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1 REVIEW OF RELEVANT CONCEPTS

Representation of the linear disturbance field in terms of local modes is firmly
established for wave guides where the propagation space is homogeneous. Local modes,
although discretized in the transverse or wave-guide dimension(s), are continuous in the
streamwise or propagation-space dimension(s) by virtue of the translational invariance
of the system. Specifically, considering a two-space-dimension problem with z being a
coordinate in the propagation direction and y being a transverse, wave-guide coordinate,
an arbitrary disturbance field is expressible as the superposition of eigenmodes of the
form ¢(y)exp{i(kz — wt)}, where the complex frequency w and wave number k are
related through a dispersion relation

D(w,k;p) = 0. (1.1)

The symbol p is used to represent the control parameter(s) of the problem. The disper-
sion relation specifies such stability characteristics of the local modes as the temporal
growth rate w; = Imw, the spatial growth rate —k; = —Imk, the complex group ve-
locity %‘,‘;’, etc. In the context of temporal theory, for example, the wave- guide state is
unstable provided w; > 0 for any real k and the most unstable local mode has growth

rate W™

mae where the superscript denotes the maximum over all real wave numbers at

fixed control parameter.
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The foregoing criterion defines the temporal stability of a system, but it provides no
information concerning the propagative character of the local modes emanating from
and excited by a localized injection of energy. To describe the space-time response to
any such excitation one must evaluate the group velocity and one can, therewith, spec-
ify whether any unstable modes grow in situ or whether all unstable modes propagate
away from the source region. Clearly, a very important characteristic of an unstable
system is, from this point of view, the growth rate of any mode having a vanishing
group velocity (i.e., 22|, = 0). The growth rate of such a mode is termed the absolute
growth rate and is denoted herein by wy;. The associated real frequency and complex
wave number of this mode is denoted by wp, and ko = ko, + tko;. If the absolute growth
rate is negative, all unstable waves propagate away from the source and the system is
termed convectively unstable. Alternatively, if the absolute growth rate is positive, at
least one unstable mode grows in place and the system is termed absolutely unstable.
For development of the technical aspects of these linear concepts the reader is referred

to Sturrock (1961), Briggs (1964), Bers (1975,1983) and Lifshitz & Pitaevskii (1981).

The onset of instability as a control parameter p exceeds its critical value for
marginal stability in a wave guide possessing reflectional symmetry (z — —=z) is usually
of absolute type. The instability fronts emanating from any localized impulse must,
in such systems, spread symmetrically relative to the source and there will usually,
although not necessarily, be an unstable mode with vanishing group speed. For more
general wave guides without reflectional symmetry, one expects the linear dynamics
to exhibit successive transitions from a stable state to a convectively unstable state
to (possibly) an absolutely unstable state as the control parameter is continuously in-
creased. This sequence with w*® > wy, for all z is expected to be generic because there
is no a priori reason why the value of the control parameter for onset of instability p.
should coincide with that for incipient absolute instability x,. The order of transitions
just described can be readily verified by reference to the linear Ginzburg-Landau model

5} 7] N &
{‘8?+U5;~/L—(1+’LC&)5;5}A~0 (12)

The condition for marginal stability is g, = 0, the parameter range for convective in-
stability is p. < g < p,, and absolute instability exists for p > p, = U?/[4(1 + &) (cf.,
Chomaz, Huerre & Redekopp - hereinafter denoted as CHR, 1987,1988). When U =0
the system possesses reflectional symmetry and the values of pe and g, coincide, the
instability at onset being of absolute type.

The foregoing local mode description based on the assumption of translational in-
variance is no longer strictly valid when the basic state varies spatially along the wave
guide and the propagation space is inhomogeneous. Nevertheless, as long as the inho-
mogeneity of the propagation space is weak, those concepts can be applied locally and
one can determine the stability properties at any position along the wave guide based
solely on the state at that position. The specific requirement on the strength of the
inhomogeneity in order for a “local” analysis to be valid is that the ratio of the local
mode wavelength to the scale of the inhomogeneity (6, say ) must be small compared to
unity, a condition which is satisfied in many spatially-developing, hydrodynamic flows.
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In such cases, the local state can be defined as being stable or unstable and, if it is
unstable, whether it is absolutely unstable or convectively unstable. That is, one can
define local values w***(8z), wo;(6z), etc. which may vary slowly along the wave guide.

Different scenarios for the spatial variation of w; and wy; were considered in our
earlier work (CHR, 1987, 1988), both for infinite and semi-infinite wave guides. In par-
ticular, it was revealed in either case that a synchronized mode exhibiting long-range
spatial coherence is destabilized whenever an interval of sufficient spatial extent having
local absolute instability (i.e., wo;(z) > 0) exists. Such a mode is termed a global mode
because it may extend over a domain encompassing the entire region of local insta-
bility, even extensive contiguous regions where the local instability is convective (i.e.,
where w;(z) > 0, but wy;(z) < 0). Where the inhomogeneous character of the wave
guide satisfies the necessary conditions (to be prescribed later), the propagation-space
dimension admits a denumerable set of eigenmodes, the gravest of which undergoes a
Hopf bifurcation to a limit cycle. As the domain of absolute instability increases, a
successive number of these modes are destabilized on a linear basis. The mode with
the highest growth rate presumably prevails, although nonlinear effects may dramati-
cally alter the observed dynamics, especially at high supercritical values of the control
parameter. Some features of the nonlinear behavior are discussed later. The important
point, however, is that global modes possess the characteristics of oscillators. This
aspect is developed further with particular emphasis given to the forced response of a
global mode excited by a spatially-compact source.

Criteria for specifying the onset or destabilization of global modes and their asso-
ciated frequency w, have been derived by CHR (1989) based on a WKB analysis of a
variable-coefficient, linear, Ginzburg-Landau equation (2) with arbitrary spatial varia-
tions of wy(z) and ko(z). The frequency of the first unstable global mode is determined,
to first order in the WKB expansion parameter, by the local absolute frequency at the
saddle point z, nearest to the real axis of the function wy(z) in the complex z-plane. In
this way we obtain that the complex frequency of a global mode satisfies the conditions

wWer ~ we(m,) + O(8), (1.3a)

wgi < woi(z,) < wgr™ < WNT, (1.3b)

where wl2"  denotes the maximum over both ¢ and k, and where z, is determined
from the condition

6(‘)0

Oz

It is clear from these conditions that the destabilization of a global mode (i.e., wy: > 0)
requires a finite region with we,(z) > 0; that is, a finite interval of absolute instability
in the wave guide. Consistent with the specific examples considered earlier (i.e., CHR
1987), we also observe that the condition

/ Vwoi(z)dz > 0(1) (1.4)

is satisfied for the existence of amplified global modes, where z,, < z < z;, defines the
interval on the real axis where the local state is absolutely unstable.

= 0. (13C)

Ty
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The global instability concepts described above have been tested in specific, hydro-
dynamic flows. The most extensive studies have been performed for the two-dimensional
wake behind a bluff body. Local instability characteristics were calculated by Monke-
witz (1988) using a two-parameter family of velocity profiles to model the spatially-
developing flow. The onset of the discrete frequency, vortex-shedding mode was shown
to correlate with the existence of a pocket of absolute instability and the destabiliza-
tion of the global mode occurred for a Reynolds number significantly above that for
local instability. Experiments by Mathis et al. (1984), Provansal et al. (1987), and
Sreenivasan et al. (1987, 1989) demonstrate clearly that the onset of vortex shedding
corresponds to a super-critical Hopf bifurcation to a global mode. Numerical simula-
tions of bluff-body flows by Jackson (1987), Hannemann & Oertel (1988), and Yang &
Zebib (1989) show clearly the existence of a global mode which appears at Reynolds
numbers greater than that required for local instability and local absolute instability.
For a comprehensive discussion of these concepts and their application to a number
of spatially-developing systems, the reader is referred to a recent review by Huerre &
Monkewitz (1990).

2 THEORETICAL FOUNDATIONS

Since a countable set of global modes exist which can be ordered with respect to
their growth rates, only a single mode is marginal at the threshold value of the control
parameter for global instability. Also, linear global modes have a discrete frequency of
oscillation which is uniform over the entire extent of spatially-varying, local stability
characteristics. For this reason the study of weak nonlinearity and weak forcing of the
marginal mode by means of a multiple-scale analysis can be carried out in the same way
as the classical results for oscillators. A study of these effects is pursued here because
of the practically important issues pertaining to the control of the local and global dy-
namics of spatially-varying wave-guide states. The linear and nonlinear response to a
localized external forcing, the relation between the response and the position of the forc-
ing vis-a-vis the location of a pocket of local absolute instability, the gain or efficiency
of the forcing, etc., are some important elements of global modes deserving clarification.

For the sake of brevity, the effect of weak forcing and nonlinearity will be illustrated
using the model equation

% + L(é_’
Ot Oz
for the complex amplitude function A(z,t). We assume that the unforced wave-guide
dynamics admits A — Ae® symmetry and suppose that A(x,t) vanishes at the bound-
aries of the infinite or semi-infinite domain. £ is a linear differential operator, u is the
control parameter, and c(z; 1) is a complex coefficient of the nonlinear term. The linear
homogeneous equation admits a solution of the form

2 1) A + oo )| APA = (2, 1), (2.1)

Ayfz,) = gy(a)e st (2.2)

for the gravest mode. The frequency w, and modal function ¢4(z) depend on u and
there exists a critical value p, such that the system is globally stable for o< pg. At
B = pg the system is neutral and Imw,(p,) = 0. The amplitude of the linearized
marginal mode is unconstrained and may evolve slowly with respect to the time scale
wg’l, which we suppose is finite.
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A multiple-scale analysis is performed using the small parameter € (0 < ¢ < 1)
which measures the strength of the forcing and the departure from criticality:

f(z,t) = €F§(z — xz)e s, (2.3a)
wy = wy + €9, (2.3b)
b= pg+ €A, (2.3¢)

A slow time scale T = €%t is introduced in order to avoid the appearance of secular
terms in the perturbation expansion

o0

Az, t) = 3 @ Ay(z, ¢, T). (2.4)

n=1

Assuming that the operator £ is analytic in the parameter 1 we may write
0 a 5}
c (5;,9:;#> =L, (5;,-%; ﬂg) + AL, (-a—;,m;#g) +0(e"). (2.5)
Thus, the leading order term in (2.4) is described by the equation

dA 0
‘“5{1‘ -+ Lg (—a—;,x;ug) Al = 0, (26)
with the solution

Ar = A(T)e™ "' ¢,(z) (27

defining the neutral global mode with arbitrary amplitude A(T). The next order term
A, satisfies the same homogeneous equation as (2.6) and provides no essential infor-
mation or constraint concerning A(T). A compatibility condition for the avoidance of
secular terms at third order leads to the following evolution equation for the global
mode amplitude:

dA <YLty >, < Ple(z;p)ldg* S > b(ey)

— = A BRI A - . L0 JAPA - P———1L 0T, 2.8

T =N, 5 <l > AT @8
The quantity < f|g > denotes the scalar product J f*g dz, superscript * denotes the
complex conjugate, and 9(z) is the solution of the equation

fiwg 2 (omin) f =0, (29)

where E;‘ is the adjoint of £,.

The result (2.8) could be anticipated from the well-established results for weakly
nonlinear oscillators. We emphasize here, however, that the dynamical state of the en-
tire wave guide behaves like a single oscillator with a coherent spatial structure. When
the forcing amplitude F vanishes, A(T) evolves according to the familiar Landau equa-
tion. When F' = O(1) an imperfect bifurcation occurs with the familiar result that
an O(€?) forcing can generate an O(e) response, even when the basic state is linearly
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damped (i.e., A, < 0). The forcing efficiency and phase shift of the response are de-
termined by ¥*(zy).

In order to exhibit explicit results for the forcing and to determine the sub- or
super-critical nature of the bifurcation, we take a specific form for the operator £. The
form chosen is that of the Ginzburg-Landau equation with

0 i} i

where U is a constant, real advection velocity and b is a complex constant related to
the curvature of the local dispersion relation for the wave guide. The adjoint operator
is

9 o .o '
4 (5;733;#) = _{p‘(z;#)+U51‘:+b'C7?_a?}' (2.11)

The important difference between £ and its adjoint is in the sign of the advection term
which has been reversed in the two operators. A convenient choice for the term p(z; i)
for an infinite wave guide is

1
p(z; 1) = po + 5#2(@” —z0)* + A, (2.12)

in which pq is real and gy and 2z, are complex constants. With this choice the solution
for the global modes has

o ’ b 12
Wy, = Ty — }—g—e"e" —1(2n+1 20 e (0-ny 16)/2 2.13a
gn H 1 |bi 2
1 1 1/2 . 1/4 .
(}Sgn(il‘,) = €XPp {E%w e ‘2‘ %ZZ; (:1} - zﬂ)zei(G—”2+9b)/2}'Hn ( i;% (II: - zo)ez((i_u2+05)/4) y

(2.13b).
where I,(z) are the Hermite polynomials of order n, 8_,, = arg(—p3), and 6, = arg(b).
The adjoint function is given by

Ya() = exp{~ Vs[5, (o). (2.14)
The reversed effect of advection in the adjoint is clearly evident and, by reference to
(2.8), its role in regard to forcing efficiency is to shift the optimal location of forcing
considerably upstream of the maximum signature of the global mode. This is demon-
strated clearly in numerical simulations presented in the next section.

In order for the global mode to be marginal (i.e., Imw,, = 0), tie control parameter

fto must take the value
6_
cos (—LZQ—F—QZ)) . (2.15)

Restricting attention to the first mode to be destabilized (i.e., n = 0), the Landau
constant (i.e., the coefficient of the nonlinear term in (2.8)) can be evaluated analytically
for specific choices of the coeflicient ¢(z;p,) multiplying the nonlinear term in (2.1).
We adopt the simple choice ¢(z; g} = 1 + ic, where ¢, is a real constant in all that
follows. For these conditions we obtain the following results:

2

1U b
pozugcz—;mcosﬁb+(2n+1) —22—
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oo ]‘2b7r2i1/4 o/
< Volfe == / Yodgde = | e O (2.16)
g | H2
¢/ = <¢0]C(z;pg)|¢go]2¢g0 ~
< oy, >
y U? 2 u2z2 .2
7 cos® Oy + 6 =2 |sin’ 4,
= - 12+ 1c, 7 exXp [b[? 1/b2 3 ‘ (2c05 0 isin )
[3cos? O + 1] 4182177 (3cos2 @ + 1)
Ulzo/blcos 8y [5 3 N
_3:35@‘ b cosf,, + 3 cos(20 + 6,,) + 2isin 5“}
it _1( sin@>+i@}
e ta el
2 " 2¢cos© 2/
(2.17)
where
1
@ = 5(6.‘#2 - 05)7 920 e arg(zo). (218)

There is no apparent information to be gleaned from this expression aside from the fact
that the Landau constant for the local bifurcation bears no specific relation to that for
the global bifurcation. Furthermore, even though the local bifurcation in this instance
is supercritical, the global bifurcation may be either subcritical or supercritical.

3 NUMERICAL EXPERIMENTS

3.1 Nonlinear effects in free global modes

Numerical simulations of the nonlinear equation (2.1) with £ defined by (2.10), b =
1+icg, and e(z; u) = 1+ic,, where ¢z and ¢, are real constants, have been performed for
two different wave-guide configurations. One configuration had the quadratic variation
of p(z; 1) given in (2.12) (with po, gz real and zo = A, = 0) on an infinite domain. In
this case the local wave-guide state is stable al z = 400 and a single region of ahsolute
instability, bordered by symmetric regions of convective instability, exists in the vicinity
of the origin. The spatial extent of the region of local absolute instability is controlled
by the parameter o for fixed gy The other configuration had a semi-infinite domain
0 <z < co with a linear variation of p(z; 1) having negative slope

p(zp) = po + iz,  Repy <0, Impy = 0. (3.1)

A homogeneous boundary condition was imposed at z = 0 where the local state is
absolutely unstable for sufficiently large values of g (i.e., po > pr = U?/[4(1 + ).
This region is followed by an interval of convective instability and then a region which is
stable as z tends to infinity. These two configurations are simple examples of spatially-
inhomogeneous wave guides possessing a single interval of absolute instability whose
length is related to the control parameter .

The finite-difference code used in the present simulations was identical to that em-
ployed in our earlier studies (CHR 1987, 1988). It was demonstrated in that work that
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the analytically-derived linear eigenfunction was indeed the first mode to be destabi-
lized. The predicted values of the threshold control parameter and the eigenfrequency
were also verified in the limit as the spatial and temporal discretization were reduced (a
one percent error for Az = 0.5, At = 7.5 X 1072 and a 0.3 percent error for Az = 0.23,
At = 2.0 x 10~®). The new results to be presented here were obtained using the fol-
lowing set of parameters: U = 6, ¢g = —10, p1 = —1.19 x 107%, p = ~2.534 x 1075,
Az = 0.5, At = 7.5 x 1073, The value of ¢, is taken to be zero except in cases where
noted otherwise. The choice of parameters, particularly for U and cg, was made in or-
der to compare our results with those of Deissler (1985,1987) for a constant-coefficient,
convectively unstable case.

The structure of the bifurcation to the lowest-order global mode is revealed in Fig-
ures 1 and 2. Figure 1 pertains to the quadratic form for p(z; 1) on the infinite domain
and Figure 2 pertains to the linear form for p(z; 1) on the semi-infinite domain. Both
figures exhibit the same feature; namely, a linear variation with slope unity of the initial
growth rate with respect to jo/ft;, where p, defines the value of the control parameter
for the onset of local absolute instability at # = 0. The figures also show the equilib-
rium, finite amplitude A of the global mode by plotting the maximum of the saturated
state as a function of the supercriticality. It is difficult to obtain results for very small
supercriticality because the time to approach equilibrium tends to infinity as po — pq,
tends to zero. For example, 1.2 x 10° time steps were required to arrive at a good

—

——

OF—&- !
- {.05 {40 145 .20

Figure 1 The bifurcation diagram for global modes in an infinite domain with & single
interval of quadratically-varying absolute growth rate: — o - measured growth
rate o; — % — variation of the square A? of the peak saturation amplitude; ~ & -
variation of the quartic A* of the peak saturation amplitude. The dashed line has
unit slope for o vs. p/p,. The vertical arrow denotes the theoretical bifurcation
value g, /pe.
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Figure 2 The same diagram as Fig. 1 for global modes in a semi-infinite domain
with a single interval of linearly-varying absolute growth rate adjacent of the left
boundary of the spatial domain.

estimate of the equilibrium amplitude at the smallest condition shown in Figure 2. On
each figure we show variations of both quadratic and quartic values of the amplitude
as well as the theoretically-derived value for the bifurcation parameter in an attempt
to clarify the scaling law for the bifurcation. Using the specified numerical values of
the parameters in equation (2.17), the Landau constant is £ = 1.1245 — 0.05267, sug-
gesting that the bifurcation is supercritical. It is clear that either of three possibilities
must exist: i) the values of yo — gy, are too large to reveal the true scaling near the
bifurcation point; ii) the next nonlinear term (i.e., [.A|*A) in the amplitude expan-
sion dominates over the |A|*A term ; or iii), the true nonlinear evolution exhibits a
subcritical bifurcation. For both wave-guide configurations, the data for A* lie on a
straight line which crosses the abscissa close to the point where the computed growth
rate vanishes. This is strongly suggestive that the higher order nonlinear term dom-
inates the equilibrium state. Of course, more simulations are needed to clarify the issue.

The theoretical development in the previous section deals exclusively with the global
mode dynamics in the immediate vicinity of critical. It predicts the shape of the global
mode very well for [po — . |/py. < 1, but the theory gives no indication as to how
the mode characteristics change for finite values of the supercriticality. This issue was
investigated and sample results are shown in Figure 3 for the infinite wave guide con-
figuration. It is evident that the maximum of the global mode moves upstream and
the mode shape broadens as the supercriticality increases. The left column depicts
the envelope of the mode with the advective factor exp(Uz/2b) subtracted (i.e., the
nonlinear extension of the function ¢ (z) in (2.13b) with U = 0). One observes that
this “transformed” mode is virtually unchanged in shape, but its maximum is shifted
upstream as the nonlinearity increases. One interpretation of this effect is that it is
due to the “mean flow” contribution to the growth rate (i.e., considering the combined
effect of the terms p(z;p) — (1 + ic,)|A]* as an effective growth rate). Based on this
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Figure 3 Nonlinear states for global modes in an infinite domain. The left column
shows the modulus of the “transformed” global mode |¢y(z) exp(—Uz/2b)| and
the right column shows the modulus of the global mode |¢,(z)|. a) The linear
global mode. b) The nonlinear global mode for a supercriticality (g — g, )/ g, =
0.024. c) Same as b) for a supercriticality of 0.073. d) Same as b) for a supercrit-
icality of 0.171. The vertical line marks the location of the peak absolute growth
rate and the dashed line marks the peak of the linear global mode.

point of view, the nonlinear effect shifts the position of the absolute instability and,
therewith, the position of the global mode.

As indicated above, most of our numerical experiments were performed with ¢,, = 0
and, consequently, 1 + c4c, > 0. In this case the uniform Stokes wave-train solutions
of the constant-coeflicient, Ginzburg-Landau equation are linearly stable with respect
to the Benjamin-Feir mechanism (cf., Newell, 1974). The global modes are stable even
for strong nonlinearity under these conditions. However, the criterion 1 + c4c, > 0
is only a necessary condition for the stability of global modes. This is why a stable
global mode was found for a numerical simulation with ¢, =1 (1 + ¢4c, = —9) and a
supercriticality (po — pg.)/ g, of 43% (see Figure 4a). On the contrary, when ¢, = 10
and all other parameters are unchanged, a very irregular state is observed (cf., Figure
4b). Furthermore, the irregular state persists even when the supercriticality is small.
Figure 5 presents, for (po — ptg.)/tte. = 0.07, the saturated regular mode for ¢, = 0 and
the corresponding irregular mode when ¢, = 10. In both sets of figures the global mode
for ¢, = 10 exhibits a regular spatial structure and a complex time behavior over the
initial regions in . This early region is followed by a pulse-like structure with a fairly
regular spatial periodicity.

The chaotic-type global mode for large negative values of 1 + c4¢,, merits a much
more comprehensive study. The present exploratory simulations reveal a little of the
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Figure 4 The envelope and the real part of the nonlinear global mode in a semi-
infinite domain obtained for a supercriticality (po — pg.)/ftq. = 0.43. a) ¢, = 1.
b) ¢u = 10. The vertical line in a) marks the end of the absolutely unstable region
and both structures are obtained at the same time (3 x 105A¢).

variety of free, dynamical states possible in spatially-varying wave guides and their
connection to regions of local absolute instability.

3.2 Forced response of global modes

The parameter space to be considered in a study on the effect of forcing is quite
large since the strength, frequency, and position of forcing are added to those char-
acterizing the homogeneous problem. For this reason the present results are limited
to exploring the influence of the forcing location z; (vis-a-vis the absolutely unsta-
ble region) and the shape of the response, which is predicted to be close to the free,
linear global mode when the forcing is weak and the wave-guide state is close to critical.

The important elements in the forced response of the lowest (i.e., n = 0) linear,
marginal mode for the infinite-domain configuration (see Eqn. 2.13 - 14) are shown in
Figure 6 for the same set of parameters used in the earlier simulations; U = 6, ¢y = —10,
and p, = —2.534 x 107%. The free mode, whose envelope is a simple Gaussian when
n = 0, is shown in Figure 6a in its position relative to the maximum absolute growth
rate denoted by the vertical line in the figure. The strongest action of the global mode
is found downstream of the absolutely unstable region. When the factor exp(Uz/2b) is
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Figure 5 The nonlinear global mode in a semi-infinite domain obtained for a super-
criticality of 0.07. The left column is for ¢, = 0 and the right column is for
¢, = 10. a) The real part of #,(z). b) The imaginary part of ¢,(z). c) The
modulus of ¢,(z). d) The modulus of ¢,(z) exp(~Uz/2b).

removed from the eigenfunction (cf., Eqn. 2.13b), the remainder is a Gaussian centered
over the region of absolute instability as seen in Figure 6b. The relationship to the
forcing efficiency is revealed in Figure 6c where the envelope of the adjoint function
(2.14) is included. The adjoint is shifted upstream from the peak absolute growth rate
by an amount (6z = 112.5) equal to the downstream shift of the global mode.

The important result just described regarding the forcing efficiency was tested in
numerical simulations of the nonlinear equation with ¢, = 0 and with €A, = —0.027y,,
e F = 107°, ¢2Q) = 0.006. The neutral values for the free global mode are po = 1.017p,
and w, = 0.884. The forced response is shown in Figure 7 as the forcing location is var-
ied from upstream to downstream of the peak of the adjoint function which is located at
z = —112.5. Figure Ta shows the free mode shape for this (weakly) nonlinear realization
and it corresponds very closely to the linear mode. Since the simulation is performed
for a slightly subcritical setting of the control parameter, this mode would ultimately
decay. In the remaining panels of the figure, however, a finite equilibrium amplitude
is sustained by virtue of the forcing which is most effective when it is positioned at
or slightly downstream of the peak of the adjoint function. The forced responmse is
observed to move upstream as the forcing is displaced downstream of its optimum loca-
tion, but the response does not follow the theoretical prediction in that the equilibrium
amplitude does not scale directly with ¢*(z;) which is symmetric about z = —112.5.
It is worth noting that the response reaches an amplitude which is several orders of

270



c)

~-375 0] 375

Figure 6 The linear, free global mode in the infinite domain. a) The modulus and
real part of ¢,(z). b) The modulus and real part of the “transformed” mode
$9(z) exp(—Uz/2b). c) — |g(2)l; - - - - |¢g(2) exp(~Uz/20)}; - - - lho(=)l-

magnitude larger than the forcing, a result in agreement with predictions of weakly
nonlinear theory. The numerical simulations for the last two cases shown in Figure 7
revealed an important nonlinear effect in that there was a distinct temporal oscillation
of the forced response. This dynamical state having temporal quasi-periodicity with
a coherent spatial structure is interesting and deserves further investigation. It may
explain the observed departures from predictions based on weakly nonlinear theory as
noted above and exhibited in more detail in Figure 8. Figure 8 shows two different
measures of the forcing efficiency for the same set of experiments. One is simply the
global maximum of the response and the other is the square-root of the total energy
of the response. Both measures show that the peak efficiency occurs for forcing loca-
tions upstream of the maximum absolute growth rate, but downstream of the position
suggested by linear theory. The discrepancies must derive from nonlinear effects.

4 CONCLUDING REMARKS

The results presented here, reveal important characteristics of global modes. The
necessary condition of an interval of local absolute instability for the existence of a global
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Figure 7 The forced, nonlinear response for a weakly-damped global mode in the
infinite domain. a) The linear eigenfunction. b) The response with forcing at .
zj = —125; the peak response amplitude is A = 2.5 x 10~%. ¢) Same as b) with
Ty = =75, A =(4.4+0.5) x 10-%. d) Same as b) with z; = —25, 4 = 2.5 x 10-2.
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Figure 8 The forcing efficiency for the same parameters used in the simulations shown
in Figure 7. — the linear, theorectical prediction; - - o - - the maximum response
amplitude; ~ * — the square root of the total response energy.
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mode, and the significance of these modes in the dynamics of spatially-inhomogeneous
wave guides, is firmly established. However, there exists a rich and diverse spectrum of
nonlinear effects which await careful study, even in the context of the simplified models
discussed herein.

It is clear from the present work that the specific details and location of the ab-
solutely unstable region do not necessarily determine the location of the “action” of
global modes. Their “action” is felt in regions well beyond that where the local state is
absolutely unstable and the most efficient location to force such modes also lies outside
(and considerably upstream) of the region of absolute instability. In parameter domains
where these modes are stable, they impose a long-range order to the wave guide and
are responsible for the existence of discrete frequencies which are quite unrelated to
those frequencies associated with the local state. The present work also shows that
the effect of nonlinearity and forcing on these modes open the possibility of frequency
and mode competition which can lead to a host of complex spatio-temporal dynamical
states. Studies based on models and of spatially-developing wave guides in applications
remain a fruitful area of study.
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