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1. Preamble

The present article issues from a course and it is meant to present the physical
implications of recent advances in open flow stability theory. The literature will be
reviewed briefly to enlighten important points, and the reader is referred to the re-
view by Huerre & Monkewitz 1990 (HM90) for an exhaustive exploration of published
results. The present article also departs from the HM90 review in that it includes a
discussion of the non-linear dynamics of open flows.

2. Introduction

Following the works by Brown & Roshko (1974) and Winant & Browand (1974)
on mixing layers, the description of coherent structure dynamics became a subfield in
itself within the field of turbulence. In these experiments, visualizations demonstrated
that recognizable structures (vortex billows) keep governing the dynamics of the fow
even at high Reynolds numbers. Therefore the quest for a model able to describe
the birth, the growth, the decay and the death of such structures became legitimate.
Schematically two points of view have been developed, one representing each coherent
structure by an ad hoc model in real space (vortex billows, hairpin vortices, plumes),
the other considering a series of coherent structures as the non-linear evolution of an
instability wave. Mixing layers, wakes, boundary layers, belong to the open flow cat-
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egory where particles of fluid enter and leave the experimental domain continuously.
Therefore the desirable theory of instability waves should take into account the open
flows peculiarities : the spatial origin of the flow, the inflow perturbations (extrinsic
noise), the mean advection and the spatial evolution of the mean flow (spatial inho-
mogeneity). It should describe the intrinsic turbulence as well as the extrinsic (noise
driven) turbulence and should allow us to discriminate between these two classes of
turbulent flows.

This theory should also be fully non linear as experimental flows present strong
instability (high Reynolds number experiments). The present state of the art is far
from reaching such an ambitious goal. Bifurcation theory, which consists in follow-
ing the series of transitions affecting a flow when the Reynolds number is increased
from zero, may provide a way to achieve this goal. On the apparently simple problem
of the cylinder wake, this theory already fails to characterize the first non stationary
bifurcation describing the occurrence of the well-known Karman vortex street. The dif-
ficulties come from the fact that the operator describing the stability of the stationary
basic state is not self-adjoint (Collet 1992) on account of the presence of the advection
term Ud/8z (U the velocity difference between the cylinder and the far fluid, z the
direction of U). We will show in the following that, for the same reason, a non linear
extrapolation of linear global stability results turns to be out of the reach of classical
techniques. .

3. Mathematical Framework

The present paper address mainly one-dimensional (1D) problems with a single

space variable z. The way such a 1D system is related to a fluid mechanics problem

. is described convincingly in HM90. Fluctuations around a basic flow are split into

elementary instability waves A exp i(kz —wt)p(y, k,w) of complex wave number k and

complex frequency w. The existence of ¢(y,k,w) constrains k and w to satisfy a
dispersion relation of the form :

D(k,w,R) =0 . (1)

Therefore the original problem is equivalent to solving the integro-differential equation

D(=ii2 R)ia,t) = Flz 1), )

where F'(z,1) represents the forcing term. The forcing is equal to zero for plane waves.

A practical way to introduce the non-linearity is to let D depend on ¢. This is
justified in the amplitude equation framework (Manneville 1991) which is valid close
to critical. As often in the amplitude equation field, we will study the equation out
of its domain of validity in a qualitative manner. The solution of the simplified 1D
problem is then thought to be representative of a wider class of non-linear problems
which are not tractable otherwise. The only difference with amplitude equation theory
is that we keep the carrier wave exp i(kz — wt) as we want to treat the inhomogeneous
problem. :
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The spatial development of the basic flow is introduced in the same way as in
HMO0 with an evolution length scale L defined as

1 dé
T —95 ) (3

where 6§ is, say, the local momentum or vorticity thickness. The main parameter
€= 3{-1;— measures the degree of inhomogeneity of the flow. For ¢ < 1 the basic flow
changes over a slow space scale X = ez and, by a WKBJ type of analysis, it is possible

to show that the fluctuations ¢(z,t) now satisfy :

.8 .0

D(-—Z—a;,lé—t",

0X), 2H(X), R)(z,1) = Fiz. 1) @
As for homogeneous flows, non-linearities may be introduced by making the operator
D depend on ¢. Extension of this equation to large amplitude, to strong non-linearities
and to important non-parallelism (finite ¢), allows us to qualitatively explore the pos-
sible behaviour of an inhomogeneous non-linear system. Its pertinence to real fluid
dynamics experiments may only be conjectured and not rigourously traced back. The
reader is referred to Monkewitz et al (1992) and Le Dizés (1992) for a complete account.

4. Linear Theory For Homogeneous Flows

Instability waves are governed by equation (1). Temporal modes w(k, R) refer to
cases where the complex frequency w is determined as a function of real wave number
k. Conversely, spatial branches k(w, R) are obtained by solving (1) for complex wave
numbers & when w is given real. Spatial instability theory is important when the
response to z localized forcing is of interest. In particular this is the case in the
problem of noise forcing at the spatial origin of an open flow.

The difference between time ¢ and space coordinate ¢ comes from the causality
assumption and is discussed in Chomaz et ol 1991 (CHR91). Starting the "experiment”
at a given instant, say ¢ = 0, breaks the symmetry ¢ — —t and the causality condition
stipulates that no response should be observed before ¢ = 0. Thus the dispersion
relation D should have the property sketched in figure 1 : schematically the temporal
branches lie under a contour deformed from the real axis w; = 0 whereas spatial
branches are not constrained.

For a stable system, temporal modes lie under the real w axis (Fig. lal). No w
real and k real is solution of (1). Therefore spatial branches do not cross the real k
axis (Fig. 1bl) and He on each side of the real k¥ axis. As the flow is stable we only
allow a damped response to forcing. Thus branches in the upper k& domain must be
placed on the right of the source carrying energy to +oco. Similarly branches in the
lower half k plane shall be associated to left going waves (Fig. 1lcl).

When the basic state is destabilized one temporal branch crosses over the real w
axis (Fig. 1a2). Intersection of this temporal branch with w; = 0 gives two waves
pertaining to a spatial branch as well. Therefore destabilization is associated with
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Figure 1. a) Temporal modes w(k), k real ; b) spatial branches k(w), w real, in
k-plane ; c) response to forcing localized in space and harmonic in time. (1) stable case
; (2) convectively unstable case ; (3) absolutely unstable case.

the crossing of the real k& axis by one spatial branch (Fig. 1b2). By continuation
argument, as no topological change occurs on the spatial branches at this transition,
we are allowed to keep the same energy propagation direction to each branch as in the
previous case (Fig. 1c2).

This continuation argument stops to be true when two spatial branches issuing
from the upper and lower k plane collide (Fig. 1b3). In this case, no reasonable
argument allows us to define the response to the source as no energy propagation
direction may be attributed to the various spatial branches (Fig. 1c3). It should
be noticed that no pathological behaviour is observed on the temporal branches (Fig.
1a3). This transition happen when the saddle point, Z—:’ = (, of the dispersion relation,
which is located at kg and wy, is such that wy; = 0.

In conclusion, if w; mes, the maximum imaginary part of the temporal mode,
defines through its sign the stability of the flow, an other quantity, we:, named the
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absolute growth rate, determines the ability to define the response to a localized source.
When wy; is negative, this response is defined and the flow is said to be convectively
unstable. If wy; is positive, the instability is absolute and the response to forcing cannot
be defined.

This derivation "by hand” is in fact the physical counter-part of classical abso-
lute/convective instability theory (see HM90 for references) which makes use of causal-
ity and contour deformation argument to compute the signaling problem.
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Figure 2. (x,t) diagrams showing : 1) The impulse response and 2) The response
to a causal forcing which starts at ¢ = 0 in homogeneous media : (a) stable ; (b)
convectively unstable ; (c) absolutely unstable. Only in the stable and convectively
unstable case the response to a steady forcing may be determined (shaded region).

This subtle effect of causality makes even more sense when looking at the dif-
ferences in the (z,t) diagrams representing the impulse response in the absolute and
convective cases, together with the (z,t) diagrams representing the response to a forc-
ing impulsively started at time ¢ = 0 (Fig. 2). The quantity w; mez is observed to
describe the growth of the wave packet maximum. Whereas wp; describes the growth
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of the wave packet at a fixed location. Only in the absolute instability cases (Fig. 2c),
the wave packet grows exponentially at a fixed location and over-shadow the response
to the forcing. The above considerations demonstrate that convectively unstable open
flows behave as spatial amplifiers of incoming perturbation. On the contrary absolutely
unstable flows follow intrinsic dynamics.

5. Global Linear Stability Analysis of Weakly Non-Homogeneous Flows

As we already stated in the introduction, non uniformity in z is one of the features
of open flows. In this case only the translation in time is left as an invariance of the basic
state. Stability analysis has to be performed globally on the whole domain by looking
for solutions of the form exp(—iwgt)¢c(z). The term global” does not refer here to
finite amplitude effects in phase space but to the fact that z, now, is to be considered
as an eigenfunction direction. The purpose of the present section is to emphasize
important results that link the local instability characteristics at each streamwise z-
station and the global instability properties over many wavelengths of the instability.
A pioneering work on this subject is due to Soward & Jones (1983) who, however, do
not comment on the link between wy(z) and wg i-e between the existence of a pocket of
absolute instability and the occurrence of an amplified global mode. Analyses of model
problems have been made in CHR (1987, 1988) and general theorems have been derived
in CHR (1990) and extended in Monkewitz ef ol (1992) and Le Dizés (1992). In my
view the most important and robust theorem is that a pocket of absolute instability,
somewhere in the flow, is necessary in order to sustain a global instability. The fact that
we only have a necessary condition has been wonderfully illustrated by Hunt & Crighton
(1991) who exhibit a model problem where the flow is everywhere absolutely unstable
but globally stable. The second result gives a quantitative prediction of the global mode
frequency under certain regularity assumptions for the dispersion relation. At leading
order, wg is given by wo(Xs) such that %“)‘—él(X s) = 0 or equivalently w(ks, Xs, R) with

a
-ai;:-(ks,Xs,R) =0,

o
E;i(kSa XS:‘R) =0.

In this case the structure of the global mode is similar to the one computed by
Soward & Jones (1983). I must say that we first overlooked and then underestimated
Soward & Jones’ contribution because it pertains to a closed flow geometry. It still
enters the absolute and convective framework for the subtle reason that the instability
breaks the £ — —z symmetry of the basic state. A similar phenomenon occurs in con-
vecting binary mixtures (Cross (1986-1988), Heinrich et al (1987), Roses et al (1987),
Fineberg et al (1988), Kolodner & Surko (1988)). -
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6. Weakly Non-Linear Global Stability Analysis of Non-Homogeneous
flows.

Weakly non-linear global stability analysis has been discussed in CHR90 for model
amplitude equations. A more complete study including extension to real fluid dynami-
cal problems will appear in Le Dizés (1992). The problem turns out to be difficult and
even ill-posed when the WKBJ approximation is made. The trouble originates from
the presence of the advection term U 56; in the integro-differential operator L which
makes L non self-adjoint. A deep physical reason is hidden behind this technical issue.
The adjoint operator L allows to trace back the cause when the effect is given . The
solution ¢ that belongs to the Kernel of L# defines the receptivity of the flow. As the
advection acts in the opposite direction for the adjoint problem, ¥¢ admits a maximum
well upstream of the most unstable region. For the same reason the eigenfunction ¢g
of the original problem (the giobal mode) has a maximum shifted downstrearn.

A a)
A

| i b)

Ebso ute

Figure 8. a) Sketches of a global mode envelope ¢¢ in space and of the solution of
the adjoint problem 1¥g. ¢ may be interpreted as the shape of the self excited mode
and PG as the measure of the magnitude of the global response as a function of the
location of the forcing source. b) the corresponding wp; variations. Comparing ¢, ¥G
and wpg; one observes that the absolutely unstable region is not associated with special
properties on the forcing efficiency or on the response magnitude.

In conclusion the flow is sensitive in a region where the amplitude of the solution is
small (even exponentially small) in the WKB approximation (for order 1 advection
velocity). Non-linear saturation comes usually from reinjection of energy to the basic
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state by local non-linearity which here occurs close to the maximum of 6, in the
downstream region where the flow is insensitive to forcing (Fig. 3)!

This heuristic argument is confirmed by the exact results obtained on the subclass
of systems defined by :

%+L(5%’$’R>A+C($’R)IAIZA=f§'"”t)’ ©)

with 4, ¢(z,R) complex. The detailed discussion and derivation may be found in
CHRO0. Only a summary is given in the following. We suppose that A(z,t) vanishes at
the boundaries of the finite or semi-infinite domain. The linear homogeneous equations,
associated with (5), admits a solution of the form :

Ac(z,t) = d6(z) exp(—iwet) ,

for the gravest mode. The frequency wg and modal function ¢c(z) depend on R and
there exists a critical value R, such that the system is globally stable for R < R,. At
R = R, the system is neutral with wg;(R.) = 0. In this case, the amplitude of the
linearized marginal mode is unconstrained and may evolve slowly with respect to the
time scale wg', which we suppose is finite.

A multiple-scale analysis is performed using the small parameter 77 which measures
the departure from criticality :

R= Rg+ TIZAR )
f(z,t) = P*Fé(z — z5)exp(—iwyt) , .
wf = wg + 172Q .

A slow time scale T = 5%t is introduced in order to avoid the appearance of secular
terms in the perturbation expansion

A(z,t) = Zn"An(a:, t,T) .

n=1

Assuming that the operator L is analytic in the parameter R we may write
(7] 0 2 o 4
L (ax7$7R) =1L (’é’;vz’RG) +7 ARLR (é'é'vstG) + 0(7] ) .
Thus, the leading order term is described by the equation

OA é] 0A
"a't—l+L(5;7$aRG)A1=‘#+LGA1=O7 7(6)

with the solution
Ag(z,t) = A(T)dc(z) exp(—iwgt) ,
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defining the neutral global mode with arbitrary amplitude A(T). The next order
term Ao satisfies the same homogeneous equation as (6) and provides no essential
information or constraint concerning A(T'). A compatibility condition for the avoidance
of secular therms at third order leads to the following evolution equation for the global
mode amplitude :

dA | <¢g|Lréc >
dT ~ " <Yelée > @
_ <¥aldz, B)l¢cl’bc > 12, p_ ¥&(2) »
< vlde > [AI*A F< bolde S exp(—iQcT) .

The quantity < flg > denotes the scalar product [ f*gdz, superscript* denotes the
complex conjugate, and Yg(z) is the solution of the equation

(W& + LA ('a%vzvRG)) ¢G =0 H

where L# is the adjoint of L. Figure 3 represents the eigenfunction of the operator
and its adjoint for the explicit case defined in CHR90. From the last term of equation
(7) we see that ¢ indeed defines the forcing efficiency which is greater upstream of
the most absolutely unstable region. The best way to control the flow is therefore to
introduce forcing at the maximum of the function ¥g. The various scalar products,
that appears in (7), depend on the overlapping between ¥g and ¢ which tends to zero
in the WKBJ approximation. In the model problem with strong inhomogeneities, the
non-linear constant of equation (7) is found to be of either sign compared to the sign
of the original non linearity. The exact result on the model problem gives a Landau
constant which flip sign as the WKBJ parameter ¢ goes to zero (Le Dizes 1992). This
demonstrates that the weakly non-linear global stability is ill posed in the WKBJ
frame work. A possible reason for the failure of this classical technique, lies in the fact
that the flow in the absolutely unstable region is far from neutral and resonances may
trigger large response and a large deformations of the global mode even close to the
onset of global instability.

Experimental results by Kyle & Sreenivasan (preprint) and numerical results from
CHR90 show that the bifurcation to a global mode does not always follow usual scaling
laws (amplitude proportional to the square root of the departure from criticality). More
experimental, numerical and theoretical results are highly needed on the crucial issues
of the non-linear extension of linear global analysis.

7. Non-Linear Stability Analysis of Open Flows
Up to this point only flows which are linearly unstable have been discussed but
open flows, such as Poiseuille flow or boundary layer flow, are believed to be non-

linearly unstable. Peculiarities of open flows already mentioned should be incorporated
in the corresponding non-linear stability analysis. Some numerical studies, meant to
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illustrate the specific behaviour of non-linear open flows, have been performed by
Deissler (see Deissler 1989 for a review). Recently a straightforward extension of the
absolute/convective instability concept to non-linear open flows has been proposed
(Chomaz 1992).

It appears natural to propose the following definitions of non-linear absolute and
convective instabilities : The basic state of a system is stable (S) i, for all initial
perturbations of finite extent and finite amplitude, the flow relaxes to the basic state
everywhere in any moving frame. A system is unstable if it is not stable in the above
sense. The instability is non-linearly convective (NLC) if, for all initial perturbations of
finite extent and finite amplitude, the flow relaxes to the basic state everywhere in the
laboratory frame. It is non-linearly absolute (NLA) if there exists an initial condition
of finite extent and amplitude and a location where the system does not relax to the
basic state.

Figure 4. Diagrams in the (z,t) plane, displaying the dynamics of droplets of bi-
furcated state, (a) Ao stable, A metastable, (b) Ay metastable and A, stable, (¢)
non-linear convective instability, (d) non-linear absolute instability.

The physical implication of these concepts has been analysed on the simplest
equation exhibiting a subcritical bifurcation :

04 04 _OV(4) &4

A2 A+ 4S8
V(A)—R?"I—T-—G-,
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where A is a real amplitude and R the control parameter. Experimentally generated
open flows may be modelled by an amplitude equation which is to be solved in a semi-
infinite domain [0, +oco[ with a suitable boundary condition at z = 0 (broken Galilean
invariance). The classical theory (see for example Lifshitz & Pitaevskii (1981) or Balian
et al (1980)) gives the following results for infinite domains. Stable homogeneous
solutions correspond to minima of V(A4). When R < —1/4, Ay = 0 is the only
minimum. When —~1/4 < R < 0, there exist two minima at Ay = 0 and 4, =

V1/2++/R+1/4. When R > 0, Ao = 0 becomes a maximum of V(A4), i-e unstable
and A; is the only stable solution. The parameter value Ry = —3/16 defines the
Maxwell point at which the solutions Ao and A; have an equal potential density V(A).
The relative position of R with respect to Ras determines whether a sufficiently large
"droplet” of bifurcated state A; surrounded by the basic state 4, shrinks (R < Ry,
Fig. 4a) or expands (R < R < 0, Fig. 4b). The latter case, when considering the
advection term, splits into two subcases : an NLC range (Fig. 4c) and an NLA range
(Fig. 4d) depending on the respective signs of the two front velocities in the laboratory
frame.

The predictions of the potential model (8) in a semi infinite domain [0, +oo[ can
be summarized as follows : When a flow is NLC, the only observable steady solution
in the absence of forcing, localized at the origin, is the rest state A = 0. As the
forcing amplitude is increased to A, and then decreased back to zero, one observes a
hysteresis loop composed of the spatially decaying state asymptotic to A = 0 and a
spatially growing state asymptotic to A;. There is, however a reversible return to the
rest state A = 0 when forcing is turned off. In contrast, when a flow is NLA, both the
rest state A = 0 and the spatially-growing state asymptotic to 4, are observable in the
absence of forcing. Thus, starting from the rest state, similar variations of the forcing
magnitude trigger an irreversible transition to a spatially growing state asymptotic to
Az. The rest state A = 0 is not recovered when the forcing is suppressed.

This new angle of view on the stability of non linear open flows deserve a more
complete exploration by experimental, numerical as well as theoretical studies.

I thank P. Huerre, S. Le Dizés, P. Monkewitz and Buck Danny for comments and
contributions. This work was supported by DRET.
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