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Wetting on two parallel fibers: drop to column
transitions

S. Protiere,†a C. Duprat†b and H. A. Stoneb

While the shape and stability of drops on single cylindrical fibers have received vast attention, there are few

studies that consider a drop sitting between two fibers, which is a first step toward understanding the

wetting of larger fibrous networks. In this paper, we investigate experimentally the behavior of a finite

volume of liquid on two parallel rigid fibers. The liquid wetting the fibers can adopt two distinct

equilibrium shapes: a compact approximately hemispherical drop shape or a long liquid column of

constant cross-section. These two morphologies depend on the inter-fiber distance, the liquid volume,

the fiber radius and the liquid–fiber contact angle. We study the transitions between a drop shape and

a column by incrementally varying the inter-fiber distance and find that the transition depends on the

global geometry of the system as well as on the volume of liquid. For totally wetting drops, we identify

the regions where the drops or columns prevail, and find that there is a region where both

morphologies are stable, and the transitions from one state to the other are hysteretic. These switches

in morphologies may be used to manipulate or transport liquid at small scales.
1 Introduction

The wetting and wicking of liquids in brous media is impor-
tant in many engineered products: e.g. liquid retention in
textiles,1 clogging of coalescence lters,2 wetting of ber arrays,3

and enhanced transpiration from surfaces. In natural systems,
the interactions of bers and liquid are ubiquitous, e.g. wetting
and drying of hair, or how the well-ordered hierarchical brous
structures (barbs and barbules) of bird feathers confer them
their strong water repellency properties.4 With this motivation,
fundamental studies of ber–liquid interactions have mostly
focused on single drops on single bers. For example, many
studies consider the equilibrium shapes of a drop on a ber, in
particular the existence of two states: barrel or clamshell.5–9

Furthermore, drop-on-ber systems have been proposed as a
way to displace small amounts of liquids.10,11

However, brous media are composed of not one but many
bers oen in more or less parallel array. The basic response of
such ordered materials when interacting with a liquid may be
captured by considering a drop on two rigid parallel bers. In
this case, provided the distance between the bers is smaller
than a critical value, a drop of wetting liquid will spontaneously
wick in the inter-ber channel.12 For example, Miller et al.13

observed that below a critical inter-ber distance, the drop
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spontaneously spreads and that the spreading can be reversed by
separating the bers, and this spreading/pinning transition has
been proposed to displace uids on a small scale.14 In fact, the
wicking leads to a novel equilibrium state where the liquid
adopts the shape of a column of constant cross-section, as
studied by Princen.15 His theory describes in detail the shape of
the column and species its region of existence (but not stability)
as a function of the distance between the bers. The effect of the
contact angle on the column shape has also been investigated.16

Thus, it is known that a nite volume on two bers can adopt
one of two stable states. In this paper, we characterize the
transition between drops and columns. In particular, we iden-
tify the domains of existence of these two states and show that
the transition is hysteretic. As a consequence, the two states
may coexist for certain parameter values and we provide energy
arguments to understand this coexistence. These changes in
morphology can then be used in order to shape and manipulate
liquids at a small scale.
2 Experiments

A volume of nonvolatile liquid deposited on two parallel rigid
bers can adopt two distinct equilibrium shapes of nite length:
a compact hemispherical shape, that we refer to as drop (Fig. 1a–
c), or a long column of liquid of constant cross-section (Fig. 1d–f).
In the column shape the liquid is conned between the two
bers, while in the drop shape the liquid overspills the bers.
When the liquid is in the column state, its volume may be
increased or decreased and the column will only grow or shrink
in length while its cross-section remains constant. We note that
Soft Matter, 2013, 9, 271–276 | 271
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Fig. 1 A wetting drop deposited on two parallel fibers can either adopt (a–c) a
drop shape or (d–f) a column shape. Top (a and d) and side (b and e) views.
(c and f) Sketch of the cross-section. (g) Sketch of the set-up.
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an additional bridge shape, where the drop is not wrapped
around the bers, can exist for larger inter-ber distances. This
state and the associated transition was investigated numerically
by Wu et al.17 In this paper, we focus on the drop and column
shapes, and identify and characterize their domains of existence.

The equilibrium state depends on the ber radius r, the inter-
ber distance 2d, the drop volume V, and the liquid/ber contact
angle qe. We limit our study to perfectly wetting drops, i.e. qe¼ 0,
andwe consider perfectly rigid bers, i.e. there is no deformation
and d is constant along the bers. We neglect gravitational
effects; the capillary length ‘c ¼

ffiffiffiffiffiffiffiffiffiffiffi
g=rg

p
, where g and r are the

surface tension and density of the liquid, is about 1.5mm, which
is larger than the typical height H of the liquid in our experi-
ments. We believe that gravity makes modest changes to the
shape of the drops but does not affect the drop-to-column tran-
sition. The nal equilibrium state thus depends on the drop
volume and the inter-ber distance. As the radius r is our only
other length scale, we can construct two dimensionless param-
eters ~d ¼ d/r and ~V ¼ V/r3. For a given pair of bers, we deposit a
drop of wetting liquid of given volume and vary the distance
between the bers. Each ber is mounted independently on a
stage with a micrometer drive in order to vary the inter-ber
distance 2d in small increments ofz5 mm (Fig. 1g). For each step
in d, we reach an equilibriumstate andwe record themorphology
of the liquid from the top and the side with cameras. The side
view allows us to discriminate drops from columns bymeasuring
the liquid prole H(x); we dene a column by a constant H( 2r.
In addition, we measure the wetted length l (Fig. 1g).

We performed a large set of experiments for various ber
radii r, drop volumes V, and ber and liquid properties. In
particular we used both nylon and glass bers of diameter 2r ¼
0.2, 0.3, 0.35 mm. We investigated the behavior of perfectly
wetting liquids, silicone and mineral oils, with volumes varying
between 0.5 and 8 mL. We can measure the liquid–solid contact
angle from the shape of a drop on a ber.5 The bers are illu-
minated from below, and we make sure that the edges of the
bers are detected correctly by eliminating any reection and
carefully calibrating our measurements.
272 | Soft Matter, 2013, 9, 271–276
3 Equilibrium shapes

For a given drop volume V, a typical experiment consists of
bringing the bers together by decreasing d incrementally, until
d z 0, and then separating them by increasing d in a similar
fashion. We observe two possible behaviors (Fig. 2). For small
volumes (here V ¼ 1 mL, i.e. ~V ¼ 512), as d decreases the drop
elongates smoothly into a column (Fig. 2a). As the bers are
separated, the column reverts back to a drop adopting the same
intermediate shapes, i.e. the changes in shape are reversible.
However, the drop position may shi due to small pinning
effects. For large volumes (here V ¼ 4 mL, i.e. ~V ¼ 2048), we
observe a sharp transition (see Fig. 2b): there is a critical
distance ddc at which the drop suddenly spreads into a long
liquid column. As d is increased, the column becomes more
rounded and its length l decreases. At another critical distance
dcd, the column suddenly collapses into a drop.

The two behaviors are well represented by the evolution of
the normalized wetted length ~‘ ¼ l /r as a function of ~d ¼ d/r, as
seen in Fig. 2c, which clearly shows the drop-to-column
reversibility for small volumes and the hysteretic behavior for
larger volumes. These results indicate that, for certain values of
~d, both the drop and the column morphologies coexist. These
experiments are highly reproducible, which indicates that the
observed shapes correspond to stable states. Before the transi-
tions, small perturbations do not affect the liquid shape. We
can also note that for the same ~d, the wetted portion of the bers
is signicantly higher in the column morphology than in the
drop shape (up to 8 times longer).

We present data for various bers and liquids and for a wide
range of volumes in Fig. 3 where we plot ~‘ ¼ l /r versus ~d ¼ d/r.
The scattering of the data for small ~d (~d ( 1.4) illustrates the
coexistence of both short drops and long columns, whose
lengths depend on both the volume and ber radius. We thus
plot a renormalized length ~‘/~V (Fig. 3b) and observe that the
data organize in two distinct trends: for the dropmorphology all
the data are scattered, but for the column morphology the data
collapse onto a single curve. Since the column has a constant
cross-sectional area A along its length (we neglect the shape of
the meniscii at the edges),15 we have V ¼ Al and the collapse of
all data onto a single curve conrms that ~A ¼ A/r2 ¼ ~V /~‘ solely
depends on the inter-ber distance ~d, i.e. increasing the volume
increases the column length but does not change its cross-
sectional shape.

The shape of the column can be determined analytically by
following the arguments of Princen.15 The shape of the free
surface is given by its radius of curvature R and the angle a at
the liquid–ber–air interface (see inset of Fig. 3a). A force
balance on a small volume dV ¼ AdL leads to the equilibrium
condition

4gradL� 4gR
�p
2
� a

�
dL� g

AdL

R
¼ 0; (1)

where the different terms represent the force at the ber–liquid
surface, at the free surface, and the force originating from the
Laplace pressure g/R in the column. We next dene a geometric
factor f(a)¼ 2a� sin 2a. The liquid area ~A is related to the angle
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Evolution of a drop on two parallel fibers as the distance between the fibers is varied for glass fibers of radius r¼ 0.25mm and of volume (a) V¼ 1 mL and (b) V¼
4 mL. Scale bars ¼ 1 cm. (c) Evolution of the length of the drop ~‘ ¼ l /r with the inter-fiber distance ~d ¼ d/r for V ¼ 1 mL (O) and V ¼ 4 mL (B). The arrows indicate the
direction of the hysteretic loop. The dashed lines are drawn to guide the eye.
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a and the radius of curvature ~R ¼ R/r through the geometric
relation

~A ¼ ~R2(4a � p � f(a))+2 ~Rsin 2a � f(a). (2)

Using (2), the condition (1) leads to an expression for the
radius of curvature

~R ¼
� ffiffiffiffiffiffiffiffiffi

p

f ðaÞ
r

� 1

��1

: (3)

Finally, geometric considerations give the relation between
the inter-ber distance and the angle a

~d ¼ cos a(1 + ~R) � 1. (4)
Fig. 3 (a) Evolution of the length ~‘ ¼ l /r as the distance ~d ¼ d/r is varied. The inset
radius of curvature R. (b) Rescaled data: evolution of ~‘/~V ¼ 1/~Awith ~d for glass fibers o
(>) for increasing volumes ~V ¼ V/r3 (373 < ~V < 1500 from black to light gray). The cu
area at different values of ~d indicated by the arrows.

This journal is ª The Royal Society of Chemistry 2013
For each value of ~d, we thus obtain a unique cross-sectional
shape of angle a, radius of curvature ~R, and specic area ~A,
where the column length is given by ~‘ ¼ ~V /~A.

The theoretical shape given by eqn (2)–(4) is in good agree-
ment with our experiments (see Fig. 3b). As ~d increases, the
angle a increases, the radius of curvature changes from positive,
corresponding to the free surface curved toward the liquid
phase, to negative, corresponding to the free surface curved
toward the vapor phase, with a divergence at ~d ¼ p/2 � 1 where
the column is at as sketched in Fig. 3b. The column shape can
only exist for values of the angle a # p. This condition is met
when ~d ¼ ffiffiffi

2
p

. For small volumes all data points for ~d\
ffiffiffi
2

p
indeed collapse onto the theoretical curve. However, for larger
volumes an increasing number of data points lie in a drop state
displays a sketch of the column cross-section, characterized by the angle a and the
f radius 2r¼ 0.25mm (B), nylon fibers of radii 2r¼ 0.2 mm (,) and 2r¼ 0.35mm
rve is the analytical prediction given by eqn (2)–(4). Sketches of the cross-sectional

Soft Matter, 2013, 9, 271–276 | 273
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Fig. 4 (a) Morphology diagram in the parameter space (~d,~V): drops (C, dark
gray) and columns (+, light gray). The darker overlap region corresponds to the
region where both drops and columns coexist. The horizontal line corresponds to
~d ¼ ffiffiffi

2
p

. (b) Concomitantly, the same drop to column transition exists when d is
fixed and liquid is progressively added to the drop: top view of nylon fibers of
radius 2r ¼ 0.35 mm at the fixed distance ~d ¼ 1.06. 2 mL is added between each
photograph to a 1 mL drop.

Fig. 5 (a) Evolution of the surface energy ~E ¼ E/gr2 as a function of ~d for columns
(solid lines) and drops (dashed lines) for ~V ¼ 8000, 5000 and 2000. ~Ecol changes
sign at ~d ¼ p/2 � 1x 0.57 where the curvature of the free surface is inverted. (b)
Morphology diagram in the parameter space (~d,~V) obtained numerically by
modeling the drop as a sphere (dotted line) and as a half of a sphere (solid line).
The curves represents the boundary at which ~Edrop ¼ ~Ecol.
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below this curve. This coexistence of the drop and column states
is the focus of the next section.

4 Morphology diagram and hysteresis

We report all of our experimental data in a morphology diagram
in Fig. 4. Three well-dened regions emerge: drop, column and
coexistence of both states. As suggested by Princen's theory,15

we show analytically that only drops exist above ~d ¼ ffiffiffi
2

p
. For

small volumes, ~V < 700, the transition between drop and column
occurs at ~d ¼ ffiffiffi

2
p

, i.e. there is no coexistence region. Above this
volume, we nd that the coexistence region widens with
increasing volume, so that the liquid remains as a drop for
increasingly smaller values of d.

Another way to explore this morphology diagram is to x the
inter-ber distance and add liquid incrementally. Fig. 4b shows
such an experiment for ~d ¼ 1.06: we start with a small liquid
column (~V < 700) and add small amounts of liquid, which
corresponds to moving horizontally in Fig. 4a. At a given
volume, we cross the boundary and the liquid column sponta-
neously adopts a drop shape.

To understand the boundaries of the coexistence region we
need to compare the surface energies of both a column and a
drop and then seek for the minimal energy to nd the most
stable state. The total surface energy is dened as
274 | Soft Matter, 2013, 9, 271–276
E ¼ gALV � gcosqeASL, (5)

where ALV and ASL are the liquid–air and ber–liquid surface
areas. We nondimensionalize the energy by ~E ¼ E/gr2. For the
column shape we nd

~Ecol ¼ 4
�p
2
� a

� ~R ~V
~A

� 4a
~V
~A
: (6)

This expression can be calculated analytically using eqn (2)
and (3).

In contrast, the drop shape is more complex and cannot be
dened analytically. However, we can estimate its energy by
considering a sphere, of equivalent radius (3V/4p)1/3, pierced at
its center by the two bers. In this case we nd

~Edrop ¼ ð36pÞ1=3 ~V 2=3 � p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
6 ~V=p

�2=3

�4 ~d
2

s
: (7)

We plot ~Ecol and ~Edrop as a function of ~d for various dimen-
sionless volumes in Fig. 5a and for ~d#

ffiffiffi
2

p
, where both drops

and columns can exist. ~Edrop only weakly depends on ~d, while ~Ecol
rapidly decreases and changes sign when the column inverts its
curvature (at ~d ¼ p/2 � 1 z 0.57). For small volumes ~Edrop is
always larger than ~Ecol, indicating that the column is always the
This journal is ª The Royal Society of Chemistry 2013
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most stable state and the transitions should occur at
~ddc ¼ ~ddc ¼

ffiffiffi
2

p
. When the volume is increased, ~Ecol can be

larger than ~Edrop for certain values of ~d.
For each volume we nd the value of ~d at which ~Edrop ¼ ~Ecol

and plot the curve in Fig. 5b. This diagram highlights two
regions that have the same qualitative features seen in our
experiments. Above the curve, ~Edrop < ~Ecol, which indicates that
the drop is the most stable state. We observe the same features
observed in the experimental morphology diagram (Fig. 4).
There is a minimum volume below which the drop-to-column
transition occurs at ~d ¼ ffiffiffi

2
p

. Above this volume, the region of
stability of a drop increases with increasing volume. However,
since the experimental drop shape is not a sphere, we expect the
analytical values for the boundary predicted by our analytical
model to not match the experimental data. A better quantitative
agreement can be obtained by considering a portion of a sphere
to approximate the actual drop morphology (see Fig. 1b).

The experiments show that there are two distinct values of d
at which a transition occurs. As d is decreased, we measure the
value at which we observe the last drop and the rst column; we
take ddc, the drop-to-column transition, as the average between
these two values. Similarly, as d is increased, we measure dcd for
the column-to-drop transition. We measure these critical
distances ddc and dcd for different volumes and ber radii (see
Fig. 6). The data for various bers and liquids collapse on the
same two curves. Below ~V z 700, we see that ~ddc ¼ ~dcd ¼ ffiffiffi

2
p

corresponds to the smooth transition reported previously. For
~V > 700, ~dcd is independent of the volume and remains slightly
below

ffiffiffi
2

p
. ~ddc decreases with increasing volume. Thus the

interval between ~ddc and ~dcd also increases, i.e. the hysteretic
loop widens.

We plot the numerical model for a value close to a half-
sphere (0.6~Edrop) and observe that the minimum volume is ~V ¼
720, which is close to the value found experimentally, and the
predicted boundary is close to the drop-to-column transition
Fig. 6 (a) Critical distance ~ddc at which the drop-to-column transition (circles) is
observed when d is decreased and ~dcd (squares) the column-to-drop transition
when d is increased as a function of ~V ¼ V/r3, for glass fibers 2r ¼ 0.2 mm
(black) and nylon fibers 2r ¼ 0.2, 0.245, 0.3, 0.35 mm (gray). The hysteresis
becomes larger as the drop volume is increased. Line: absolute stability criterion
eqn (6) and (7).

This journal is ª The Royal Society of Chemistry 2013
curve ~ddc. Above this boundary, a nite volume of liquid
deposited at xed d > ddc takes a drop shape, indicating that it is
indeed the most stable state. However, starting as a column, as
we increase d, the liquid remains as a column until d ¼ dcd,
where perturbations force the transition to a drop. The column
shape is therefore metastable close to the transition. We note
that the difference between ~Edrop and ~Ecol remains small in the
neighborhood of the transition. Even though our simple model
does not capture this hysteretic behavior, we do not believe that
pinning of the contact line or elastic effects play a role since dcd
is constant for many different ber–liquid systems. The
observed coexistence of both drops and columns is a conse-
quence of this hysteretic behavior.
5 Conclusions

We have shown that the morphological transition of a liquid
placed between two bers depends on both the global geometry
of the system and the volume of liquid. This transition becomes
more hysteretic as the liquid volume is increased. For the
column shape, there is an exact analytical solution15 that we
validate with our experiments.

Other systems with liquid morphological changes have been
studied. For example, Gau et al.18 formed liquid channels on
hydrophilic stripes and, depending on contact angle, observed
the transition from uniform channels to channels with bulges.
Also, Seemann et al.19 considered the different morphologies
taken by a nite amount of liquid on a groove, which depended
on the contact angle and the groove geometry. The liquid can
adopt different shapes as the contact angle decreases: a drop-
like morphology, where the drop is not conned to the groove,
or an extended lament of homogeneous cross-section conned
to the groove. One can switch from one morphology to the other
by changing the contact angle, e.g. with electrowetting,20 or by
mechanically changing the groove geometry, e.g. using a
deformable material.21 Our results suggest that a system of
parallel bers can be used to reshape and displace liquid at a
small scale, e.g. by mechanically changing the distance between
the bers or by triggering changes in volume (condensation/
evaporation). For example, one could attach the bers on a so
material, which can be stretched to tune the inter-ber
distances, and so simply control the wetted portion of the
substrate or the area of the liquid–air interface.
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