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We report the response to a forcing at the inlet of a film flowing down a vertical fiber. Parameters
are chosen in order to examine the effects of both inertia and surface tension. The spatial response
of the film to inlet forcing depends on the ratio of the forcing frequency f for to the frequency fM

corresponding to the maximum linear growth rate. At f for� fM, the primary instability leads directly
to the formation of a saturated wavetrain at the forcing frequency, whereas at low forcing
frequencies f for� fM, this formation is preceded by a sequence of periodic coalescence events. The
amplitude, speed, profiles, and inner flow pattern of traveling waves have been characterized and
compared to the solutions to the two-equation model obtained by Ruyer-Quil et al. �J. Fluid Mech.
603, 431 �2008��, showing a remarkable agreement. A steepening of the waves is observed when
inertia becomes dominant. An excellent correlation between data is observed when the amplitude
and speed of the waves are made dimensionless with reference to the substrate thickness and
free-surface velocity. © 2009 American Institute of Physics. �DOI: 10.1063/1.3119811�

I. INTRODUCTION

A thin liquid film flowing down a vertical fiber is always
unstable and exhibits fascinating dynamical regimes. Such
flows are of widespread practical importance, for example, in
industrial processes such as optical fiber coating. Under the
action of surface tension, viscous diffusion, and inertia, the
resulting flow evidences various wavy regimes including
droplike regimes, solitary waves, secondary instabilities, or
complex disordered patterns. Such a complexity arises from
the interplay of two different instability mechanisms. The
first one is the Rayleigh–Plateau instability of a fluid cylinder
prompted by capillarity, whereas the second one is the hy-
drodynamic instability of a falling film prompted by inertia,
referred hereinafter as the Kapitza mode of instability.1,2

The first experimental investigation of flows down fibers
was made by Quéré in the context of drawing of wires from
liquid baths.3,4 Quéré observed the formation of axisymmet-
ric drops and showed that this break-up process may be ar-
rested by the mean flow advection. Flow rates were very
small due to the experimental procedure. By regularly wet-
ting the fiber from the top, Kliakhandler et al.5 and Craster
and Matar6 considered the instability of a uniform film at
larger flow rates and reported the nonlinear dynamics of the
axisymmetric waves or beads far from the inlet.

In a previous paper,7 we reported experimental data on
the onset of the primary instability close to the inlet. Two
different situations were observed whether or not the primary
wavetrain was regular or irregular. In the former case we
showed that the base flow was absolutely unstable and the
primary flow exhibited its own intrinsic dynamics with a
well-defined frequency, whereas in the latter case the base
flow was convectively unstable and selectively amplified in-
let perturbations. The absolutely unstable situation was ob-
served only when the Rayleigh–Plateau instability was domi-
nant and at low flow rates and small fiber radii. When inertia
effects were important and thus the Kapitza mode was domi-

nant, i.e., at large flow rate or at large fiber radii, the uniform
film was always found to be convectively unstable. Accord-
ingly, inertia was shown to displace the transition from a
convective to an absolute instability in favor to the convec-
tive situation.

In the present paper we experimentally document the
spatial response of the convectively unstable flow at moder-
ate Reynolds number when the system behaves as a noise
amplifier and the Kapitza mode of instability competes with
the Rayleigh–Plateau instability. To our knowledge, no ex-
perimental data are available for this case, the experiments
by Quéré and Kliakhandler et al. considering only very vis-
cous fluids for which inertia is negligible. The emphasis is
put on the characteristics �speed, amplitude, shape, and inner
velocity distribution� of the nonlinear periodic waves propa-
gating at constant speed and with a constant shape, i.e., trav-
eling waves, that dominate the flow dynamics at the bottom
of the fiber. We thus complete our previous work7 that fo-
cused on the linear inception region at the top of the fiber. A
secondary aim of this study is to extend the validation of the
weighted residual modeling approach developed in Ref. 8 up
to moderate Reynolds numbers.

In Sec. II, the experimental setup is briefly described and
a first qualitative description of the wavy regimes is pre-
sented. In Sec. III, we recall the main steps leading to the
formulation of a two-equation model detailed in Ref. 8. In
Sec. IV, we present experimental results in the case of natu-
rally excited flows in the upper part of the fiber and compare
with the linear primary instability analysis. We then study in
Sec. V the response of the film to periodic perturbations at
the inlet. Finally, quantitative characteristics of the solitary
waves are presented and compared to the numerical results to
the model. Lastly, the shape of the waves provides informa-
tion on the dominant instability mode: Rayleigh–Plateau or
Kapitza mode.
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II. EXPERIMENTAL PROCEDURE
AND FLOW REGIMES

A. Experimental setup

In the present work, we study the flow of Rhodorsil
silicon oil v50 �density �=963 kg /m3, kinematic viscosity
�=50 mm2 /s, and surface tension �=20.8 mN /m at 25 °C�
and v100 ��=965 kg /m3, �=100 mm2 /s, and �
=20.9 mN /m at 25 °C� on a 1.5 m long Nylon fishing
thread of various radii R with 0.2�R�1.5 mm. The experi-
mental setup is presented in Fig. 1�a�. The fluid is supplied
by an entrance valve which is detailed in Fig. 2. It consists of
two cone-shaped parts: The upper part 1 is fixed on the tank.
The lower part 2 is screwed on 1. The fluid is then guided on
the fiber through gap 3 between the cones. We can thus con-
trol the entrance flow rate by varying gap 3. The axisym-
metry of the base flow is ensured by means of the two ad-
justing screws 4 and the pivot 5. The horizontality of part 1
is also adjusted by this system. Such a design limits the
entrance noise so that thickness fluctuations are of the order
of 10−3%.

The fluid level in the tank is maintained constant �to
ensure a constant flow rate� and the end of the fiber is at-

tached to a weight to guarantee its verticality. The mass flow
rate Qm is measured with computer-controlled scales placed
below the collecting tank.

The determination of the various characteristics of the
flow is achieved by means of spatiotemporal diagrams: a
vertical line �selected passing through the drops� of a linear
camera is recorded and stored at constant time intervals
which reveals the �x , t� trajectories of the patterns �Figs. 3�a�
and 3�b��. Parallel striations reflect the motion of constant
height structures �drops or waves�. Another possible orienta-
tion of the pixel line is perpendicularly to the flow. This
configuration then allows to detect fluctuations of the film
thickness with time at a position on the fiber with great sen-
sitivity �Fig. 3�c��. The shapes of the structures are finally
captured by a fast digital camera. To study the response of
the system to periodic perturbations, a vibrating device pro-
duces periodic pressure perturbations just above the entrance
valve in the tank. The frequency and the amplitude of the
perturbations can be adjusted. We obtain forcing frequencies
f for ranging from 0.1 to 50 Hz.

In the given experiments, we confined ourselves to a
study of three different fiber radii �R=1.5, 0.475, and
0.2 mm� with a possible range of flow rate corresponding
to a range of uniform film thickness hN at the inlet 0.6R
�hN�5R.

B. Experimental observations of
the “natural” dynamics

Depending on the flow rate and the fiber radius, two
distinct scenarios are observable for the spatial evolution of
the film down the fiber.7 At small flow rates or for thin fibers,
the observed wave pattern is very regular and extends from
the top to the bottom of the fiber without noticeable varia-
tions. The system then behaves like a self-sustained oscilla-
tor selecting its own well-defined frequency. At larger flow
rates or for thicker fibers, the dynamics becomes irregular
and the flow behaves as a noise amplifier, thus responding to
inlet perturbations. We showed7 that the transition from a

Scale

fiber

constant level
tank

linear and
fast camera

(b)(a)

vibrating device

x

0

∆

entrance valve

FIG. 1. �a� Experimental setup. �b� A view of the liquid film at the top of the
fiber. � refers to the healing length.
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FIG. 2. Design of the entrance valve.

FIG. 3. �Color online� �a� Two positions of the pixel line of the linear
camera. �b� Spatiotemporal diagram achieved with a vertical pixel line. �c�
Thickness fluctuations in time at a given height for a horizontal pixel line.
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regular wave pattern to an irregular one corresponds to the
transition between an absolute to a convective instability.

In the convective regime, perturbations at the entrance of
the system �noise or controlled perturbations� excite the
downstream dynamics. With no forcing �only natural en-
trance noise�, the behavior of the liquid film is reflected by
the spatiotemporal diagram in Fig. 4. The average distance
required for the film to undergo the primary instability is the
healing length �. After this distance where the film is still
uniform, a regular pattern appears with a constant wave-
length �distance between two successive striations�, velocity
�constant slope of the striations�, and frequency fE. The fre-
quency f�x� is defined as the number of crests passing at the
position x on the fiber in units of time and is measured with
the linear camera oriented perpendicularly to the fiber. The
evolution of the wave mean frequency with the distance x
from the inlet is obtained by changing the position of the
camera along the fiber and is shown in Fig. 5. The frequency
is a constant fE for about 5 cm; then the film undergoes
secondary instabilities downstream and the wave evolution
rapidly shows coalescence events which contribute to desta-
bilization of the pattern and a decrease in the frequency. The
regular pattern is consequently replaced by a disordered re-
gime involving solitary waves sufficiently far downstream.
The evolution of the thickness with time is given in Fig. 6 at
three different locations. At the healing length �see Fig. 6�a��,
primary waves are nearly sinusoidal. The power spectrum
reveals a peak at the frequency fE with a broadband noise
level. Further downstream, these waves saturate and the
spectrum peak broadens; rapidly, complex interactions or

coalescence leads to a disordered flow �Figs. 6�b� and 6�c��.
Finally, fully developed waves tend to be isolated and
present a steep front �Fig. 6�c��.

The typical shape of the axisymmetric structures tends
also to vary with the flow rate and the curvature of the fiber
depending on the dominant instability mechanism. For small
fiber radii and low flow rates, the instability is governed by
capillary effects and the Rayleigh–Plateau mechanism leads
to the formations of beadlike structures sliding down a thin
uniform liquid film �see Fig. 7�a��. Though obviously af-
fected by gravity, the front and back of the beads are rather
symmetrical and we refer to them as drops and to the corre-
sponding regime as the droplike regime. At large flow rates
and fiber radii, the Kapitza instability dominates over the
Rayleigh–Plateau instability mechanism. The front to back
symmetry is clearly broken, the front being much sharper
than the back of the structures �Fig. 7�b��. The structures
move on a much thicker substrate and have a shape that is
reminiscent of the solitary waves observed on a film flowing
down an inclined plane.9 We may therefore refer to this re-
gime as the wavelike regime. One aim of this study is to
define criteria enabling to discriminate quantitatively be-
tween these two regimes.

FIG. 4. Natural spatiotemporal evolution �no forcing� of the film at the
top of the fiber �0�x�32 cm� for R=0.475 mm and hN=0.78 mm
�R / lc=0.32 and �̃=1.64�.
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FIG. 5. Evolution of the frequency with the distance x on the fiber without
forcing for R=0.475 mm and hN=0.78 mm.
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FIG. 6. Left: time series of the thickness for R=1.5 mm and
hN=0.87 mm �R / lc=1 and �̃=0.58� without forcing at �a� x=8 cm, �b�
x=30 cm, and �c� x=45 cm. Right: corresponding spectra.
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FIG. 7. �a� Droplike regime. �b� Wavelike regime.
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C. Nusselt uniform film solution
and dimensionless groups

Natural length scales for the problem are based on the
geometry �radius R of the fiber� and the thickness hN of the
film at the inlet. Let us define a volumetric flow rate per
circumference unit,

qN =
Qm

2��R
. �1�

Close to the inlet, the fiber is uniformly coated by the fluid
which defines the characteristic flat-film thickness hN as
function of the flow rate qN. Let us introduce a cylindrical
coordinate system �r ,� ,x� with r the radial coordinate, � the
azimuthal coordinate, and x the axial coordinate oriented
with the flow in the downward direction. The velocity field is
assumed to remain axisymmetric and its components in the
axial and radial coordinates are denoted ux and ur. Balancing
viscosity and gravity acceleration, the axial velocity ux of a
film of constant thickness is given by the Nusselt solution:

ux =
g

�
�1

2
�R + hN�2 log� r

R
� −

1

4
�r2 − R2�	



g

�
ux0�r;R,hN� . �2�

Integration of Eq. �2� across the film then gives

qN = R−1�
R

R+hN

ux0rdr =
g

�

hN
3

3
	�hN/R� , �3�

where shape factor 	 is a function of the aspect ratio
�̃=hN /R defined by

	��̃� =
3��1 + �̃�4�4 log�1 + �̃� − 3� + 4�1 + �̃�2 − 1�

16�̃3 .

�4�

The maximum speed is attained at the free surface
r=R+hN:

ui =
ghN

2

�
�2�1 + �̃�2 log�1 + �̃� − �̃�2 + �̃�

4�̃
�

=
ghN

2

6�
�3	��̃� + �̃	���̃�

1 + �̃
� . �5�

Let us note that ui is exactly equal to one-half of the kine-
matic wave speed ck at which infinitesimal perturbations are
transported by the flow in the small wavenumber limit.8 Fi-
nally, we define the Nusselt velocity uN as the ratio qN /hN.
The vertical plane geometry corresponds to the limit of a
very thin film hN
R so that 	�0�=1. In this limit, the clas-
sical cubic dependence of the flow rate on the film thickness
qN= �g /���hN

3 /3� and the classical relation ui /uN=3 /2 are
recovered.

The flow is then characterized by the Reynolds number
Re=qN /�, the aspect ratio �̃=hN /R, and the Weber number
We=� / ��ghN

2 �= �lc /hN�2, where lc=�� / ��g� is the capillary
length. These dimensionless groups appear naturally when
basic equations are made dimensionless using a length scale

corresponding to hN. However, an alternative scaling has
been proposed by Shkadov10 for film flows down an incline
and later on adapted to the cylindrical geometry.8,11

Shkadov’s idea was to compress the streamwise coordinate
by balancing gravity, viscous drag, and pressure gradient in-
duced by surface tension, which gave a compression factor
�=We1/3 corresponding to the ratio of the streamwise length
scale �hN to the Nusselt film thickness hN. Whenever stream-
wise viscous diffusion is negligible, the set of dimensionless
groups is then reduced from 3 to only 2: �̃ and the reduced
Reynolds number �=3 Re /� that is a composite parameter
combining inertia, viscosity, and surface tension.

Finally, the linear stability analysis of the Nusselt flat-
film solution in the inertialess limit �Re
1� brings out an-
other composite parameter that compares the characteristic
time of growth 
g of linear perturbations to the advection
time 
a of a structure over its length:7,8

�� = �
a/
g�2/3 = �3uN

2ui

�̃

�1 + �̃�4	2/3

�lc/R�4/3. �6�

This parameter is a generalization of the parameter
�= �̃2/3�lc /R�4/3 introduced by Kalliadasis and Chang12 in
their study of the drop formation process corresponding to
the experiments by Quéré.3 Quéré observed that the
Rayleigh–Plateau instability of a thin film flowing down a
fiber can be arrested by the mean flow of the film when the
film thickness hN is sufficiently thin in comparison to the
ratio R3 / lc

2. Assuming small film thicknesses with respect to
the fiber radius ��̃
1�, Kalliadasis and Chang showed that
Quéré’s observations are in remarkable agreement with the
condition ���c�1.413 obtained from a matched
asymptotic analysis of the nonlinear solutions. Notice that in
this limit, �� simplifies to �:

lim
�̃→0

��/� = 1. �7�

The arrest of the growth of the Rayleigh–Plateau instability
by the flow advection was referred to as a saturation mecha-
nism by Quéré. For this reason, we may refer to �� and � as
saturation numbers.

D. Flow regime diagram

A tentative diagram of the expected flow regimes is pre-
sented in Fig. 8. The diagram is drawn in the plane R / lc

versus �̃=hN /R for practical use. The aspect ratio �̃ can be
varied by changing the flow rate independently to the ratio
R / lc, which in turn can easily be varied by replacing the
fiber. Another advantage of this choice lies in the definition
of the saturation number �� which is a function of �̃ and
R / lc only. The curve of equation ��=1 is labeled “c” in Fig.
8 and separates the plane �R / lc , �̃� into two regions. At the
left hand side of the curve c, �� is larger than 1 and the
characteristic time of growth of the Rayleigh–Plateau insta-
bility 
g is smaller than the characteristic time needed to
displace the waves over their length, 
a. �The variation of ��

in the plane �R / lc , �̃� is figured by an arrow.� One then ex-
pects that the Rayleigh–Plateau instability mechanism domi-
nates over the flow advection in that region in dark and light
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gray and labeled “RP” in Fig. 8. Our experiments show that
indeed, the droplike structures shown in Fig. 7�a� are ob-
served for parameters �̃ and R / lc lying in the RP region.
Conversely, at the right of the curve c, the advection by the
flow may saturate the Rayleigh–Plateau instability. The
wavelike structure presented in Fig. 7�b� corresponds to ��

�1.
As already noticed, the reduced Reynolds number �

compares inertia effect to viscosity and surface tension. This
parameter can be expressed as a function of the aspect ratios
�̃ and R / lc and the Kapitza number �=� / ���4/3g1/3�:

� = 3 Re/� = �3/2��̃R/lc�11/3	��̃� . �8�

Note that the Kapitza number �= �lc / l��2 can also be ex-
pressed in terms of the ratio of two lengths: the capillary
length lc and the viscous-gravity length l�= ��2 /g�1/3 so that �
is a function of the three length ratios �̃, R / lc, and lc / l�. By
looking at the tail length of solitary waves, Takeshi13 showed
that in the planar geometry ��1 signals the transition be-
tween the drag-gravity regime, for which inertia and surface
tension play a perturbative role compared to viscous drag
and gravity, to the drag-inertia regime, where inertia be-
comes dominant. The curves �=1 corresponding to the sili-
con oil v50 ��=5.48� is labeled “v50” and divides the region
of the plane ��̃ ,R / lc� corresponding to the wavelike regime
into two �see Fig. 8�. In the medium gray region labeled
“DI,” inertia is expected to be dominant ���1 and ���1�.
Following Ref. 14 where an asymptotic analysis of solitary
waves flowing down a vertical plane is offered for ��1, the
drag-inertia regime should be characterized by large-
amplitude solitary waves with a wave speed that is propor-
tional to the average speed of the film of uniform thickness,
or substrate, on which the wave travels. Below the curve

�=1 and at the right of the curve ��=1 lies a region colored
in white and labeled “DG” in Fig. 8. Region DG corresponds
to the drag-gravity regime where the balance of viscous drag
and gravity is only weakly affected by the Kapitza and
Rayleigh–Plateau instability mechanisms ���1 and ���1�.
In that region of the plane of parameters, we expect to see
wavelike structures of relatively small amplitude.

The flow regime diagram presented in Fig. 8 is com-
pleted by the curve ��=�ca

� �1.507 labeled “ca” which iden-
tifies the convective to absolute transition in the inertialess
limit.7 Comparisons to the Orr–Sommerfeld analysis of the
linearized basic equations around the Nusselt solution show
good agreement with the threshold ��=�ca

� for viscous fluids
such as the Rhodorsil silicon oil v50 employed in our experi-
ments. The regions of the plane �̃ versus R / lc located at the
left hand side of the curve ��=�ca

� �dark gray region� thus
corresponds to the onset of a self-sustained dynamics of the
flow prompted by an absolute instability of the Nusselt uni-
form film. Conversely, for ����ca

� the convective instability
of the film gives way to a noise-driven dynamics illustrated
in Figs. 4–6.

Notice that a film flowing down a vertical plane, which
undergoes the Kapitza instability, is only convectively
unstable.15 The absolute nature of the instability is thus re-
lated to the Rayleigh–Plateau instability prompted by the cy-
lindrical geometry. We have therefore single out the region
of the plane located in between the curves c, ��=1, and ca,
��=�ca

� , for which the dynamics of the primary instability is
convective but the dominant instability mechanism is the
Rayleigh–Plateau mechanism.

Let us stress that the curves c and ca corresponding to
levels of the function ���R / lc , �̃� are independent of the fluid
properties whereas the locus �=1 moves with the Kapitza
number. The curve labeled “v100” in Fig. 8 and correspond-
ing to silicon oil v100 ��=2.2� illustrates the displacement of
the locus �=1 with the Kapitza number. The delimitation of
the different regimes using the curves �=1 and ��=1 is only
indicative. We do not expect the transitions from drag-
gravity to drag-inertia regimes and from droplike to wavelike
regimes to occur exactly along these curves. Transitions
should be observed at �=O�1� and ��=O�1� for values that
are still to be determined and not exactly for parameter val-
ues equal to 1.

The purpose of this study is to examine the response of
the film to an inlet excitation. We will limit ourselves to
convectively unstable situations for which the primary insta-
bility responds to the inlet signal. By controlling the inlet
forcing, our goal is to generate and characterize trains of
traveling waves that propagate at constant speed and shape
on a sufficiently long part of the fiber. The dynamics of the
global mode triggered by the absolute instability of the
film is thus left for future study. The three different fibers
considered in this work have been chosen in order to ex-
plore different regions of the flow regime diagram at the
right hand side of the curve ��=�ca

� and correspond to the
ratios R / lc=0.12, 0.32, and 1. In practice, the interval of
reachable flow rates, and thus of reachable aspect ratios
�̃—figured in Fig. 8 by vertical segments—is limited by the
design of the entrance valve and by the onset of the absolute
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FIG. 8. �Color online� Flow regime diagram in the parameter space R / lc and
�̃. The curves are the loci of �=1, ��=1, and ��=�ca

� �1.507. RP refers to
the Rayleigh–Plateau droplike regime, DG to the drag-gravity regime, and
DI to the drag-inertia regime. The wavelike regime takes place in the union
of the DI and DG regions. Vertical segments represent the experiments
discussed in this study.
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instability �curve ca�. In particular, silicon-oil films flowing
down the fiber of radius R=0.2 mm �R / lc=0.12� should be
driven by the Rayleigh–Plateau instability, whereas we ex-
pect a dynamics driven by the Kapitza instability for the
thick fiber of radius equal to 1.5 mm �R / lc=1�. The fiber of
intermediate radius R=0.475 mm �R / lc=0.32� has been
chosen to examine the combined effect of the two instability
mechanisms.

III. WEIGHTED RESIDUAL MODELING

In a previous paper,8 a reduced set of two evolution
equations for the film thickness h and the flow rate q has
been proposed to model the spatiotemporal evolution of the
film. In this section, we briefly recall the main steps leading
to the formulation of this model and the main results ob-
tained in Ref. 8.

Various models have been proposed within the frame-
work of the lubrication theory by making use of the large
aspect ratio between the typical length of the wave � and the
film thickness h, hence the introduction of a film parameter
�
1 measuring slow variations in time and space and the
expansion of the flow variables with respect to �. Frenkel16

thus derived an evolution equation for the film thickness in
the case where the film is very thin compared to the radius of
the fiber and inertia is neglected. Some authors5,6 relaxed the
assumption of thin film but neglected inertia. Inertial effects
were initially considered by Trifonov17 using the Kármán–
Polhausen averaging procedure. The result is an extension to
the axisymmetric geometry of the integral boundary-layer
�IBL� equations or Shkadov equations that model the dynam-
ics of a falling film on inclined planes.9,18

For all these models, the contributions of the streamwise
viscous diffusion are neglected. Yet, the dispersive effect of
the streamwise viscous diffusion has already been
evidenced.8 For this reason, streamwise viscous diffusion is
also referred to as viscous dispersion. Besides, IBL equations
are well known to incorrectly predict the instability onset of
a falling film on an inclined plane. This discrepancy arises
from the neglect of the deviations of the velocity profile from
its parabolic shape induced by the deformations of the free
surface as shown in Ref. 19. Following Shkadov’s initial idea
of expanding the velocity field on a set of polynomials and
applying a weighted residual procedure, the shortcomings of
the Shkadov equations can be cured. The obtained models
can be classified as weighted residual integral boundary-
layer �WRIBL� equations.20

In Ref. 8, the WRIBL approach is extended to the
axisymmetric geometry. Equations are made dimensionless
using the Nusselt film thickness hN in the radial direction
r and �hN in the streamwise direction x, with a scale
ratio �=We1/3= �lc /hN�2/3. The time scale is defined as
3qN /hN=ghN

2 	��̃� /�. This choice of scales introduces the re-
duced Reynolds number �, the saturation number �, and a
viscous dispersion parameter �
1 /�2= �hN / lc�4/3 The ob-
tained averaged axial momentum equation reads

��tq = ��− F��̃h�
q

h
�xq + G��̃h�

q2

h2�xh	
+

I��̃h�
	��̃�

�−
3	��̃�
	��̃h�

q

h2 + h
1 + �xxxh

+
�

�1 + �̃h�2�xh −
1

2
�x� �̃

1 + �̃h
��xh�2��	

+ ��J��̃h�
q

h2 ��xh�2 − K��̃h�
�xq�xh

h
− L��̃h�

q

h
�xxh

+ M��̃h��xxq	 , �9�

where the shape factor 	 is defined in Eq. �4�. Coefficients F,
G, I, J, K, L, and M are functions of the aspect ratio
�̃=hN /R defined in the Appendix.

Equation �9� is completed by the �exact� mass balance of
a plane section of fluid,

�th = −
1

1 + �̃h
�xq . �10�

Apart from the neglected second-order inertial corrections
induced by the deviations of the velocity field from the
Nusselt distribution �2�, the averaged momentum equation
�9� is consistent up to order �2. The model �10� and �9�
accounts for inertia, wall friction, gravity, surface tension,
and viscous dispersion effects �last row in Eq. �9��. Besides,
it is consistent with the inertialess evolution equation derived
by Craster and Matar.6 This equation referred hereafter as the
CM equation is recovered by setting � and � to zero in Eq.
�9�, from which an explicit expression of q as a function of h
and its derivatives is obtained. Substitution of this expression
into the mass balance �10� finally gives the CM equation:

�t�h +
�̃

2
h2� + �x�h3

3

	��̃h�
	��̃�

�1 +
�

�1 + �̃h�2�xh + �xxxh�	
= 0. �11�

We expect to obtain a fair agreement with experimental data
using the simple CM equation �11� when the Rayleigh–
Plateau instability dominates over the inertia and viscous dis-
persion effects, whereas we need to turn to the more refined
WRIBL model in order to capture those effects.

IV. PRIMARY INSTABILITY

A first check of the accuracy of the WRIBL model �10�
and �9� consists of the spatial stability analysis of the pri-
mary instability of the Nusselt uniform film flow. We per-

form a normal mode analysis h=1+�h̃ exp�i�kx−�t�� and
q=1 /3+�q̃ exp�i�kx−�t��, where k=kr+ iki is complex, � is
real, and �
1, leading to a dispersion relation of the form
D�k ,��=0 provided in Ref. 8. In Fig. 9 we present the
spatial growth rate −ki as a function of the frequency
f =� / �2�� for spatially amplified harmonic perturbations ob-
tained from the linear stability analysis of the WRIBL model
�10� and �9�. Comparisons to the linear stability analysis
based on the primitive equations, i.e., to the solutions to the
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Orr–Sommerfeld �OS� problem, show good agreement �the
OS analysis of the film in the cylindrical geometry is given
in Ref. 21�. Due to the damping of high frequencies by sur-
face tension, only the range of frequencies ranging from 0 to
the cut-off frequency fc are amplified �−ki�0� which signals
the long-wave nature of the instability. Note that the results
obtained with the WRIBL model are in remarkable agree-
ment with those from the linear stability of the primitive
equations. Both present a maximum at a frequency fM re-
ferred to as the frequency of maximum response.

In Fig. 10, the cut-off frequency fc and frequency of
maximum response fM are compared to the experimental
data. The mean frequency fE of the primary wavetrain, de-
fined by counting the number of crests per unit of time at
x=�, compares well with the frequency of maximum re-
sponse fM. We identify the experimental cut-off frequency,
denoted by fCE, as the frequency at which the forcing stops
affecting the inception region of the flow. When the flow is
excited at the inlet at a forcing frequency f for below the cut-
off frequency �f for� fCE�, the inception region of the flow
synchronizes at the forcing frequency and an initially regular
wavetrain is generated with a constant healing length � de-
pending on the level of the forcing amplitude. Above the

cut-off frequency, for f for� fCE, the flow behaves as if there
was no forcing: the healing length fluctuates in time and the
frequency of the primary wavetrain is equal to fM with a
larger spectrum characteristic of a natural response �see
Fig. 11�. Figure 10 compares satisfactorily fCE to the cut-off
frequency fc computed from the linear stability analysis.

V. NONLINEAR RESPONSE TO
PERIODIC FORCING

As discussed in Sec. IV, the inception region of the flow
can be synchronized by applying a periodic inlet forcing. We
further discuss here the nonlinear evolution of the emerging
primary wavetrain as it propagates downstream.

A. Spatial evolution of periodic waves

Depending on the forcing frequency f for, three types of
response of the film dynamics have been identified. These
three different responses are illustrated in Fig. 12 for the
fiber of radius R=1.5 mm �similar observations have been
made for R=0.2 mm and R=0.475 mm�.

At a forcing frequency close to the frequency fM of
maximum response predicted by the linear stability analysis,
the system responds precisely to the forcing frequency and
the wave pattern is regular on the whole length of the fiber
that is about 1 m long �see Fig. 12�a��. Time series recorded
at three locations on the fiber �x=8, 18, and 30 cm� reveal a
wave shape that is not significantly affected by the saturation
nonlinear mechanism. A comparison between the two power
spectra at x=8 cm and x=18 cm reveals, however, a slight
redistribution of the energy of the signal between the forcing
frequency and its overtones in favor of the forcing frequency.
This redistribution corresponds to the largest growth rate as-
sociated with f for� fM. Further downstream �x=30 cm�, the
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FIG. 9. Spatial growth rate vs frequency for R=1.5 mm and
hN=0.87 mm �R / lc=1 and �̃=0.58�. Plain line: solution to the OS
equations. Dashed line: linear stability analysis of the WIRBL model
�10� and �9�.
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FIG. 10. Maximum frequency fM and cut-off frequency fC vs Reynolds
number Re for R=0.475 mm �R / lc=0.32�. The plain line refers to solutions
of the OS equation and the dotted line refers to the experimental data.

FIG. 11. Experiments showing the response of the inception region of the
flow �a� without forcing and with forcing at �b� f for=17.5 Hz� fCE and �c�
f for=18.5 Hz� fCE. Left: Spatiotemporal diagrams. Right: power spectra.
The locations at which the time series have been recorded are indicated by
arrows. R=0.475 mm and hN=0.78 mm �R / lc=0.32 and �̃=1.64�.
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nonlinear saturation process favors the growth of overtones.
The observed synchronized dynamics of the film at the forc-
ing frequency is made possible by the small amount of noise
introduced at the inlet �recall that the thickness fluctuations
due to ambient noise are limited to 10−3%�. Yet, the broad-
ening of the spectrum peaks which is observable on the
power spectra is due to the amplification of the ambient
noise by the flow.

The second type of response occurs for forcing frequen-
cies smaller than fM. In that case, the system needs two or
three steps to finally respond to the forcing frequency. A
two-step scenario for a forcing frequency f for=5 Hz� fM /2
is depicted in Fig. 12�b�. The system responds first at the first
overtone 2f for� fM as a quasi-sine-wave �see the power spec-

trum at x=8 cm�. Further downstream, at x=18 cm, waves
have grown and depart from the sine shape. Overtones have
grown whereas the first harmonic at f for has been damped.
The second step leading to the formation of a regular
wavetrain at f for consists of a sequence of coalescence events
that occur periodically at a fixed location ��25 cm�. Coa-
lescence events are accompanied by an acceleration of the
waves and an increase in the wavelength. A localization of
the structures separated by nearly flat substrates is observable
in the time series at x=30 cm.

An example of a three-step response to inlet forcing is
shown in Fig. 12�c�. The primary wavetrain emerging from
the inception region is regular with a frequency f =3f for. The
power spectrum of the time series at x=8 cm is characteris-
tic of a sine wave at f =3f for modulated by two envelopes of
frequencies f for and 2f for. A first series of periodic coales-
cence events is visible at a fixed location x�11 cm leading
to the reduction by one-third of the number of visible crests.
The wave shape at x=18 cm is highly nonlinear as reflected
by the large number of overtones found in the corresponding
power spectrum. A second periodic sequence of coalescence
events is observable further downstream at x�19 cm. The
resulting wavetrain is synchronized at the forcing frequency
f = f for and travels much faster than the primary wavetrain.
Notice the nearly flat substrate in between the pulses. When
compared to the experiments presented in Figs. 12�a� and
12�b�, the three-step nonlinear response of the film shown
in Fig. 12�c� has been obtained at a larger flow rate for
which the frequency of maximum response is also larger
�fM =15.6 Hz�. We had indeed difficulties in sufficiently ex-
citing the film at low frequency for two reasons: �i� the low-
frequency pressure perturbations produced by our vibrating
device in the supply tank is partly smoothed by the entrance
valve and �ii� amplification by the primary instability of inlet
perturbation is insufficient to synchronize the flow. For the
two above reasons, it has not been possible to obtain a time-
periodic spatial response with inlet forcing at low frequency.

Finally, the last type of response concerns forcing fre-
quencies close to the cut-off frequency fCE. When f for is
above the cut-off frequency, we have already noted that the
inception region of the flow ceases to respond to a forcing
applied at the inlet. This is also true below the inception
region for f for� fCE. In Fig. 13, we show the evolution with

FIG. 12. Experimental responses to inlet forcing �R=1.5 mm and R / lc=1�.
Left: spatiotemporal diagrams. Right: time series and power spectra of the
thickness at three locations on the fiber �indicated by arrows in the left
panels�: �i� x=8 cm, �ii� x=18 cm, and �iii� x=30 cm.
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FIG. 13. Frequency f vs distance x for R=0.475 mm and hN=0.78 mm
�R / lc=0.32 and �̃=1.64� without forcing �black polygons�, f for=17.5 Hz
�circles�, and f for=18.5 Hz �crosses�
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the position of the mean number of crests passing at a loca-
tion x �the frequency f�x�� along the fiber in the vicinity of
the cut-off frequency �fCE�18 Hz for R=0.475 mm and
hN=0.78 mm�. At f for=17.5 Hz, the flow starts to respond
to the forcing on the first 5 cm, then rapidly recovers its
natural behavior. The statistics of the crests passing at a
given station is unaffected by the forcing as suggested by the
superposition of the mean distribution of crests f�x� with and
without forcing.

Figure 14, deduced from the linear stability analysis,
summarizes the different observed responses of the film to a
periodic forcing at inlet. The transition from one type of
response to another depends on the relative growth rate of
the forcing signal at frequency f for in the inception region
compared to the maximum of the growth rate at frequency
fM. More precisely, the observed dynamics results from the
competition between the amplification of the inlet noise, the
fundamental frequency of the forcing signal, and its over-
tones. We illustrate this competition with the distribution of
the growth rate with respect to the frequency for the param-
eters corresponding to the experiment shown in Fig. 12�c�.
Plain vertical lines delimit five zones in our diagram. In the
first zone, at low forcing frequency, the amplification of the
imposed signal at the inlet is too weak to overcome the
growth of the frequency content of the noise around fM,
which is strongly amplified by the primary instability. In the
second �third� region of the diagram, the second �first� over-
tone corresponds to a frequency close to the maximum of
amplification, i.e., 3f for� fM �2f for� fM� which explains that
the frequency of the primary wavetrain is 3f for �2f for�. The
subsequent nonlinear transfer of energy from the overtones
to the fundamental is responsible for the periodic sequences
of coalescence events leading to the final synchronization of
the wavetrain at the fundamental frequency observed in Figs.
12�b� and 12�c�. In the fourth region, f for is close to fM and
the inlet forcing signal is then as strongly amplified by the
primary instability as the ambient noise which explains that a
synchronization of the flow can be observed over the whole
fiber. Finally, in the fifth region of the diagram corresponding

to f for� fc, only the fundamental frequency of the forcing
signal is amplified by the primary instability. As f for ap-
proaches the cut-off frequency fCE the spatial growth rate
decreases rapidly to zero which explains that the ambient
noise—being strongly amplified—destabilizes the primary
wavetrain soon after the inception region.

To conclude this section, let us discuss the influence of
the amplitude of the forcing signal on the dynamics of the
flow. When the primary instability responds to the forcing
�regions 2–5 in Fig. 14�, the healing length � tends to de-
crease as the forcing amplitude increases. Another effect of
an increase in the fluttering amplitude of the vibrating device
is an extension of the frequency content of the signal, more
overtones being produced. As a result, the periodic sequence
of coalescence events tends to occur closer to the inlet and
the synchronization of the flow at the fundamental frequency
f for is also observed earlier.

B. Characteristics of the traveling waves

Our experiments show that in a certain range of frequen-
cies around the frequency of maximum response fM, a peri-
odic forcing at the inlet is able to synchronize the flow to the
forcing frequency. The resulting wavetrain consists of peri-
odic traveling waves. In this section we consider the charac-
teristics �speed, amplitude, and shape� of experimental trav-
eling waves and compare them to the solutions of the two-
equation WRIBL model �10� and �9�.

1. On the shape

The evolution of the maximum thickness hmax with the
forcing frequency is shown in Fig. 15 for three different flow
rates. The maximum thickness decreases with the frequency.
hmax follows the same trend as the Nusselt thickness and
increases with the flow rate. Traveling wave solutions to the
WRIBL model are limit-cycle trajectories of the correspond-
ing three-dimensional dynamical system �details are given in
a companion paper�. They have been numerically obtained
by continuation using software AUTO07P and its extension
HOMCONT.

22,8 Continuations have been initialized with infini-
tesimal neutral waves obtained from the linear stability
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FIG. 14. Sketch of the different nonlinear responses to a periodic forcing at
frequency f for. The spatial growth rate vs frequency is plotted for
R=1.5 mm and hN=1.14 mm �R / lc=1 and �̃=0.76�. Dashed lines refer to
the frequency of the fundamental f for=5 Hz and to the overtones corre-
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FIG. 15. Maximum amplitude hmax of traveling waves vs forcing frequency
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hN=0.68 mm �dashed dotted line�, hN=0.83 mm �plain line�, and
hN=0.88 mm �dashed line�. The curves correspond to the solutions to the
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analysis. A constant averaged flow rate �q�=T−1�0
Tqdt �T re-

fers to the period� has been enforced to fit experimental
open-flow conditions.8 Comparisons to experimental data of
the maximum thickness of the numerical solutions show an
excellent agreement.

Two experiments for two different flow rates and two
forcing frequencies illustrate the influence of the inlet fre-
quency and flow rate on the shape of the traveling waves.
The four time series presented in Fig. 16 have been recorded
with a resolution in thickness of �0.02 mm and a temporal
resolution of �10−3 s. At a given flow rate, lowering the
frequency sharpens the wave front and enhances the wave
amplitude. Low-frequency waves become solitarylike with a
profile made of isolated humps separated by a substrate of
uniform thickness. Conversely, at a given frequency, increas-
ing the flow rate has a similar effect on the wave shape and
amplitude, the waves evolving to more localized structures.
Experimental wave profiles have been compared to the solu-

tions to the WRIBL model at the same frequency and aver-
aged flow rate �dotted curves in Fig. 16� showing again a
convincing agreement.

In Ref. 8, we have already stressed the damping effects
of viscous dispersion on the capillary waves preceding the
beads. This explains that, in contrast with former studies de-
voted to falling films on planar substrates,23–25 capillary
ripples have not been observed ahead of the waves. Indeed,
experimental investigations of films flowing down an in-
clined plane were conducted with low viscosity and high
surface tension working fluids �glycerin and water mixture or
alcohol�. The capillary length is generally large and the film
thickness is small so that the viscous dispersion parameter
�= �hN / lc�4/3 is small. Yet, we cannot exclude the possibility
of a too low resolution preventing us from detecting small
capillary waves. Solitarylike waves displayed in Fig. 16
�hN=0.68 mm, f for=6 Hz and hN=0.88 mm, f for=10 Hz�
do present at least one tiny ripple ahead of the bead.

To characterize the wave shape, we define the length of
the upstream tail ltail with an exponential fit ex/ltail. Wave pro-
files obtained at different experimental conditions can easily
be compared one to another with reference to the wave am-
plitude hmax−hs and the tail length ltail. The normalized pro-
files �h−hs� / �hmax−hs� as a function of the reduced distance
x / ltail have been reported in Fig. 17. Figure 17�a� compares
wave profiles obtained with a fiber of radius R=0.2 mm and
silicon oil v100. Corresponding time series of the film thick-
ness are shown in Fig. 18. Panel �a� is a record at the bottom
end of the fiber of the solitary waves observed as the final
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FIG. 16. Wave profiles of traveling waves for R=0.475 mm �R / lc=0.32�.
Solid and dashed lines refer to the experimental time series and to solutions
to the WRIBL model, respectively. From top to bottom: hN=0.68 mm
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��̃=1.85� and f for=10 Hz; hN=0.88 mm and f for=15 Hz.

1.0

0.0
-4 -2 0 2 4

1.0

0.0
-4 -2 0 2 4

1.0

0.0
-4 -2 0 2 4

h - hS

hmax - hS

x / ltail

h - hS

hmax - hS

x / ltail

x / ltail

h - hS

hmax - hS

(a)

(b)

(c)
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dark curves f for=6, 8, and 9 Hz and natural evolution �see also the caption of
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result of the natural evolution of the film flow when no forc-
ing has been applied. Panels �b�–�d� are traveling waves ex-
cited by a forcing at the inlet. A variation of the thickness of
the substrate hs �0.41 mm�hs�0.54 mm� and of the maxi-
mum thickness �1.21 mm�hmax�1.54 mm� has been ob-
served. Yet, the normalized profiles of the beads are nearly
identical. The saturation number and reduced Reynolds num-
ber based on the substrate thickness vary within the ranges
0.1��s�0.35 and 1.7��s

��2.2 which suggests that the
Rayleigh–Plateau instability mechanism dominates over the
Kapitza instability mode. We therefore conclude that beads
driven by the Rayleigh–Plateau instability seem to have a
generic shape.

Figure 17�b� compares the normalized shape of waves
observed on the fiber of intermediate radius R=0.475 mm
when a low-frequency forcing �f for=7 Hz� is applied. This
time, clear differences can be noticed, a steepening of the
wave front being observed as the Nusselt thickness �and the
substrate thickness� increases. A similar steepening is ob-
served with the localization of the beads when the frequency
is varied �not shown�. Parameters based on the substrate
thickness suggest that the two instability mechanisms are
important �0.94��s

��1.1 and 0.22��s�0.85�. Turning to
the largest tested fiber �R=1.5 mm�, we have compared in
Fig. 17�c� the wave profiles obtained at a low frequency
�f for=4 Hz� and at a relatively high one �f for=10 Hz� to
the solitary waves observed at the downstream end of the
fiber and resulting from the natural evolution of the flow. A
steepening of the wave front with the localization of the
beads is again observed. Parameter values ��s

��0.25 and
0.82��s�1.9� suggest this time that the Kapitza instability
mode is dominant.

The asymmetry between the front and back of the waves
increases with the fiber radius. At R=0.2 mm, the genericity
of the wave shape suggests that the waves resemble axisym-
metric drops whose shape is affected by gravity, whereas at

1.5 mm, where the Kapitza instability is dominant, the steep-
ening of the front is similar to what is observed in the planar
case.26

The wave steepening may be quantified by defining a
typical length of the front lfront. This may be tricky due to the
possible presence of capillary ripples which are difficult to
detect experimentally. Another experimental difficulty con-
sists in the measurement of the substrate thickness. Indeed, a
good resolution is needed because of the sensitivity of the
reduced Reynolds number �s and saturation number �s

� based
on the substrate thickness. We therefore determine hs and
lfront with reference to the solutions to the WRIBL model �let
us insist that numerical profiles are in remarkable agreement
with experimental ones as shown in Fig. 16�. Traveling-wave
solutions to Eqs. �10� and �9� are limit-cycle trajectories of
the corresponding three-dimensional dynamical system.
Lengths of the tail and the front are therefore determined by
considering the linear stability of the fixed point correspond-
ing to the observed substrate thickness. Thus, hs is given by
the position of the fixed point in the phase space and ltail and
lfront are given by the inverse of the real part of the corre-
sponding eigenvalues.

In Table I, wave characteristics are given for the waves
represented in Fig. 17. Experimental and numerical data for
the substrate thickness hs, maximum thickness hmax, and tail
length ltail are compared showing again good agreement. For
R=0.2 mm and silicon oil v100, we note that the ratio
ltail / lfront varies very little for the wave profiles presented in
Fig. 17�a� in agreement with the observed superimposition of
the said profiles, whereas ltail / lfront sharply increases with the
substrate thickness for the other profiles.

Our experiments have evidenced a limitation of the am-
plitude of axisymmetric waves. Our observations seem to
indicate that a breaking of the axisymmetry of the waves
occurs when the amplitude hmax−hs reaches lc /2. Figure 19
illustrates the growth of a wave propagating along the
fiber at low frequency �R=1.5 mm, hN=0.87 mm, and
f for=4 Hz�. The wave height increases until it reaches 1.6
mm. The wave is then too large and cannot be maintained by
axial surface tension. It splits into two smaller waves.

2. On the velocity

An important feature of traveling waves concerns the
phase velocity and its relation with the amplitude. We esti-
mate experimentally the speed of the waves by determining
the average slope of the crest lines on the spatiotemporal
diagram. Figure 20 shows the variation of the velocity of the
traveling waves with their frequency for the fiber of radius
R=0.475 mm and hN=0.80 mm. The velocity of the solu-
tion to the WRIBL model is in good agreement with experi-
mental data even at low forcing frequencies where waves are
solitarylike. For comparison, we have plotted the real part of
the phase speed of the most spatially amplified linear pertur-
bation �corresponding to the frequency of maximum re-
sponse fM defined in Sec. IV�. Both curves present a mini-
mum at an intermediate frequency. Nonlinearities are
responsible for an elevation of the wave velocities as the

FIG. 18. Time series from the linear camera recorded at a distance
x=75 cm from the inlet. R=0.2 mm and hN=0.84 mm �R / lc=0.12 and
�̃=4.2�; �a� natural evolution �no forcing�, �b� f for=9 Hz, �c� f for=8 Hz,
and �d� f for=6 Hz.
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frequency is decreased from the cut-off frequency fc. Similar
trends have been observed for the two other tested fibers
�R=0.2 and 1.5 mm�.

In Fig. 21�a�, speed and maximum thickness of solitary-
like traveling waves have been normalized with reference to
the speed and thickness of the Nusselt solution uN and hN.
For a given flow rate, i.e., a given Nusselt thickness, c /uN

varies linearly with hmax /hN. A fit of the experimental data
gives

c

uN
� a

hmax

hN
− b , �12�

where the slope a is close to 1.5 and b is a constant close to
unity �b=0.82, 1, and 1.3�.

No correlation is observed between data corresponding
to different Nusselt thicknesses when speed and maximum
thickness are made dimensionless using uN and hN, indicat-
ing that they do not represent the correct scales. A correlation
has been found, however �see Fig. 21�b��, when the velocity
scale and length scale are defined with respect to the sub-

strate of thickness hs on which the waves propagate and to
the corresponding kinematic wave speed cks. �We recall from
Sec. II C that the speed of kinematic waves is equal to two
times the fluid velocity at the free surface.� All experimental
data then fall on a unique curve, in line with the experimen-
tal study by Tihon et al.25 of solitary waves on films falling
on inclined planes. This suggests that traveling waves are
characterized not by the Nusselt thickness but rather by the
substrate thickness on which they ride.

Figure 21�b� is completed by the amplitude-to-speed re-
lation corresponding to the solitary-wave solutions to the
WRIBL model. Comparisons to the experimental data show
again a good agreement. As for solitary waves running down
an inclined plane,25 the dimensionless amplitude hmax /hs and
the dimensionless speed c /cks follow a linear rule,

c

cks
�

hmax

hs
. �13�

Equation �13� corresponds to the amplitude-speed correlation
obtained by Chang27 using a normal form analysis of

TABLE I. Comparisons of the experimental measurements of the substrate thickness hs, maximum thickness hmax, and tail length ltail to the data obtained by
integration of the WRIBL model �10� and �9� for the waves presented in Fig. 17. The ratio ltail / lfront, the reduced Reynolds number �s, and the saturation
number �s

� corresponding to the substrate of thickness hs are also provided based on the numerical solutions. In the case of the two solitary waves labeled
“sol,” the numerical solution has been selected by adjusting the maximum height �boldface in the table�.

Fluid
R

�mm�
f for

�Hz�
hN expt.�0.01

�mm�

hs

�mm�
hmax

�mm�
ltail

�mm�

ltail / lfront num. �s num. �s
� num.Expt.�0.05 Num. Expt.�0.05 Num. Expt.�0.1 Num.

v100 0.2 9 0.84 0.414 0.410 1.12 1.21 1.51 1.37 3.0 0.10 2.15

¯ ¯ 8 ¯ 0.42 0.435 1.16 1.27 1.40 1.41 3.3 0.13 2.06

¯ ¯ 6 ¯ 0.47 0.49 1.28 1.40 1.64 1.52 4.0 0.22 1.88

¯ ¯ Sol Sol 0.54 0.54 1 .54 1 .54 1.53 1.63 3.0 0.35 1.7

v50 0.475 7 0.62 0.4 0.41 0.925 0.91 1.55 1.41 1.9 0.22 1.1

¯ ¯ ¯ 0.76 0.54 0.51 1.325 1.30 1.95 1.7 3.2 0.55 0.99

¯ ¯ ¯ 0.86 0.61 0.56 1.7 1.64 2.5 2.0 4.9 0.85 0.94

v50 1.5 10 0.87 0.66 0.63 1.17 1.18 2.9 2.1 2.6 0.82 0.26

¯ ¯ 4 0.87 0.7 0.69 1.7 1.68 2.4 2.3 4.2 1.1 0.26

¯ ¯ sol sol 0.95 0.78 2 .66 2 .66 3.85 3.9 11 1.9 0.25

FIG. 19. R=1.5 mm and hN=0.87 mm. Left: maximum amplitude hmax vs forcing frequency f for. Right: Spatiotemporal diagram and times series �the
locations at which the time series are taken are indicated by arrows� corresponding to the frequency f for=4 Hz below which the flow starts to depart from the
axisymmetric situation.
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traveling-wave solutions to the Kuramoto–Sivashinsky equa-
tion. Since the Kuramoto–Sivashinsky equation is obtained
from a weakly nonlinear analysis when viscous dispersion is
negligible, the linear amplitude-speed correlation is valid
only for waves of small amplitude and large Kapitza num-
bers, hence small �= �hN / lc�4/3. Yet, comparisons to our ex-
perimental data as well as to corresponding data in the planar
geometry show good agreement for large-amplitude waves28

and relatively small Kapitza numbers, even if this agreement
has no theoretical basis.

3. On the inner velocity distribution

Let us now consider the velocity distribution across the
film corresponding to traveling waves. To have access to the
flow circulation inside a bead, we have computed the stream-
lines in the comoving frame from the traveling-wave solu-
tions of the WRIBL model. Four different cases are pre-
sented in Fig. 22 for the three tested fiber radii. The
experimental views achieved with the high-speed camera are
presented for comparison.

Numerical profiles and wavelengths are again in remark-
able agreement to the experimental data which gives us con-
fidence that the assumptions on the velocity distribution
across the film sustaining the derivation of the WRIBL
model are reasonable. In panel �c� the fluid moves under-

neath the beads and does not stagnate in them. In panels �a�,
�b�, and �d� recirculation regions are observed, the fluid be-
ing partly trapped in the beads, which is a clear indication of
carrying of mass. At R=0.2 mm �panel �a��, beads are sepa-
rated by relatively thin films and most of the mass is carried
by the beads which look like drops sliding on a quasistatic
substrate.

In Ref. 8, the streamlines in the comoving frame
have been reported for the traveling waves observed by
Kliakhandler et al.5 down a fiber with a four times more
viscous fluid �Castor oil �=440 mm2 /s, �=31 mN /m,
�=961 kg /m3, and a fiber of radius R=0.25 mm� where
inertia is clearly negligible. Recirculation zones have also
been found. The shape and flow patterns reported in panels
�a� and �b� of Fig. 22 are very similar to the corresponding
panels �c� and �a� of Fig. 8 in Ref. 8 even though the values
of the reduced Reynolds number � suggest that inertia is not
negligible in our experiments. The ratios of the maximum
thickness hmax and wave speed c to the substrate thickness hs

and to the speed cks of kinematic waves running on the sub-
strate are reported in Table II. Values of hmax /hs and c /cks

corresponding to panels �c� and �a� of Fig. 8 in Ref. 8 and to
panels �a� and �b� of Fig. 22 are indeed close, which again
stresses the similarities between our results and the ones re-
ported by Kliakhandler et al. for negligible inertia effects.
This agreement suggests that the experiments reported in
Figs. 22�a� and 22�b� belong to the droplike regime where
the Rayleigh–Plateau instability dominates over the Kapitza
instability. Table II has been completed with the values of the
parameters based on the substrate thickness for the waves
shown in Fig. 22 and in Ref. 5. The smallness of �s for our
experiments and the good agreement of the values of �s

� in
our experiments and in the experiments by Kliakhandler et
al. demonstrate again that the substrate thickness hs is the
length of reference for the description of nonlinear traveling-
wave solutions and that the parameters based on the substrate
flow are the ones that enable to discriminate the different
regimes.

Figure 22�d� shows the inner flow pattern for the large-
amplitude solitary wave presented in Fig. 7. Corresponding
substrate parameters �S=1.9 and �s

�=0.25 seem to indicate a
prevalence of the Kapitza instability. A recirculation region is
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FIG. 20. Speed of the traveling waves vs frequency. Experimental data
�points� are compared to the solutions to the WRIBL model �plain line�. The
real part of the phase speed of the linearly most amplified perturbation is
indicated by a dashed line. The hatched region figures the experimental
uncertainty of the cut-off frequency determination. R=0.475 mm and
hN=0.80 mm.
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Solitary-wave solutions to the WRIBL model �10� and �9� are denoted by a plain line. The dashed line is the linear approximation �13�.
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also observed as expected from direct numerical simulations
of large-amplitude waves in the planar geometry.29

Computations of the inner flow pattern for the waves
observed on the fibers of radii R=0.475 and 1.5 mm scarcely
reveal recirculation zones and only for the largest obtained
solitary waves. Figure 22�c� is representative of the flow pat-
tern usually observed. We note that the values of �s and �s

�

are then inferior to 1 and that the ratios of c /cks and hmax /hs

are relatively small, which suggests that the wavelike bead of
moderate amplitude presented in Fig. 22�c� belongs to the
drag-gravity regime.

Figure 23 and Table III compare the results obtained
with the inertialess CM equation �11� to the experimental
data and to the solutions to the WRIBL model. As expected,
in the droplike regime �panel �a�� the CM equation provides
a good estimate of the contour, amplitude, and speed of the
waves. A fair agreement is obtained for larger flow rates
�panel �b��. Nevertheless, the speed of the drops �hence the
wavelength� is slightly overestimated: the viscous dispersion
�which is neglected in the CM model� starts to play a role,
slowing down the beads. In the wavelike regime �panel �c��
the discrepancy between the experiments and the solutions to

the CM model is even more noticeable due to significant
inertial effects. Besides, the CM equation fails to reproduce
the large-amplitude solitary waves observed in Figs. 7�b� and
22�d�. In that case the instability is triggered by inertia and
curvature effects are negligible, so that the solution to the
CM equation has a very small amplitude �only 8% of the
substrate thickness�. These comparisons thus motivate the
use of the WRIBL model that take into account both viscous
dispersion and inertia in the wavelike regime.

FIG. 22. Streamlines in the comoving frame from the solutions to the WRIBL model and experimental snapshots: �a� silicon oil v100, R=0.2 mm,
hN=0.52 mm, and f =4 Hz; �b� silicon oil v50, R=0.2 mm, hN=0.64 mm, and f for=8 Hz; �c� v50, R=0.475 mm, hN=0.76 mm, and f for=7 Hz; �d� v50,
R=1.5 mm, and solitary wave with hmax=2.66 mm.

TABLE II. Speed, amplitude, and parameters for the numerical solutions to
the WRIBL model corresponding to Fig. 22 and to Fig. 1 in Ref. 5.

hmax /hs c /cks � �� �s �s
�

Reference 5a 3.1 5.0 0.05 1.56 4�10−3 2.42

Reference 5b 4.9 7.71 0.02 1.80 2�10−4 3.43

Figure 22�a� 4.5 6.7 0.30 1.78 3�10−3 3.36

Figure 22�b� 3.4 4.17 4.0 1.40 0.2 2.36

Figure 22�c� 2.6 2.6 3.2 0.8 0.5 0.99

Figure 22�d� 3.4 3.2 ¯ ¯ 1.9 0.25
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FIG. 23. Streamlines in the comoving frame from the solutions to the CM
equation, corresponding to Fig. 22 panels �a�–�c�.
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VI. SUMMARY AND CONCLUSION

The spatial response of a film flowing down a fiber to
inlet periodic disturbances is investigated experimentally and
numerically. We scrutinize the synchronization process of the
flow dynamics to the inlet forcing frequency for a convec-
tively unstable uniform film when inertia and surface tension
are equally important. Depending on the ratio of the forcing
frequency to the frequency of maximum response f for / fM

different scenarios have been identified. For f for� fM, the
film directly responds at the forcing frequency, whereas at
f for� fM the formation of saturated traveling waves at the
downstream end of the fiber is preceded by two or three
coalescence events occurring at fixed locations on the fiber.

The shape, speed, and inner flow patterns of resulting
traveling waves have been characterized for the different re-
gimes observable on the fiber. In agreement with a recent
study by Tihon et al. on inclined films,25 we observe that the
relevant reference scales to normalize the speed and ampli-
tude of the beads are the speed and thickness of the uniform
film of substrate thickness. The wave shape has been char-
acterized by computing the tail and front lengths. In the
droplike regime, where the Rayleigh–Plateau instability
dominates over the Kapitza one, wave profiles tend to be
superimposed after normalization using the amplitude and
tail length of the waves. Inner flow patterns show the onset
of large recirculation regions in the beads.

In the wavelike regime, where the Kapitza instability
mechanism is important, a sharpening of wave fronts is ob-
served with an increment of the flow rate or a decrement of
the frequency. In most cases, recirculation zones have not
been noted, the waves propagating without carrying mass.
Nevertheless, for the largest observed solitary waves, a recir-
culation zone is again noticed. It is likely that the onset of
recirculation zones in the wavelike regime is a manifestation
of the transition from the drag-gravity to the drag-inertia re-
gime. However, experimental limitations prevent us from
exploring large values of �, hence far in the drag-inertia
regime.

From our results, the pertinent parameters that discrimi-
nate between the droplike and the wavelike regimes are �s

and �s
� based on the substrate flow. For that reason, the ten-

tative flow regime diagram presented in Fig. 8 gives a first
indication but must be completed. At least one more param-
eter, the forcing frequency, is necessary to account for the
selection of the substrate thickness by the flow.

Comparisons to the solutions of a WRIBL model derived
in Ref. 8 show remarkable agreement which gives us confi-

dence in the reliability of this model even when inertia ef-
fects become dominant. From the solutions to the WRIBL
model, the dispersion effects of streamwise viscous diffusion
have been evidenced.8 In particular, dispersion plays a cru-
cial role in the selection mechanism of the natural dynamics
of the film. Axisymmetric film flows down a fiber represent a
prototype of active and dispersive one-dimensional medium.
Such a medium is characterized by the onset of coherent
structures �in our case solitary waves� generated by an insta-
bility mechanism whose one-to-one interaction is then af-
fected by dispersion. The resulting dynamics is weakly
chaotic and can be described in terms of coherent-structures
interaction.30,31 Having characterized the traveling waves in
our system, we are now in a position to study wave-to-wave
interactions experimentally, which is the next step in order to
develop a coherent-structure theory able to describe the natu-
ral dynamics of film flows down a fiber.
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APPENDIX: COEFFICIENT OF THE AVERAGED
MOMENTUM EQUATION „9…

The coefficients of the first-order inertial terms in the
momentum balance �9� consist of ratios of polynomials in b
and log�b� where b=1+�h:

	 = �3��4 log�b� − 3�b4 + 4b2 − 1��/�16�b − 1�3� ,

F = 3Fa/�16�b − 1�2	Fb� ,

Fa = − 301b8 + 622b6 − 441b4 + 4 log�b�

��197b6 − 234b4 + 6 log�b��16 log�b�b4 − 36b4

+ 22b2 + 3�b2 + 78b2 + 4�b2 + 130b2 − 10,

Fb = 17b6 + 12 log�b��2 log�b�b2 − 3b2 + 2�b4 − 30b4

+ 15b2 − 2,

G = Ga/�64�b − 1�4	2Fb� ,

�Ga = 9b�4 log�b��− 220b8 + 456b6 − 303b4 + 6 log�b�

��61b6 − 69b4 + 4 log�b��4 log�b�b4

− 12b4 + 7b2 + 2�b2 + 9b2 + 9�b2 + 58b2 + 9��b2

+ �b2 − 1�2�153b6 − 145b4 + 53b2 − 1�� ,

I = 64�b − 1�5	2/�3Fb� .

The coefficients of the second-order streamwise viscous
terms in Eq. �9� read

TABLE III. Speed c �in mm/s� and amplitude h �in mm� of the waves
presented in Figs. 22 and 23: experimental values and numerical solutions to
the WRIBL model and to the CM equation.

Figures
22 and 23 cexpt hexpt cWRIBL hWRIBL cCM hCM

�a� 28�4 0.75�0.05 24.7 0.79 26.5 0.84

�b� 150�8 1.2�0.1 156 1.17 188 1.09

�c� 160�8 1.3�0.1 171 1.16 180 0.870
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J = Ja/�128�b − 1�4	2Fb� ,

Ja = 9��490b8 − 205b6 − 235b4 + 73b2 − 3��b2 − 1�3

+ 4b2 log�b��2b4 log�b��72 log�b��2log�b�b4

− 6b4 + b2 + 6�b4 + �b − 1��b + 1��533b6 − 109b4

− 451b2 + 15�� − 3�b2 − 1�2�187b8 − 43b6 − 134b4

+ 17b2 + 1��� ,

K = 3Ka/�16b3�b − 1�2	Fb� ,

Ka = 4b4 log�b��233b8 − 360b6 + 12 log�b��12 log�b�b4

− 25b4 + 12b2 + 9�b4 + 54b4 + 88b2 − 15�

− �b2 − 1�2�211b8 − 134b6 − 56b4 + 30b2 − 3� ,

L = La/�8b�b − 1�2	Fb� ,

La = 4b2 log�b��6 log�b��12 log�b�b4 − 23b4 + 18b2

+ 3�b4 + �b − 1��b + 1��95b6 − 79b4 − 7b2 + 3��

− �b2 − 1�2�82b6 − 77b4 + 4b2 + 3� ,

M = 3 + �24 log�b�b8 − 25b8 + 48b6 − 36b4 + 16b2

− 3�/�2b2Fb� .
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