., the influence of the contact angle on the
dynamics, from hydrophilic to super-hydrophobic or textured
surfaces.4−7 However, the effect of the mechanical properties of
the substrate (i.e., its elasticity) has been addressed only
recently, because of the increased use of soft viscoelastic gels.
When a drop is deposited on a soft solid, the capillary forces at
the contact line and the Laplace pressure within the drop can
deform the surface.8−12 The deformation at the triple-phase
contact line affects the receding contact angle and can result in
pinning of the contact line.13−15 Upon drying, the drop will
thus maintain a constant contact radius; consequently, droplets
evaporate faster on softer surfaces.
When the substrate is not a flat surface but rather a

structured porous structure, the evaporation dynamics of
isolated droplets becomes increasingly complicated. In
particular, significant attention has been given to transpiration
from fibrous media. For example, the drying dynamics of
collected aerosol drops from a fibrous filter, present in many
industrial settings, does not follow the laws estimated by the
evaporation of spherical particles suspended in quiescent air.16

However, only the global evaporation from the material was
considered, and the relation to the local behavior of single

drops remains unexplored. Furthermore, the presence of
liquid/air interfaces induces capillary forces that can deform
locally the fibers, thus affecting the liquid distribution.17,18 This
elastocapillary effect causes the shrinkage of a fibrous
membrane upon drying because of the collapse of adjacent
fibers19 or can be used to induce self-assembly of micro- or
nanopillars.20−22

To understand the drying dynamics of a fiber array, we start
by looking at the evaporation of a single isolated drop. We
choose a model system consisting of two parallel fibers and
investigate both rigid fibers and flexible fibers; i.e., we quantify
the effect of elasticity on the evaporation process by allowing
bending of the pair of fibers.

■ RIGID FIBERS

A liquid deposited on two parallel rigid fibers can adopt
different morphologies, either a compact hemispherical drop or
a long liquid column of uniform cross-section.23−26 We focus
here on perfectly wetting liquids, i.e., with an equilibrium
contact angle θe = 0. Previously, we obtained a morphology
diagram27 as a function of the drop volume V and the interfiber
distance 2d, renormalized by the fiber radius r (Figure 1a).
Columns only exist for d/r < √2, while drops prevail for d/r >
√2. For large volumes V/r3 > 500, there is a range of
separation distances 0.57 < d/r < √2 for which drops are also
more energetically favorable. However, in that region, columns
are metastable and both column and drop states are observed.
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Experimental Setup. We consider the ideal case of
isothermal diffusion-dominated evaporation of perfectly wetting
liquids on a pair of rigid parallel fibers of various radii, as
sketched in Figure 1b. The distance between the fibers 2d is
adjusted using two microcontrolled stages. The drop volume V
is typically 2−5 μL; therefore, the drop size is typically R ≃ 0.5
mm. We used two low-viscosity perfectly wetting silicone oils,
one with density ρ = 760 kg/m3, surface tension γ = 15.9 mN/
m, and kinematic viscosity ν = 0.65 mm2/s (SO65) and the
other one with density ρ = 818 kg/m3, surface tension γ = 16.9
mN/m, and kinematic viscosity ν = 1 mm2/s (SO1). The Bond
number Bo = ρgR2/γ that compares surface tension and
gravitational forces is of the order 0.1; surface tension effects
will thus dominate over gravity effects. These oils have different
diffusivities in air, which leads to an order of magnitude
difference in the evaporation rate. The density of oil in air is ρS.
We suppose that, at the interface, we are at thermodynamic
equilibrium and ρS = ρsat the density at saturation and that, far
from the liquid, the density tends toward ρS → ρ∞ = 0. We
assume that evaporation is solely driven by diffusion. The
diffusive process is modeled by Fick’s law, while we have to
solve the Laplace equation to obtain the concentration profile.
However, we can deduce the oil diffusivities and saturation
density by measuring the evolution of mass with time during
the evaporation from a fixed surface (i.e., a Petri dish of radius
Rp) using precision scales. We then deduce the rate χ at which
the liquid evaporates and find χ = (3 ± 0.1) × 10−4 g/s (SO65)
and χ = (5 ± 1) × 10−5 g/s (SO1). For a disk of radius Rp, if
evaporation is diffusion-dominated, the mass flux is given by χ =
8DmρsatRp. We thus obtain Dmρsat = (1.47 ± 0.05) × 10−6 kg
m−1 s−1 (SO65) and Dmρsat = (2.4 ± 0.5) × 10−7 kg m−1 s−1

(SO1) and can further determine an evaporation parameter D
= Dm(ρsat/ρ) that has the dimensions of a diffusion coefficient.
We find D = (19.3 ± 0.7) × 10−10 m2/s (SO65) and D = (2.9 ±
0.6) × 10−10 m2/s (SO1), in agreement with the values
reported in the literature.2

Evaporation of a Drop on a Single Fiber. We first
perform a control experiment by monitoring the evaporation of
a drop on a single fiber. We measure the evolution of the length
of the drop (t), and we denote tf the time at which all of the
liquid has disappeared (Figure 2). Because the liquid is

perfectly wetting the fibers (θe = 0), the drop adopts a barrel
unduloid shape throughout evaporation.28,29 For a given fiber
radius, when the length is plotted as a function of the rescaled
time D(tf − t), the data for the two oils collapse on a single
curve, which indicates that the evaporation process is indeed
diffusion-dominated.
A mass balance can be written

ρ ϕ=V
t

A
d
d (1)

where A is the surface area and ϕ is the mass flux per unit area.
For a spherical droplet of radius R, the concentration profile is
obtained by solving the Laplace equation in spherical
coordinates, which, using Fick’s law for the diffusive process,1

gives the diffusive flux j0 = ϕ/ρ = −D/R. The solution of eq 1 is
thus R(t) = (2D(tf − t))1/2, which is the classical so-called “D2”
law.2 In the case of a drop on a fiber, the drop slightly departs
from the spherical shape and adopts an unduloid barrel shape
of length . We assume that the flux remains radial, with a
diffusive length /2, i.e., j0 = −D/( /2), and the shape of the
drop, i.e., length and surface area A as a function of the
volume V and the fiber radius r, can be found analytically30 (see
the Appendix). For a fixed volume, as we increase the fiber
radius, the drop departs further from a sphere and flattens
toward a more cylindrical shape, resulting in an increase in
length . During evaporation, as the volume is reduced, the
drop adopts successive barrel shapes of decreasing length
(Figure 2). We can solve eq 1 numerically to obtain (t). We
find a good agreement with the experiments, indicating that the
assumption of a radial flux with a typical diffusive length /2 is a
good first approximation (Figure 2).

Evaporation from Two Fibers. We can now study the
evaporation of liquid from a pair of rigid parallel fibers with

Figure 1. (a) Morphology diagram of a volume V of liquid deposited
on two rigid parallel fibers of radius r separated by a distance d. Scale
bars = 1 mm. (b) Experimental setup: a wetting drop (silicone oil) is
deposited on two parallel fibers (nylon or glass).

Figure 2. Evaporation of the length /2 (mm) of a drop on a single
fiber for two different oils as a function of D(tf − t) (m2): for SO65, ν
= 0.65 mm2/s, ρ = 760 kg/m3, and D = 19 × 10−10 m2/s (○) and for
S01, ν = 1 mm2/s, ρ = 818 kg/m3, and D = 3 × 10−10 m2/s (×) and
three fiber radii: 2r = 0.2 mm (light gray), 2r = 0.245 mm (gray), and
2r = 0.35 mm (black). The model described in the text and Appendix
is given by the solid lines.
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radii r and spacing d. We first measure the average evaporation
rate ψ, defined as the ratio of the initial mass m0 to the
evaporation time tf, as we vary d/r for a given liquid and
different fiber radii (Figure 3a). We observe that, for d/r > √2,
as the liquid adopts a drop shape, the evaporation rate is
constant and equal to that of a drop on a single fiber. We can
estimate the order of magnitude of this average evaporation rate
with the rate obtained for an isolated aerosol droplet: for a drop
of initial radius is R0, the total evaporation time tf = R0

2/(2D)
and ψ = m0/tf = (8/3)ρπR0D. For a microliter droplet, R0 ∼ 0.5
mm, and ψ ∼ 2 × 10−2 mg/s (SO65) or ψ ∼ 3.63 × 10−3 mg/s
(SO1), in good agreement with the experimental values of 1.6
× 10−2 mg/s for SO65 and 3 × 10−3 mg/s for SO1. However,
as the liquid adopts a column shape, there is a sharp increase in
the evaporation rate as d/r decreases. This increase can be
partially understood by the increase in surface area as the liquid
spreads into a column. We will now study the drying kinetics of
both drops and columns to quantify and understand these
observations.
We measure the evolution of the wetted length with time tf

− t as shown in Figure 3b. Dependent upon the interfiber
distance, we observe long columns with fast evaporation, drops
with slow evaporation, or cases where both states are reached
during evaporation. The latter case is observed for distances

0.57 < d/r <√2. We start with a large volume of liquid (V/r3 >
700) for which the drop shape is the most stable configuration
(see Figure 1a). As the liquid evaporates and the volume is
reduced (i.e., traveling horizontally in the morphology diagram
of Figure 1a), the column becomes more favorable and the
liquid spreads and then evaporates. These situations are
reported in Figure 3b (crosses): the length first follows the
drop behavior and then switches to the column behavior.
To compare the dynamics, we rescale the data with the initial

length 0 and the evaporation time tf (inset in Figure 3b). There
are two clear trends for drops and columns. All of the data for
the drops collapse on a single curve, while the data for columns
exhibit a clear dependence upon the interfiber distance. We
indeed recover the observation made with the average
evaporation rate: there is a unique evaporation speed for
drops, while columns evaporate faster with a decreasing
interfiber distance d.
We now study the dynamics in detail, starting with drops. We

plot the length of the drop (normalized by the initial length)
with respect to time (tf − t). The results collapse toward a
single curve but do not exhibit a clear scaling law (Figure 4a).
The shape of the drop between the fibers is complex and
cannot be found analytically. However, we make the
assumption that the evaporation of the drop is similar to that

Figure 3. (a) Average evaporation rate ψ (mg/s) as a function of the distance between the fibers d/r for different fiber radii: 2r = 0.2 mm (squares),
2r = 0.245 mm (circles), and 2r = 0.35 mm (diamonds) and silicone oil SO65. The liquid adopts different morphologies, from drops (open symbols)
to columns (black symbols). There is a range of d/r where both states coexist (gray symbols). Similar results are obtained for SO1 (not shown) with
an average evaporation rate of the order 10−3 mg/s. (b) Evolution of the wetted length (mm) on two parallel fibers of radius 0.2 mm as the liquid
(SO1) evaporates as a function of time (tf − t) (s). The liquid is in either a drop state (open circles) or a column state (closed circles), or it exhibits
both states during evaporation (crosses). (Inset) Rescaled length / 0 as a function of the rescaled time t/tf for various distances between the fibers,
fiber radii, and initial volumes.

Figure 4. Evaporation in the drop morphology (d/r >√2). (a) Evolution of the rescaled length / 0 as a function of rescaled time D(tf − t) (m2) for
2r = 0.2 mm (○, +), 2r = 0.245 mm (◇, ×), and 2r = 0.35 mm (□, ∗) for SO65 and S01, respectively, and varying 1.5 < d/r < 4. (b) Evolution of
the effective radius Reff = (3V/4π)1/3 (mm) with time D(tf − t) (m2) for 2r = 0.29 mm, d/r = 2.6, and silicone oil SO1 (black) and SO65 (blue) with
D = 3 × 10−10 and 19 × 10−10 m2/s, respectively. The line is eq 2. (Inset) Schematic of the setup used to measure the drop mass with time.
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of an aerosol droplet, only slightly affected by the fibers, as
suggested by the universal behavior of the rescaled drop length,
which is independent of the distance d/r. To verify this
assumption, we measure the evolution of the mass of the
evaporating drop with time (Figure 4b). The mass of the drop
is typically small (2 mg). To measure fine variations of mass, we
developed the setup sketched in the inset of Figure 4b. The
fibers are attached to the coil of a sensitive displacement sensor,
a rotary variable differential transformer (RVDT). As the mass
decreases, the sensor rotates, which generates a current that can
then be related to the drop mass after calibration. We can then
measure the mass with an accuracy of 10−3 μg and, hence,
deduce the drop volume V. We define an effective radius Reff =
(3V/4π)1/3. The evolution of Reff with time is given in Figure 4.
The data for the two oils collapse onto a single curve, which is
given exactly by the law

= −R D t t(2 ( ))eff f
1/2

(2)

with the values of D found previously. The evaporation of the
drop thus corresponds, to a first approximation, to the
evaporation of an aerosol droplet of radius Reff and is only
slightly affected by the exact shape of the drop on the fibers.
We next focus on the columns that exhibit a strikingly

different dynamics (Figure 3b). To understand the dynamics,
we consider a thin rectangular wet strip of width b and length
such that ≫ b, as sketched in Figure 5a. We consider the
solution of the steady-state diffusion equation outside the
narrow strip, which is analogous to the electrostatic problem of
a conducting ellipsoid with a large aspect ratio.31 In this case,
the diffusive flux occurs over distances approximately b ln( /b)
≫ b, and therefore, the mass flux from the strip is about

= −j
D

b bln( / )0 (3)

The liquid volume is given by V = , where is the cross-
sectional area of the column (inset in Figure 5b), while the
exposed surface area is A = b. The mass balance equation thus
reads

= −b
t

Dln( / ) d
d (4)

which has the solution

= −⎜ ⎟⎛
⎝

⎞
⎠b

D
t tln( / )

2
( )f

1/2

(5)

We plot the evolution of ln( ) with (tf − t)1/2 in Figure 5a and
observe excellent agreement with the experimental measure-
ments for every experiment (i.e., varying d, r, or the liquid).
We now have to verify the pre-factor; we thus need to

determine b and . We choose b = dapp the distance wetted by
the liquid (see inset in Figure 5b), which can be calculated
analytically, together with the cross-sectional area of the
column.25,27 We plot the rescaled data in Figure 5b. The data
gather well onto a single line given by eq 5 with a prefactor of 2.
We believe that the small scatter in the data and the missing
prefactor are due to the assumption of the rectangular strip
model, which does not consider the curvature of the interface
and the liquid corners on the fibers (see inset in Figure 5b). A
more refined model is thus needed to better quantify the
dynamics, but our proposed model captures well the main
trends in time and with variations in material and geometric
parameters. We remark parenthetically that although droplets
and columns have different surface curvatures, one can show
that the Kelvin effect (the change in equilibrium vapor pressure
above a curved surface) is negligible for this problem because
the radius of curvature is always much larger than the molecular
length scale.

■ FLEXIBLE FIBERS

On flexible fibers, the transition from drops to columns can be
induced by the deformation of the fibers because of the
capillary forces applied by the drop. We consider a pair of
parallel flexible fibers of length L and bending stiffness B,
clamped at one end with a fixed separation distance d and free
to deflect at the other end. The liquid morphology is given by
an elastocapillary balance that depends upon both the fiber
properties and the volume of the drop.
We previously identified two critical volumes that determine

the equilibrium state of a finite volume of liquid deposited on a
pair of flexible fibers.18 For V > Vs, the liquid adopts a compact
drop shape. For V < Vc, the liquid adopts the shape of a long
liquid column spread between coalesced fibers. For Vs > V > Vc,
there is an intermediate state where the drop is only partially
spread, with a small drop remaining at the edge. The critical
volumes correspond to two elastocapillary balances

Figure 5. Evaporation of a column. (a) Evolution of ln( ) (in mm) with (tf − t)1/2 (in s1/2) for d/r = 1.07 and SO65. Sketch of the equivalent strip of
liquid used in the evaporation model. (b) Evaporation of columns for 2r = 0.2 mm (○, +) and 2r = 0.35 mm (□, ×) for silicone oils SO65 and SO1,
respectively, and varying 0.33 < d/r < 1.34.
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γ
=

−

⎛
⎝⎜

⎞
⎠⎟V

d rL
B d d

18
( )s

s
3

s

3

(6)

π= −V r L L( )c
2

ec (7)

with

γ π
=

−

⎛
⎝⎜

⎞
⎠⎟L

Bd
r
9

2 ( 2)ec

2 1/4

(8)

where ds ≃ 1.1r is the average critical distance found
experimentally at which the drop−column transition occurs
and Lec is an elastocapillary length, which represents the
minimal distance along which the fibers can be bent by capillary
forces. Hence, Lec corresponds to the fiber length above which
the deformation becomes significant. We thus expect to observe
a strong dependence of the drying kinetics upon the fiber
elasticity because of the changes in equilibrium morphology.
Furthermore, the volume changes upon evaporation will lead to
dynamical changes in morphology during drying.
Drying Kinetics. For a fixed volume V, as we increase the

fiber length, we have a transition between drops on short, more
rigid fibers (L ≤ Lec), to columns on long, more flexible fibers
(L > Lec). We measured the average evaporation rate ψ as a
function of the ratio L/Lec (Figure 6). We observe two regions:

for rigid fibers, the liquid is in a drop state and the evaporation
rate is constant, and for flexible fibers, the liquid is in the
column state and the evaporation rate increases with an
increasing deformation, i.e., with increasing flexibility (either
decreasing fiber stiffness B, increasing length L, or decreasing
distance d). There is an intermediate region where the liquid
adopts both states during evaporation, which we will discuss in
the next section. We thus recover the results obtained on rigid
fibers. These results suggest that we can control the evaporation
rate by controlling the deformation, i.e., the effective elasticity,
of the fibers over a wide range (factor 4 change in the rate).
Morphology Transitions. As described earlier, large

volumes of liquid (V > Vs) adopt a compact drop shape,
while smaller volumes spread into either a partial (V s > V > Vc)

or total (V < Vc) liquid column. As the drop evaporates, we
thus expect to observe morphology transitions, from drops to
columns or from partial to total spreading. Here, the surface
tension effect dominates, and changes in shape are fast enough
to consider that the drop adopts successive equilibrium shapes
as the volume decreases during evaporation. Examples of such
dynamics are presented in Figure 7. We first consider the case
where the initial volume V0 is such that Vs > V0 > Vc: the liquid
first spreads into a column, with a small drop remaining at the
edge (Figure 7a). As the liquid evaporates, the length of the
column increases as the edge drop decreases in size. When the
edge drop has disappeared, the liquid is in a total spreading
morphology and the column has the maximum wet length L −
Lec. The column then decreases similarly to that between close
rigid parallel fibers until complete evaporation.
A second transition is presented in Figure 7b for V0 > Vs. We

start with an hemi-spherical drop, whose size decreases with a
decreasing volume. We note that the fibers become closer
together, illustrating the increase of the capillary force applied
by the drop as the volume is reduced. Then, suddenly, as V =
Vs, the drop spreads into a column, after which the column
length decreases. For more rigid fibers, the liquid remain as a
drop for the total evaporation time. In addition, we can monitor
the change of mass with time using the device presented in
Figure 4, as shown in Figure 7c. For the partial/total column
case, the mass decreases smoothly with time and there is no
obvious transition. Similarly, for the drop case, the mass
decreases smoothly in a similar fashion as in the rigid case. For
the case where a drop−column transition occurs upon drying,
we first observe the drop behavior followed by a sudden
transition (indicated by an arrow) that is accompanied by a
sharp acceleration of the drying rate, in agreement with our
previous observations. These results show that liquid is
redistributed as the drop evaporates and that wetting can be
induced by drying. Measurement of the mass at the transition
gives the spreading volume Vs = 0.5 μL, which is very close to
the predicted value Vs = 0.51 μL calculated from eq 6.
Furthermore, we can estimate the time at which this spreading
transition occurs, which could be of practical significance. For a
drop of initial volume V0 and effective radius R0 = (3V/4π)1/3,
the total evaporation time tf is given by eq 2.

=t
R

D2f
0

2

(9)

The drop reaches a volume Vs (or an effective radius Rs) for t =
ts defined as

= −t t
R

D2s f
s

2

(10)

In the case presented in Figure 7c, V0 = 1.4 μL, Vs = 0.5 μL, and
we find ts = 376 s, which gives a good estimate of the time
obtained experimentally (ts = 332 s).

■ CONCLUSION
When deposited on a fiber array, liquid is distributed either in
the form of long liquid columns or semi-spherical compact
droplets, depending upon the structure of the array (i.e., the
distance between the fibers) and its elasticity. The two liquid
morphologies show distinct dynamics of evaporation. Columns
evaporate significantly faster than drops because of their
increased surface area and geometry. We demonstrate that the
diffusive flux from a thin liquid column is strongly dependent

Figure 6. Average evaporation rate ψ (mg/s) on a pair of flexible fibers
held on the left end at a distance d (arrows on the pictures) and free to
move at the right end (glass fibers, 2r = 0.29 mm, B = 10−6 N m2, and
d/r = 3.95) as we increase the elasticity of the fibers (i.e., the ratio L/
Lec). We observe a transition from drops (stars) to columns (circles)
with an intermediate region, where both states are observed (squares).
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upon the aspect ratio. Because the transition from drops to
columns can be induced by the deformation of the fibers, a
flexible material, in which fibers are allowed to bend, evaporates
faster than a rigid material. It is thus possible to control the
evaporation rate of the material indirectly by adjusting the fiber
elasticity or deforming the matrix to change the liquid
morphology. Furthermore, we have shown that, under
particular conditions, the liquid can redistribute upon drying,
i.e., spread into a long liquid column at a specific time during
the evaporation process. We expect such rearrangements to
have various consequences in fibrous media, such as the sudden
collapse of adjacent fibers or the pattern obtained by deposition
of solid particles during the evaporation of suspensions. Finally,
the dynamics of evaporation of isolated droplets on a pair of
fibers could provide new insights into the drying dynamics of
more complex fibrous materials.

■ APPENDIX: DROP ON A SINGLE FIBER
We consider a drop sitting on a fiber of radius r, as sketched in
Figure 8. The equilibrium contact angle is θe (θe = 0 in the

perfectly wetting case considered in this paper). Here, s
measures arc length along the drop profile z(x), and θ is the
slope of the profile tangent, so that dz/ds = sin θ and dx/ds =
cos θ.
To determine the profile, we need to solve the equation30,32

θ θ
γ

− + =
Δ

s z
pd

d
cos

(11)

where Δp is the capillary pressure. Using the boundary
conditions at the apex of the drop (θ = 0 at z = hm) and at
the contact line (θ = θe at z = r), we obtain an expression for
the capillary pressure and eq 11 becomes

θ =
+
+

z
z arh
ar h

cos
2

m

m (12)

where

θ
θ

=
−

−
a

h r
h r

cos
cos

m e

m e (13)

as introduced by Carroll.30 We note that a = 1 in total wetting.
Knowing that cos θ = dx/ds = (1 + (dz/dx)2)−1/2, we solve eq
12 for the profile

∫=
+

− −
x z

z arh

z a r h z
z( ) d

z

h 2
m

2 2 2
m

2 2

m

(14)

This equation can be further reduced to a form involving
elliptic integrals by changing variables to ϕ defined as

ϕ= −z h k(1 sin )2
m

2 2 2
(15)

where

= −k
a r
h

12
2 2

m
2

(16)

We finally obtain the profile

ϕ ϕ= +x z h E k arF k( ) ( , ) ( , )m (17)

where F(ϕ,k) and E(ϕ,k) are the incomplete elliptic integrals of
the first and second kind, respectively. From there and for total
wetting (a = 1), we deduce the wetted length on the fiber

= +h E k rK k2[ ( ) ( )]m (18)

where K(k) and E(k) are the complete elliptic integrals of the
first and second kind, respectively. We can further obtain the
surface area

π= +A h r h E k4 ( ) ( )m m (19)

and the volume

π
π= + + − −V

h
h h r r E k r K k r

2
3

[(2 3 2 ) ( ) ( )]m
m

2
m

2 2 2

(20)

The mass balance (eq 1) thus reads

Figure 7. Time sequence of an evaporating drop of silicone oil SO65 of volume V = 5 μL on flexible glass fibers (d/r = 3.8 and 2r = 0.29 mm) of
lengths (a) 4.2 cm and (b) 3.6 cm. Interval between successive images = 10 s. (c) Evolution of the mass (in comparison to the initial mass m0 = m(t
= 0) with time for a drop of volume 1.4 μL on glass fibers (d/r = 4.2 and Lec = 3 cm), SO1, and different lengths exhibiting three regimes: a drop
remains spherical (black, L = 3 cm), a drop transitions to a column (dark gray, L = 3.7 cm), and a transition from partial to total column (light gray,
L = 4.8 cm).

Figure 8. Shape of a drop sitting on one fiber.
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= −
h
t

DA
V h

d
d

2
(d /d )

m

m (21)

where , A, and V are given by eqs 18, 19, and 20, respectively.
The equation is then solved numerically with MATLAB to
obtain the evolution of the length (t).
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