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a b s t r a c t

When a wetting liquid invades a porous medium or a capillary tube, the penetration or imbibition speed

is known to decrease as the square root of time. We examine the capillary filling of a gap between

flexible sheets and demonstrate that the pressure-induced inward deflection of the sheets leads to a

non-monotonic behavior of the speed of the invading meniscus until eventually the flow is blocked. A

model based on lubrication theory is formulated as a non-linear free-boundary problem, which is

solved numerically using finite-difference methods. Good agreement is obtained with our experiments.

At early times the deformation of the sheets is insignificant, and the penetration speed is unaffected. At

later times, as the penetration distance approaches the elastocapillary length, the deformation becomes

appreciable and the flow accelerates. Shortly thereafter, the gap at the air–liquid interface goes to zero,

and the flow necessarily stops. The length of the sheets above which imbibition will cause them to

coalesce is determined and is found to be in good agreement with that predicted via scaling arguments.

Biological applications of this transient wetting of flexible boundaries are discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The surface-tension-driven coalescence of flexible structures,
i.e., elastocapillarity, is relevant to a number of biological and
engineering processes, such as the closure of pulmonary airways
[1–3], the design of biomimetic adhesives [4,5], the failure of
micro and nanoscale devices [6–9], and the stability of water-
walking arthropods [10]. Elastocapillarity has been the subject of
several recent studies that analyze equilibrium configurations
where there is a balance between elasticity and capillarity. Bico
et al. [11] and Kim and Mahadevan [12], for example, investigated
the statics of capillary rise of a liquid between flexible sheets, and
Kwon et al. [13] examined the shape of a liquid drop confined
beneath a flexible sheet. To the best of our knowledge, the
transient wetting of flexible boundaries has been considered by
relatively few authors. Siddique et al. [14] investigated the
dynamics of capillary rise into a deformable porous material,
while van Honschoten et al. [15] studied the capillary filling, or
imbibition, of a nanochannel with an elastic capping layer. In this
paper we consider imbibition between flexible sheets, and we
determine a criterion for their coalescence. In particular, we
quantify the time-dependent deflection of the sheets and the
penetration speed of the invading liquid as it advances towards
the initially free end of the sheets.

Consider the capillary filling of a gap between flexible,
inextensible sheets of thickness b, width w (into the page) and
ll rights reserved.
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length ‘ that are initially parallel and separated by a distance 2h0,
as depicted in Fig. 1. The sheets are clamped at their left end,
where fluid enters from a reservoir at atmospheric pressure, so
that the flow into the gap between the sheets is driven solely by
surface tension owing to a reduction in pressure at the meniscus;
gravitational effects are neglected. The pressure distribution
associated with the invasion of fluid leads to an inward deflection
of the sheets, which further alters the pressure distribution in the
liquid and the speed at which the meniscus advances. The shape
of the sheet is denoted h(z,t), and the penetration distance or
meniscus position zm(t).

The characteristic length scale over which the sheets will
deflect to a combined distance of 2h0 may be estimated by taking
each sheet to be a cantilever that is loaded at a distance ‘ec from
its clamped end by the Laplace pressure gk, where g is the surface
tension. The curvature at the meniscus may be approximated by
k¼ cosye=hðzmÞþcosye=ðw=2Þ, where ye is the contact angle
(imbibition requires yeop=2) [16]. By taking h(zm,t)¼h0, h05w,
and by using the Euler–Bernoulli beam equation Bhzzzz ¼ gk,
where subscripts denote derivatives, B¼ Eb3=12ð1�n2Þ is the
bending stiffness per unit width, E the Young’s modulus, and n
the Poisson ratio, we identify the characteristic length scale

‘ec ¼
Bh2

0

gcosye

 !1=4

, ð1Þ

which may be interpreted as an elastocapillary length. This
particular length scale is also relevant to the coalescence of wet
hair [11], and the adhesion-related failure of micromechanical
imbibition, Int. J. Non-Linear Mech. (2010), doi:10.1016/
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Fig. 1. Sketch of elastocapillary imbibition. (a) Liquid (shaded region) with

viscosity m and surface tension g enters the region between two clamped sheets

with length ‘ and bending stiffness per unit width B, which are separated by a

distance 2h0. (b) The liquid wets the sheets, which subsequently deflect inward

owing to a reduction in pressure and the force 2wgsinye at the contact line. The

shape of the wetted region of the sheet is denoted by h(z,t), the dry region of the

sheet by ~hðz,tÞ, and the position of the invading meniscus by zm(t). (c) The ends of

the sheet touch and exert a force on each other. (d) The sheets coalesce over the

length ‘�‘eff ðtÞ. (e) Imbibition continues until the liquid entirely fills the region

between the sheets, resulting in coalescence over the length ‘coalesce.
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devices during drying [17]. Specifically, ‘ec is the length of the
object above which capillary-driven coalescence occurs.

The characteristic time scale may be estimated by using
Darcy’s law,

mu

k
¼�

@p

@z
, ð2Þ

where m is the kinematic viscosity, u the cross-sectionally
averaged liquid velocity, k¼h2/3 the permeability, p the local
pressure, and z the axial coordinate. Combining (2) with one-
dimensional mass conservation,

htþðhuÞz ¼ 0, ð3Þ

and relating the deflection to the Laplace pressure at the meniscus
gives the characteristic time scale

tc ¼
9Bm2

g3cos3 ye

� �1=2

: ð4Þ

For early times t5tc , or equivalently where the position of the
meniscus zmðtÞ5‘ec , we expect the deflection of the sheets to be
negligible and the meniscus to advance according to that given by
the classical (capillary) imbibition result [18]:

zmðtÞ ¼
2gcosyeh0

3m

� �1=2

t1=2 ð5Þ

and

dzm

dt
¼

gcosyeh0

6m

� �1=2

t�1=2: ð6Þ

For later times totc , or equivalently zmo‘ec , we expect the sheet
to deflect considerably and the meniscus speed to deviate from
that predicted by (6). Finally, as t approaches tc, or equivalently
zm � ‘ec , we expect the gap at the meniscus to reach zero, and the
flow to therefore stop.
2. Theoretical formulation

We proceed by deriving an evolution equation for the sheet
deformation, h(z,t), and fluid velocity, u(z,t), by treating the flow
as incompressible and one-dimensional in the axial or z-direction.
The viscously dominated dynamics are described by Darcy’s law,
Please cite this article as: J.M. Aristoff, et al., Elastocapillary
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given by (2), where we have estimated the permeability k based
on the lubrication approximation [19] which requires jhzj51.
Since this approximation implies that the slope of the sheets is
small, we may use the linear theory of plates to describe their
deformation. Due to symmetry about the z-axis, we need to
consider only one of the sheets. Provided further that the sheet is
sufficiently thin, b5w5‘, its deflection is described by the Euler–
Bernoulli beam equation,

Bhzzzz ¼ qðz,tÞ, ð7Þ

where we have neglected the inertia of the sheet and its weight,
and q(z,t) is the force per unit area (pressure) acting on the sheet
[20]. This quasi-static description of the sheet is appropriate
provided that the characteristic time scale of the flow, tc, is much
longer than the reaction time of the sheet to an applied load,

t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsb‘

4=B
p

. The reaction time is found by equating the bending

energy Bðh0=‘
2Þ

2‘w to the inertial stress rsbw‘ðh0=tÞ2, where rs is

the density of the sheet. The weight of the beam may be neglected

provided that the gravitational torque rsbw‘2gcosa is much less

than the bending moment Bwh0=‘
2, or equivalently rsb‘

4

gcosa=Bh051, where a is the initial inclination of the sheet
with respect to the horizontal.
2.1. Deflection of the liquid-filled region h(z,t)

We first consider the deflection of the sheet where it is in
contact with the liquid. The flow is from left to right. To the left of
the meniscus, 0rzrzmðtÞ, we may differentiate (7) and combine
it with (2) to obtain

uðz,tÞ ¼�
B

3mh2hzzzzz: ð8Þ

We evaluate (8) at z¼zm to find an expression for the motion of
the meniscus:

dzm

dt
¼�

B

3m h2hzzzzz

����
z ¼ zm

: ð9Þ

Next, combining (8) with the statement of mass conservation,
given by (3), yields the non-linear evolution equation

ht ¼
B

3m
ðh3hzzzzzÞz: ð10Þ

Eq. (10) was studied by Hosoi and Mahadevan [21], who
considered the dynamics of an elastic sheet that was clamped at
one end and lubricated from below by a single fluid. Our study is
distinguished by the presence of two fluids (air and liquid) in the
lubricating layer, and the additional equation for the time-
dependent position of the air–liquid interface, given by (9). Before
we discuss the boundary conditions for (10), we consider the
deflection of the liquid-free region.
2.2. Deflection of the liquid-free region ~hðz,tÞ

To the right of the meniscus, zmðtÞozr‘, the deflection of the
sheet ~hðz,tÞ is given by

B ~hzzzz ¼ 0, ð11Þ

which may be integrated analytically to give

~hðz,tÞ ¼ c1ðtÞðz�zmÞ
3
þc2ðtÞðz�zmÞ

2
þc3ðtÞðz�zmÞþc4ðtÞ: ð12Þ

The unknown coefficients c1, c2, c3, and c4 will be determined by
the boundary conditions at the free end z¼ ‘ and the matching
conditions with the wetted portion of the sheet at z ¼zm.
imbibition, Int. J. Non-Linear Mech. (2010), doi:10.1016/
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2.3. Boundary conditions

The boundary conditions for (10) and (12) will now be
specified. The left end of the sheet is assumed to be fixed and
clamped, and the pressure is atmospheric. Correspondingly,

hð0,tÞ ¼ h0, hzð0,tÞ ¼ 0, and hzzzzð0,tÞ ¼ 0: ð13Þ

At the meniscus, z¼zm, there is a jump in pressure equal to the
Laplace pressure, which may be written in the form

Bhzzzzðzm,tÞ�B ~hzzzzðzm,tÞ ¼�
gcosye

hðzm,tÞ
: ð14Þ

Initially, the right-most end of the sheet is force- and moment-
free. Thus, both the shear and curvature at the right-most end are
zero,

~hzzð‘,tÞ ¼ 0 and ~hzzzð‘,tÞ ¼ 0, ð15Þ

so we must have c1¼0 and c2¼0 in (12). At the meniscus, the
position and slope are continuous, requiring that c4¼h(zm,t) and
c3¼hz(zm,t). The curvature must also be continuous, so that

hzzðzm,tÞ ¼ ~hzzðzm,tÞ ¼ 0: ð16Þ

Due to surface tension acting along the contact line, there is a
jump in the transverse shear force at the meniscus, so that

Bhzzzðzm,tÞ�B ~hzzzðzm,tÞ ¼ �gsinye: ð17Þ

We note that for a purely wetting liquid, ye ¼ 0, and (17) reduces
to hzzz(zm,t)¼0.

The tips of the sheet will contact at a time t̂ when ~hð‘,tÞ ¼ 0.
Should this occur, the sheets exert an equal but opposite force on
each other, and the shear-free boundary condition at z¼ ‘, (15b),
must be replaced by the condition ~hð‘,tÞ ¼ 0. The matching
conditions at z¼zm then require for tZ t̂ that (16) and (17) be
replaced by

hzzðzm,tÞ ¼
�3hzðzm,tÞð‘�zmÞ�3hðzm,tÞ

ð‘�zmÞ
2

ð18Þ

and

hzzzðzm,tÞ ¼
3hzðzm,tÞð‘�zmÞþ3hðzm,tÞ

ð‘�zmÞ
3

�
gsinye

B
, ð19Þ

respectively. Finally, should the sheets touch over a segment
‘eff rzo‘, we must have ~hð‘eff Þ ¼

~hzð‘eff Þ ¼ 0, consistent with a
tangentially smooth contact. This condition, together with
~hzzð‘eff Þ ¼ 0, prescribes the value of ‘eff and requires that we
replace ‘ by ‘eff in (18) and (19).

2.4. Non-dimensionalization

We proceed by non-dimensionalizing the evolution equations
and boundary conditions using the characteristic length and time
scales determined in Section 1. Let H¼h/h0, Z ¼ z=‘ec , Zm ¼ zm=‘ec ,
L¼ ‘=‘ec , and T¼t/tc. These substitutions transform the evolution
equations, given by (9) and (10), to

dZm

dT
¼�H2HZZZZZ

���
Z ¼ Zm

ð20Þ

and

HT ¼ ðH
3HZZZZZÞZ , ð21Þ

respectively. The boundary conditions, given by (13a), (13b),
(13c), (14), (16) and (17), become

Hð0,TÞ ¼ 1, ð22aÞ

HZð0,TÞ ¼ 0, ð22bÞ
Please cite this article as: J.M. Aristoff, et al., Elastocapillary
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HZZZZð0,TÞ ¼ 0, ð22cÞ

HZZZZðZm,TÞ ¼ �
1

HðZm,TÞ
, ð22dÞ

HZZðZm,TÞ ¼ 0 and ð22eÞ

HZZZðZm,TÞ ¼�U, ð22fÞ

where

U¼
h0

‘ec

� �
tanye: ð23Þ

For the case when the sheets contact, the boundary conditions
(18) and (19) become

HZZðZm,TÞ ¼
�3HZðZm,TÞðL�ZmÞ�3HðZm,TÞ

ðL�ZmÞ
2

ð24Þ

and

HZZZðZm,TÞ ¼
3HZðZm,TÞðL�ZmÞþ3HðZm,TÞ

ðL�ZmÞ
3

�U, ð25Þ

respectively.
Since we have used (12) to express the matching conditions at

the meniscus Z¼Zm in terms of the boundary conditions at the
end of the sheet Z¼L, the solution of (20)–(25) for the liquid-filled
region automatically satisfies the boundary conditions at Z¼L,
and prescribes the deflection of the liquid-free region, ZmoZrL,

~HðZ,TÞ ¼HZðZm,TÞðZ�ZmÞþHðZm,TÞ, ð26Þ

where ~H ¼ ~h=h0. For the case that the sheets contact, the
deflection of the liquid-free region is no longer given by (26),
but instead by

~Hðz,TÞ ¼
HZZZðZm,TÞþU

6
ðZ�ZmÞ

3
þ

HZZðZm,TÞ

2
ðZ�ZmÞ

2

þHZðZm,TÞðZ�ZmÞþHðZm,TÞ ð27Þ

for ZrLeff ¼ ‘eff=‘ec , and ~HðZ,TÞ ¼ 0 otherwise.
For a perfectly wetting liquid we have U¼ 0. For a partially

wetting liquid, provided that the gap is much smaller than the
elastocapillary length, we may also take U¼ 0. Thus, we may
safely neglect the influence of the contact angle on the dynamics,
and so, in what follows, we take the dimensionless jump in the
transverse shear force at the meniscus, HZZZ(Zm,T)¼0. Thus, by
choosing the proper length and time scales to non-dimensionalize
the governing equations and boundary conditions, we have
eliminated all physical parameters from (20)–(22). Although the
parameter L appears in the boundary conditions (24) and (25), we
shall observe below that its value has little influence on the
overall dynamics of elastocapillary imbibition, provided that
L\2:9. Therefore, in a practical sense the dimensionless solution
reported here is universal.
3. Numerical solution

3.1. Numerical method

The evolution equations (20) and (21), together with the
boundary conditions (22)–(25), are solved numerically for H(Z,T)
and Zm(T) using a finite-difference method implemented in
MATLABs. In order to do so, we first map the time-dependent
interval 0rZrZmðTÞ to the fixed interval 0rSr1 by making the
substitution S ¼ Z/Zm(T). We then choose an implicit scheme
(backwards in time, centered in space) to discretize the resulting
evolution equations and boundary conditions. This choice pro-
vides accuracy of OðDS2Þ in space and OðDTÞ in time, where DS is
imbibition, Int. J. Non-Linear Mech. (2010), doi:10.1016/
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the increment in space, and DT is the increment in time. Forward
and backward finite-difference approximations of order OðDS2Þ

are used to incorporate the boundary conditions at S¼0 and 1,
respectively. For each term in (20)–(25) that is non-linear, the
lowest order derivatives are found using the corresponding
explicit finite-difference approximation. Numerical tests were
performed to verify stability and convergence of the chosen
scheme. The initial conditions H(S,0.00125)¼1 and Zm(0.00125)¼
0.05 were used throughout the study, consistent with the classical
prediction Zm ¼

ffiffiffi
2
p

T1=2 that is valid for Zm51. As in classical
imbibition, we cannot take Zm(0)¼0, which would lead to an ill-
posed problem as a finite force is applied to an infinitesimal mass.
For a typical DT ¼ 10�3 and DS¼ 1

30, the numerical solution is
obtained within 1 min on a 2 GHz processor.
3.2. Numerical results

We present the time-evolution of the deflection of the sheets
in Fig. 2 for three sheets having different lengths L. The liquid-
filled region has been shaded. Initially, the gap thickness is
uniform, i.e., the sheets are parallel. As time increases, the
meniscus advances and the sheets deflect inward. The shortest
0 0.5 1 1.5

Z

0 1

Z

Fig. 2. Time-series plot of the upper and lower sheet profiles, H(Z,T) and �H(Z,T), as th

advances from left to right. The final frame corresponds to the time at which the men

between successive images is T¼0.184. (c) The time between successive images is T¼

Please cite this article as: J.M. Aristoff, et al., Elastocapillary
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sheets (L¼1.5) do not coalesce during imbibition (Fig. 2a), and the
flow stops once the meniscus reaches the end of the sheets. The
longer sheets (L¼2.2) coalesce during imbibition (Fig. 2b), but the
distance over which they coalesce is small relative to the length of
the sheet. The longest sheets (L¼5) coalesce over a large distance
during imbibition (Fig. 2c).

A comparison between elastocapillary imbibition and capil-
lary-driven (classical) imbibition is presented in Fig. 3 for
L¼ ‘=‘ec ¼ 1:5 (solid gray curves), L¼2.2 (dashed gray curves),
and L¼5 (dash-dotted gray curves). At early times, T51, the
penetration distance, shown in Fig. 3a, follows the classical
prediction, given by (5). At later times, when T ¼ O(1), the
penetration distance increases relative to the classical prediction,
denoted by the black line, and the penetration speed necessarily
increases. This relative increase is observed in Fig. 3b, where we
present the penetration speed versus time. An acceleration of the
imbibing front is observed for each of the three cases. The gap at
the meniscus as a function of time is shown in Fig. 3c. We
note that for L¼1.5, imbibition stops when the meniscus reaches
the end of the sheets, an event that occurs prior to the gap at
the meniscus reaching zero. For L¼2.2 and L¼5, we find that the
penetration speed goes to zero in finite time, contrary to the
classical prediction, given by (6), where the elastocapillary length
2 0 2 4

Z

e sheet length is increased through L¼ ‘=‘ec ¼ 1:5, L¼2.2, and L¼5. The meniscus

iscus stops. (a) The time between successive images is T¼t/tc¼0.09. (b) The time

0.228.

imbibition, Int. J. Non-Linear Mech. (2010), doi:10.1016/
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Fig. 3. Summary of numerical results for L¼ ‘=‘ec ¼ 1:5 (solid gray curves), L¼2.2 (dashed gray curves), and L¼5 (dash-dotted gray curves). (a) Penetration distance versus

time. (b) Penetration speed versus time. (c) Gap at the meniscus versus time. (d) Gap at the initially free end of the sheet versus time. The black lines denote the classical

prediction for the penetration distance, penetration speed, gap at Zm, and gap at L, and are given by Zm ¼
ffiffiffi
2
p

T1=2, dZm=dT ¼ ð2TÞ�1=2, H(Zm)¼1, and H(L)¼1, respectively.

Deviations from these predictions occur when T¼O(1), or equivalently, when Zm¼O(1).
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is effectively infinite. Finally, in Fig. 3d we present the time
evolution of the gap at H¼L. For L¼1.5 (solid gray curve), the
sheets do not coalesce during imbibition, whereas for L¼2.2 and
L¼5 (dashed and dash-dotted gray curves), imbibition causes the
sheets to coalesce.

We further quantify the influence of the sheet length L on
elastocapillary imbibition in Fig. 4. The maximum penetration
distance Zm

n , the distance at which the flow stops, is denoted by
the & symbol. For short sheets, Lr1:95, we find Zm

n
¼L, i.e., the

front reaches the end with a finite separation distance between
the sheets. For long sheets, L42:9, we find that Zm

n reaches a
constant value of 2.67 that is independent of L. The time at which
imbibition stops, Tn, is denoted by the� symbol, and also reaches
a constant value (2.03) for sufficiently long sheets. Both Tn and Zm

n

achieve maximum values near L¼2.9, at the boundary between
regimes II and III, where the slope of the sheet reaches a minimum
value (not shown). Coalescence occurs above a critical sheet
length of L� 1:95, which is a value that is in good agreement with
the O(1) value predicted via scaling arguments.

The apparent independence of Zm
n and Tn on the sheet length

for Lb1 may be understood by examining the boundary
conditions (24) and (25) in which L enters the problem
formulation. For LbZm, (24) reduces to HZZ(Zm,T)¼0 and (25)
reduces to HZZZ(Zm,T)¼0. Thus, although the sheets make contact
at Z¼L, the shear force and curvature there are negligible, the
boundary conditions become independent of L, and we may take
Please cite this article as: J.M. Aristoff, et al., Elastocapillary
j.ijnonlinmec.2010.09.001
(22e) and (22f) in favor of (24) and (25). Finally, we performed
numerical tests to determine the range of validity of the lubri-
cation approximation jhzj51, or equivalently jHZ jðh0=‘ecÞ51. In
regime I we require h0=‘ec 51. In regime II we require
h0=‘ec 510�2. In regime III we require h0=‘ec 510�1. Therefore,
provided that ratio between the initial gap and the elastocapillary
length is sufficiently small, the lubrication approximation is valid.
4. Experimental study

We have observed experimentally a deviation from classical
imbibition by considering the capillary filling of a gap between
flexible sheets. We discuss these results in the framework of the
theoretical model presented in Section 2.

4.1. Experimental setup

A sketch of our experimental setup is shown in Fig. 5. Two
horizontal glass sheets (thickness b¼ 160mm, width w¼12 mm
and bending stiffness per unit width B¼2.2�10�2 N m) are
clamped over a fixed length ‘0 at one end, and free at the other.
The sheets are initially parallel and separated by a distance
2h0¼0.37 mm. The clamped end of the sheet is brought into
contact with a bath of silicone oil (viscosities m¼ 0:048 and
0:096 Pa s, surface tension g¼ 0:021 N m�1) that perfectly wets the
imbibition, Int. J. Non-Linear Mech. (2010), doi:10.1016/

dx.doi.org/10.1016/j.ijnonlinmec.2010.09.001
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Fig. 4. Influence of the sheet length L¼ ‘=‘ec on the imbibition dynamics and

distance over which the sheets coalescence, Lcoalesce ¼ ‘coalesce=‘ec ¼ L�Z�m . The

maximum penetration distance, Zm
* , is denoted by the & symbol. The time at

which imbibition stops, T*, is denoted by the � symbol. In regime I ðLr1:95Þ,

imbibition stops when the meniscus reaches the end of the sheet (Zm
*
¼L). In

regime II ð1:95oLr2:9Þ, the sheets touch during imbibition, but the distance over

which they contact, Lcoalesce, is small relative to the length of the sheet. In regime

III¼ ðL42:9Þ, both Zm
* and T* become nearly independent of L, and Lcoalesce thus

increases linearly with L.

Fig. 5. Sketch of the experimental setup. The illustrated shape of the meniscus

corresponds to a typical experimental observation.

Fig. 6. Image sequences from the experiments of elastocapillary imbibition. Consecutiv

Dt¼ 3:3 s, (b) L¼1.7 (regime II), Dt¼ 2:8 s and (c) L¼3.8 (regime III), Dt¼ 4 s, for silico

‘coalesce.
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glass ðye ¼ 0Þ. The material properties, the surface tension, and the
initial gap are held constant, so that a constant elastocapillary
length ‘ec ¼ 14:8 mm is obtained. The ratio L¼ ‘=‘ec is varied by
changing the length of the sheets ‘þ‘0.

The liquid is gently poured into the reservoir to start
imbibition. The initial position of the meniscus z0¼0 and time
t0¼0 correspond to the beginning of impregnation at the clamped
edge of the sheets. The liquid advances in the rigid section of the
channel and enters the region of interest (where the sheets are
free to deflect) at a distance z¼ ‘0. The position of the meniscus is
recorded from above with a digital camera and tracked using a
customized image-analysis program written in MATLABs. The
shape of the sheets is recorded from the side.
4.2. Results

Depending on the length of the sheets, four different behaviors
are observed. For short sheets ðLt0:6Þ, no bending is observed
and classical imbibition is recovered. Nevertheless, the meniscus
appears to advance slower than predicted by (5). Specifically, we
find the relationship zmðtÞ ¼ að2gcosyeh0=3mÞ1=2t1=2, where
a¼ 0:58. This discrepancy likely arises from the neglect of the
contact-line dynamics in the derivation of (5), which would tend
to flatten the meniscus at early times, and thus reduce the speed
of imbibition [22]. A second contribution to the reduction in speed
could result from the open sides of the channel or the finite width
of the sheets. The correction prefactor a¼ 0:58 is roughly constant
for all of our experiments.

For longer sheets, we observe a deviation from classical
imbibition—the liquid appears to accelerate as the sheets come
together. Image sequences of the deflecting sheets are provided in
Fig. 6. We quantify this deviation in Fig. 7, where we plot the
position and speed of the meniscus versus time.

In regime I ð0:6tLt1:47Þ, the sheets do not touch during
imbibition (Fig. 6a). At early times, the sheets remain parallel. The
liquid invades the space between the sheets following a classical
diffusive law (Fig. 7a). As the meniscus advances, we observe a
deflection of the sheets, which subsequently leads to an accel-
eration of the meniscus. The flow stops when the meniscus
reaches the end of the sheets, which remain open indefinitely.

The early time dynamics of regime II ð1:47tLt2:5Þ are
similar to that of regime I. Nevertheless, the deflection of the
e images (side views) are separated by a time interval Dt for (a) L¼1.4 (regime I),

n oil of viscosity m¼ 0:096 Pa s. The arrows in (c) indicate the coalescence length
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Fig. 7. Experimental observations of the evolution of the (i) position zm and (ii) speed dzm/dt of the meniscus with time for three values of L¼ ‘=‘ec and silicone oil of

viscosity m¼ 0:048 Pa s. The solid lines correspond to the classical prediction zm ¼ aðatÞ1=2 and dzm=dt¼ ða=2ÞðatÞ�1=2 with a¼ 2gcosyeh0=3m and a correction prefactor

a¼ 0:58. The dashed lines correspond to the end of the clamped part of the sheets z¼ ‘0, and the dash-dotted lines correspond to the end of the sheets z¼ ‘þ‘0. In regimes

II and III, the symbol % indicates the time at which the free ends of the sheets touch. (a) L¼1.1 (regime I); (b) L¼1.47 (regime II); (c) L¼4.04 (regime III).
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sheets becomes sufficiently large that toward the end of
imbibition the free ends touch (Fig. 6b). The meniscus accelerates
significantly and promptly stops at the closed end of the sheets
(Fig. 7b).

In regime III ð2:5tLt4Þ, the sheets coalesce over a large
distance during imbibition. As the ends touch, the liquid
accelerates while the sheets start coalescing from the free end
Please cite this article as: J.M. Aristoff, et al., Elastocapillary
j.ijnonlinmec.2010.09.001
(Fig. 6c). The distance over which the sheets coalesce increases
with time until the meniscus reaches the point of contact between
the sheets and stops (Fig. 7c). In this regime, the meniscus gently
slows down before stopping.

No clear dependence of the time at which imbibition stops tn

with the sheet length is observed; nevertheless, the general trend
indicates that tn increases with increasing L for Lo4, or with
imbibition, Int. J. Non-Linear Mech. (2010), doi:10.1016/
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increasing viscosity (data not shown). We note that although the
final shape of the sheets does not correspond to an equilibrium
configuration, it remains so indefinitely, an important feature
should such a mechanism be used for applications is water
storage. The three regimes observed in the experiments are in
qualitative agreement with the numerical simulations. Further
comparison is provided in the following section.
4.3. Data collapse

We measured the maximum penetration distance z�m ¼ Z�m‘ec at
which the flow stops for several values of L (Fig. 8). In regimes I
and II, the meniscus reaches the end of the sheets (Zm

n
¼L).

Deviation from this behavior occurs for L¼2.8 when the sheets
start coalescing over a significant distance. In regime III, the
penetration distance attains a constant value Z�mC2:5. The
evolution of Zm

* is in good agreement with the numerical
simulations. However, the model slightly overestimates the
critical value attained in regime III (Zm

n
¼2.67) as well as the

sheet lengths at which the dynamics transition between adjacent
regimes (see Fig. 4). The finite width and thickness of the sheets as
well as the finite length ‘0 necessary to clamp the sheets may
account for this discrepancy. Nevertheless, we obtain a good
agreement between experiment and numerical simulation.
Fig. 8. Maximum penetration distance Zm
* as a function of the sheet length

L¼ ‘=‘ec in regimes I ð3Þ, II ð�Þ and III ðBÞ. The solid line corresponds to Zm
*
¼L. The

dashed line corresponds to Zm
*
¼2.5, which is the mean distance at which

imbibition stops in regime III, and is a value that appears roughly independent of L.

The pictures depict the final observed shapes for L¼1.4 (regime I), L¼1.7 (regime

II) and L¼3.8 (regime III).

Fig. 9. Data collapse. (a) Renormalized position Zm ¼ zm=‘ec and (b) speed dZm/dT of the

II, light gray �) and L¼4.04 (regime III, dark gray B). Solid lines correspond to the class

a¼ 0:58.
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We may now renormalize the data presented in Fig. 7 using ‘ec

and tc as defined by (1) and (4), respectively. The resulting
dimensionless presentation of the data is shown in Fig. 9. The data
collapse onto a single curve at early times, when the meniscus
follows the diffusive law Zm ¼ a

ffiffiffi
2
p

T1=2. When T and Zm become
order one quantities, the imbibing front accelerates, in good
agreement with the numerical prediction (Fig. 3) and scaling
arguments presented in the previous sections.
5. Discussion

We have presented the results of a combined theoretical and
experimental investigation of elastocapillary imbibition. In parti-
cular, we have examined the fluid flow between flexible sheets in
the direction of the free ends, and have determined a criterion for
capillary-driven coalescence. By treating the fluid flow as incom-
pressible, viscous, and one-dimensional, and the solid deformation
as linear and quasi-static, we have derived a coupled pair of
evolution equations for the sheet profile and penetration distance.
This non-linear free-boundary problem is solved numerically using
finite-difference methods. In dimensionless form, the solution
involves only a single parameter, the dimensionless sheet length
L¼ ‘=‘ec. At early times, the boundary deflection is negligible, and
we observe capillary-driven (classical) imbibition: the penetration
distance increases with the square root of time, and the penetration
speed decreases with the square root of time. At later times, the
inward deflection of the sheets gives rise to an acceleration of
the flow, followed by a closure of the gap at the meniscus.
Consequently, the flow speed goes to zero in finite time, while the
pressure at the meniscus goes to infinity. The final shape of the
sheet therefore does not correspond to an equilibrium configura-
tion. Further work could be done to analyze this singular structure.

Our study complements a recent report by van Honschoten
et al. [15], who investigated imbibition into a nanochannel with
an elastic capping layer. Since the capping layer was pinned along
both sides of a channel, the deflection varied across the width of
the channel and was maximum along its centerline. Conse-
quently, contact between the capping layer and the channel
bottom over the entire width of the channel could not occur, and
the flow does not become blocked. However, the authors observe
that as the deflection of the centerline increases, the penetration
speed increases, a trend that is in agreement with our numerical
results, albeit for a different geometry.

By considering the dynamics of elastocapillary imbibition, we have
provided a framework in which to study more complicated problems
regarding the coupling between capillary-driven flow and elastic
boundaries, a number of which are currently under investigation. For
meniscus as a function of time T¼t/tc for L¼1.1 (regime I, black 3), L¼1.47 (regime

ical prediction Zm ¼ a
ffiffiffi
2
p

T1=2 and dZm=dT ¼ ða
ffiffiffi
2
p

=2ÞT�1=2 with the correction factor
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example, Bico et al. [11] and Kim and Mahadevan [12] considered the
equilibrium shape following the elastocapillary rise of a liquid
between flexible sheets. Recently, we have characterized the
dynamics of elastocapillary rise by introducing gravity into our
theoretical model and by solving numerically the resulting equations
[23]. Other problems of interest include elastocapillary imbibition
between surfaces with varying stiffness as well as between surfaces
with non-zero curvature.

In what ways might elastocapillary mechanics (statics and
dynamics) arise in nature? The manipulation and storage of water
is paramount to the survival of plants and animals, which must
periodically replenish their internal water content. We speculate
that there exist biological structures that react to becoming wet by
deforming in such a way as to reduce evaporation. For example,
when a liquid drop is placed onto an elastic sheet, the sheet can
spontaneously wrap itself around the drop [24]. Likewise, imbibition
between flexible boundaries can lead to their coalescence and to the
trapping of a liquid volume. For the case when the boundaries are
initially parallel, we have determined the time scale and length scale
necessary for coalescence. We have shown that above a critical sheet
length, further increases in length do not increase the captured
volume. Thus, our findings provide possible bounds on the size of a
biological structure that exploits such an elastocapillary mechanism.
In a broader sense, the transient wetting of flexible structures is
relevant to hygromorphs, which are objects that deform in response
to changes in environmental humidity. For example, the wilting of
flowers, the wrinkling of skin, and the movement of wheat awns
[25] are all induced by temporal fluctuations in environmental
humidity. A fundamental understanding of these processes will
continue to inform the design of biomimetic devices that can
respond to external stimuli or that can manipulate liquids, an
example of which is the elastocapillary pipette [26].
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