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Wetting of flexible fibre arrays

C. Duprat!, S. Protiére®®, A. Y. Beebe' & H. A. Stone'

Fibrous media are functional and versatile materials, as demon-
strated by their ubiquity both in natural systems such as feathers'
and adhesive pads’® and in engineered systems from nanotextured
surfaces® to textile products’, where they offer benefits in filtration,
insulation, wetting and colouring. The elasticity and high aspect
ratios of the fibres allow deformation under capillary forces, which
cause mechanical damage®, matting>’ self-assembly’®'" or colour
changes'?, with many industrial and ecological consequences.
Attempts to understand these systems have mostly focused on
the wetting of rigid fibres'>"'” or on elastocapillary effects in planar
geometries'® and on a fibre brush withdrawn from an infinite
bath'®. Here we consider the frequently encountered case of a liquid
drop deposited on a flexible fibre array and show that flexibility,
fibre geometry and drop volume are the crucial parameters that are
necessary to understand the various observations referred to above.
We identify the conditions required for a drop to remain compact
with minimal spreading or to cause a pair of elastic fibres to
coalesce. We find that there is a critical volume of liquid, and, hence,
a critical drop size, above which this coalescence does not occur. We
also identify a drop size that maximizes liquid capture. For both
wetting and deformation of the substrates, we present rules that
are deduced from the geometric and material properties of the
fibres and the volume of the drop. These ideas are applicable to a
wide range of fibrous materials, as we illustrate with examples for
feathers, beetle tarsi, sprays and microfabricated systems.

Owing to the numerous environmental and industrial applications
of fibrous media, their wetting has been studied extensively. Most
research focuses on drops or flow on individual rigid fibres, often in
an array. However, in most applications, the elasticity of the fibres is
important, as evidenced from the matting of feather barbules’, the
shrinkage of porous fibre membranes®, strengthening of paper after
drying®, the clumping of the setae of beetle tarsi after release of tarsal
oil’, or the collapse of micro- or nanopillar arrays'®*?. Therefore, we
are motivated by the interaction of a mist of drops with a deformable,
or flexible, array of fibres. The basic elastocapillary response is
observed in the behaviour of a liquid drop on a pair of fibres, which
is where we begin.

For a perfectly wetting drop (that is, a drop that connects with the
fibre with a zero contact angle) deposited on two parallel, rigid fibres,
the minimization of surface energy yields three distinct drop shapes
depending on the ratio of the distance between the fibres, 2d,
(measured from their outer surfaces), and their diameter, 2r (Fig. 1b).
As dy/ris decreased, the drop evolves from a bridge to a barrel shape and
then spreads out into a liquid column'*"'": a drop forms for do/r > |2, a
column forms for do/r < 0.57 and there is non-uniqueness of the shape
for 0.57 < dy/r < 2.

In this Letter, we investigate the behaviour of a perfectly wetting
drop deposited onto two horizontal, flexible fibres that at one end are
clamped, parallel to each other, a distance 2d,, > 2,/2r apart and at the
other end are free to move (Methods and Fig. 1a). Our results can be
extended to the case of partial wetting by adding as an additional
parameter the effective contact angle, 0 < /2 (Supplementary Fig. 4).
We neglect gravitational effects because the fibres do not bend under

their own weight and the drop sizes are smaller than the capillary
length, I, above which gravitational effects become important. By 2d
we denote the distance between the fibres at the drop location. When
the drop is placed on the fibres close to the clamped ends, the fibres
deflect inwards and the drop moves spontaneously towards the free
ends, which are closer together (Fig. 1¢ and Supplementary Movie 2),
as observed for a drop in a wedge®'. As the drop advances, the deflec-
tion increases, that is, d/r continuously decreases. The drop accelerates,
elongates and then spreads spontaneously between the fibres, drawing
them together finally to form a liquid column between coalesced fibres.

We performed a large set of experiments to characterize the final
state as a function of the drop volume, V; the fibre length, L; and the
ratio dy/r (Methods). For every value of dy/r, we find three different
final states as L and V are varied (Fig. 2a—c). Whereas the final state
(drop or column) of a finite volume of liquid deposited on two rigid
fibres depends on only one parameter, that is, dy/r, and is hence inde-
pendent of the drop volume and fibre length, we find that the final
equilibrium state for a drop on two flexible fibres depends on six
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Figure 1 | Shape transitions of a drop sitting on two parallel fibres. a. A drop
of perfectly wetting liquid (silicone oil) of volume 2 pul deposited on two parallel,
rigid glass fibres (radius, r = 0.145 mm) adopts three different shapes
depending on the distance between the fibres: a ‘bridge’ (do/r = 2.5), a ‘barrel’
(do/r = 1.5) and a column (dy/r = 1). d,;, critical distance at which the drop-to-
column transition occurs. b, Experimental set-up used to investigate the
behaviour of a drop deposited on two flexible fibres, which are clamped at one
end and free to move at the other. Left: top and side views, recorded
simultaneously using a mirror. Right: expected cross-sections for a concave
liquid column and a convex drop. The direction of gravity is indicated by g.
¢, Typical experiment with do/r = 2.7, V= 1.5 pl and L = 4 cm. The time
between successive images is 25 s. When the drop is deposited on flexible fibres,
the fibres deflect inward. The drop spontaneously moves towards the free ends
of the fibres. At a given location, z, the drop starts spreading and the fibres are
drawn together. The final wet length is denoted L.
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Figure 2 | The three different final states of a drop between two flexible
fibres. a-c, Top and side views of the final state obtained for dy/r = 2.6; a fixed
volume, V' = 2 pl; and increasing length, L = 3, 3.5 and 4 cm. The final state
changes from one of no spreading to one of partial spreading to one of total
spreading as L increases. d, Phase diagram of the different regimes for

parameters: ; do; L; the bending stiffness, B, of the fibre; the surface
tension, y; and V. For short fibres (L < 2 cm in the system presented in
Fig. 2) and almost all drop volumes, the fibres deflect slightly inwards
and the drop moves towards the free ends, but there is no spreading
(Fig. 2a and Supplementary Movie 1). For longer fibres, there is a range
of drop volumes such that when we increase L, the deflection increases
and the whole drop spreads into a column (‘total spreading’; Fig. 2¢
and Supplementary Movie 2). Alternatively, for sufficiently large
volumes, we observe a state of ‘partial spreading’, where there is a
liquid column with a smaller drop remaining at the edge (Fig. 2b
and Supplementary Movie 3). We summarize in Fig. 2d our results
in a phase diagram of V versus L, which suggests that a critical size of
drops in a spray can trigger coalescence of a fibrous material.

To understand the transitions between the different regimes in
Fig. 2d, we first consider the case of long fibres, for which either partial
or total spreading occurs for all volumes investigated. We fix the fibre
length and measure the length, L, along which the liquid spreads for
various drop volumes (Fig. 3a). For small V, the whole drop spreads
into aliquid column. As Vincreases, the column length increases until,
above a critical volume, V,, a drop remains at the wider end of the
column and thelength L actually decreases (Fig. 3a). The existence of a
maximum spreading length here is a consequence of elasticity.

We can understand the maximum spreading length, Ly ..., reached
at V_as a balance between elasticity and capillarity. There is a minimal
distance, Ly, along which the dry portions of the fibres can be bent by
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Figure 3 | Influence of the initial drop volume on the final state.

a, Transition between total and partial spreading: evolution of the spreading
length, L, with the volume, V, of the drop for do/r = 2.6 and L = 3.5cm. We
observe an optimum (maximum L) at a critical volume of V.= 1.5 pl.

b, Transition between spreading and no spreading: evolution of the position of
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do/r = 2.1. Depending on L and V, three different regimes are observed: the
drop either moves towards the ends without spreading (diamonds; a), spreads
until partial depletion of the drop (circles; b) or spreads completely into a liquid
column (squares; ¢). The solid and dashed curves correspond to equations (2)
and (3), respectively. The vertical dashed line corresponds to L = Lgy.

capillary forces. This is determined by minimizing the total energy of

the system®, yielding
1/4
Ly = () m

where S(a) is a geometric factor evaluated approximately for a flat liquid
column as S(a = n/2) = m — 2. This length is the minimum length of
the fibres beyond which collapse, or significant deformation, can occur.
For a given dy/r ratio, Lgyy is constant and the maximum wet length,
L max increases linearly with L, that is, Ly max = L — Layy in agreement
with our experiments (Supplementary Fig. 1). This elastocapillary
balance results in an optimal, or critical, drop volume for which the
spreading length is maximal: V.= A(®)Ls . Where A(x) is the
column cross-section (A(n/2) = i for a flat column). The boundary
between total and partial spreading is then predicted to be

V=V.= an(L —Lary)

9Bd2
29rS(or)

(2)
which is also in agreement with the experimental transition (Fig. 2d).
When liquid is added to this maximum column (Supplementary Fig. 2),
the configuration is unstable: the liquid forms a drop at the wider end of
the column. Minimization of the surface energy causes the liquid to
retract to form this spherical drop, decreasing the length of the column.

To understand the critical drop size beyond which no spreading
(Fig. 2a) and, hence, no fibre coalescence occurs, we measured the
spacing, ds, at which the drop starts spreading. We find that the ratio
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the drop at spreading, z,, with V for do/r = 1.9 (orange), 2.4 (purple), 2.7 (red)
and 4.2 (blue). The position of the drop at spreading is independent of the fibre
length and increases with increasing volume, spacing and fibre rigidity (that is,
the bending modulus, which is proportional to r*). The solid lines correspond
to the theoretical prediction (Supplementary Information, equation (2)).
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dgr=1.11 £0.07 is constant, independent of V, L and dy/r. We
conclude that spreading occurs when locally the spacing between the
fibres is such that a liquid column is energetically favourable relative
to a drop. This criterion for spreading is similar to that obtained
theoretically for rigid fibres' and similar to that found in our experi-
ments on rigid glass fibres: dy/r = 1.04 = 0.07.

Next we estimated the critical drop volume responsible for this
spreading, where liquid is captured in a column. The drop is in a barrel
shape (Fig. 1a) and thus is pierced by the two fibres. The capillary force
applied by the drop, F= 2yl*, where [* is the typical length of the
contact line, brings the fibres together. Coalescence of fibres will
therefore occur if F is great enough to achieve a deflection of dy — d
along the fibres, that is, if the capillary torque, Fz;, where z, is the
position of the drop, equals the elastic resisting torque, B(d, — dy)lzs.
For a given value of V and, hence, F, this estimate leads to a critical drop
position, 2> o B(dy — dJ)/F, below which no spreading will occur,
which is also verified experimentally (Fig. 3b). For a fixed value of d,,
z; increases with increasing volume and, hence, the capillary force
decreases. Therefore, for a given fibre length, there is a minimal force,
that is, a maximal drop volume, for spreading to occur, set by z, = L.
The force F= 2ylI* depends on the complex shape of the contact line,
which has a typical length I* o 2nrd,V_ ' (Supplementary
Information). Combining these results yields the critical volume for
spreading

_ ydi L\’
“=(rsa ) Y

where the constant  depends only on the complex shape of the drop
(Supplementary Fig. 3); this result involves all of the geometric and
material properties. The boundary between the regimes of spreading
and no spreading, V=1V, is in agreement with the experiments
(Fig. 2d).

Because the final state of the drop placed on the fibre array depends
on the six parameters r, dy, L, B, y and V, we conclude by dimensional
analysis that the system is characterized by three parameters, L/L; ;a5
VIV. and do/r where Lgmax =L — Lary (from equation (1)) and
V.= anLS)max (from equation (2)). We define a phase diagram of
the three possible final states in the space of the two parameters
L/Lg max and V/V, (Fig. 4a). First we identify a threshold, V/V. =1,
below which a drop will always totally spread, which maximizes the
wetted length and the amount of trapped liquid. Second, for V/V.> 1,
the spreading is partial: the remaining edge drop can be shed by any
perturbation such as shaking, which results in a smaller amount of
liquid being captured by the fibre array. The transition from spreading
to no spreading (V> V) is identified by equation (3) and depends on
the parameter dy/r as reflected by the successive hyperbolic curves in
Fig. 4a. For partial wetting, 0, the effective contact angle, should be
included in equations (1), (2) and (3) (Supplementary Information
and Supplementary Figs 4-7). All of the experimental data (symbols
in Fig. 4a) obtained by varying all of the parameters are well within
each regime defined by the model.

This map allows us to predict the interaction of natural or engineered
fibrous materials with a mist of drops. An example of a natural fibre
array is a bird feather, which consists of well-ordered hair-like struc-
tures (barbs and barbules) that produce hydrophobicity and thermal
insulation"’. Small amounts of oil disrupt this arrangement by clump-
ing adjacent barbules, affecting their water repellency and insulating
properties and thus reducing the survival rate of oiled birds™”. We
sprayed a polydisperse aerosol of oil on goose feathers and observed
all three possible final states (Fig. 4b). Using our model system, we find
that a volume of oil less than V. (here a drop radius less than 20 pm)
spreads, thus clumping adjacent barbules and making the cleaning
process difficult. Drops larger than V; (drop radius, 140 um) do not
spread and may be dislodged from the bird’s plumage. These results are
in agreement with our map (Fig. 4a). Despite complex initial condi-
tions (multiple fibres and/or drops, different wettabilities or surface
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Figure 4 | Aerosol size and fibre matrix properties needed to collect, trap or
displace a known volume of liquid. a, Map of the three spreading regimes as a
function of the two dimensionless parameters L/Lg ., and V/V.. The solid
curves show three limits for do/r = 2.4, 2.7 and 4.2 and the points show data for
total spreading (asterisks), partial spreading (squares) and no spreading
(circles) of silicone oil (total wetting, do/r =2.1; blue and purple points) and
water (partial wetting, do/r = 3; black and grey points). Stars correspond to the
three situations observed in b. b, Microscope pictures of goose feathers sprayed
with oil (smaller drops have volumes of order 10~ *~10~ "> m?), showing no
spreading (do/r = 4.8, L/Lg max = 2, VIV = 5; blue star in a), total spreading
(do/r = 3.4, L/Lg nax = 1.5and Ly = L 10 = 0.8 mm; white star in a) and partial
spreading (do/r = 3.5, L/Lg pay = 1.5, VIV = 4; pink star in a) in agreement
with our predictions. Scale bars, 500 pm.
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roughnesses) the final states can thus be captured by our model and we
can predict the main effects arising when a mist of drops interacts with
a dilute fibre array.

In addition, aerosol-removal filters, hairsprays, adhesive pads for
insects and some applications in microstructure design require total
spreading, that is, optimal coating of the fibres or maximal liquid
capture. Conversely, fibres in living systems may have evolved a certain
length or material properties to adapt to their environmental condi-
tions. For example, we can now use our model to make quantitative
estimates for various fibrous media and liquids (Supplementary Table 1)
as reported in the universal map (Fig. 4a). For beetles, we predict that
drops of optimal diameter 5 pm released from ventral pores travel
along the setae and spread totally (that is, without liquid loss) where
the tarsi contact a substrate; we predict that the collapse of pillars in
microfabrication, observed during solvent evaporation'®™'?, could be
controlled by depositing an optimum volume of liquid (drops of dia-
meter 0.9-5.4 um); and we predict that microstructures could be
designed to respond (by changing colour) to aerosols of different drop
sizes because light scattering is influenced by clustering of the micro-
elements. These examples illustrate the wide range of flexible systems
that could be controlled using elastocapillarity and an optimally chosen
drop volume.
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METHODS SUMMARY

The glass fibres (radius, r = 0.145 mm; bending stiffnesses, B=1X 10~ °*N m?
andB=7X 10"’ Nm?% length, 2 cm < L < 5.5 cm) are clamped at one end, sepa-
rated by a distance 2d, (do/r = 1.9,2.1,2.6 and 4.3). A drop of silicone oil (viscosity,
=97 mPas; density, p=970kg m~ % surface tension, 7 =0.021 Nm ') of
controlled volume V' (0.48 pl < V' < 2.55 pl) precise to 5% for large volumes and
to 10% for smaller volumes, is deposited onto the fibres with a micropipette, close
to the clamped edge. The positions of the front, z{(t), and the rear, z,(t), of the drop
(relative to the clamped end at z = 0), as well as the distance between the fibres, d,
are recorded from the top with a digital camera. A mirror placed at 45° allows us to
capture a simultaneous side view of the drop and measure its size, H(z, t). We
define the average position of the drop as z; = (2 + z,)/2,and itslength is [ = z¢ — z,.
The capillary length, I. = (y/pg)'’?, is the length beyond which gravitational effects
become more important than capillary effects. Here [. = 1.5 mm.
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