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The linear and the nonlinear dynamics of open unstable flow in a finite domain df szstudied

on a modified supercritical Ginzburg—Landau equation. When the advection term is nonzero, the
bifurcation to a finite-amplitude state occurs when the instability is absolute, even foiLlafde
standard weakly nonlinear theory is limited to a control parameter domain of size varying’as

due to the nonnormality of the linear evolution operator. The fully nonlinear solution is given and
two generic cases are discussed: a supercritical case in which the instability is absolute and a
subcritical case in which the instability is solely convective. The subcritical case gives a
mathematical example of a bypass transition due to transient growth. The supercritical case allows
a fully quantitative comparison, including the effect of the domain size, with results obtained by
Buchel et al. for the size of the bifurcated solutions in the Taylor—Couette problem with
throughflow. © 1999 American Institute of Physid$1070-663199)00510-3

I. INTRODUCTION The aim of this paper is precisely to lift these restric-
. : . . tions, by illustrating on an elementary model generic bifur-
Linear and nonlinear pattern selection in the one- " . : C .

. . . . . cation diagrams which incorporatgrongly nonlinearef-
dimensional Ginzburg—Landau equation with homogeneou§ s M ificall h the i threshold i
boundary conditions on an interval of lendthhas been in- f'eC'tS.b ore Sf)etcljlct:atﬁ, WberTa;S ? meilrth r.estob'lltln .?
vestigated for over one decati&This equation is meant to rinite box 1s refated to e absoiute nature ol the Instabiity, |

is demonstrated in the present study that this is not so for the

model the dynamics of, for example, convection rolls in the . . . I
Rayleigh—Beard experiment or of chemical reaction Waves_nonlmear threshold. By invoking an argument similar to that

in the Belousov—Zhabotinsky experiment. Confinement in dn Refs. 10, 15-17, the existence of a fully nonlinear solution

box of sizeL was found to affect the bifurcation threshold M & finité domain is expected to depend on the direction of
weakly by a term of ordet. 2 and the wave number selec- propagation of the front separating the bifurcated state from
tion by orderL ~L. This has been understood in terms of thethe basic state in an infinite domdih® When the front ve-

correlation lengtH in an infinite domain which, generically locity is linearly selected, a nonlinear solution exists only
for a supercritical bifurcation, diverges as 12 (wherey is when the instability is absolute, and the bifurcation is shown

the bifurcation parameter Boundary conditions influence 0 P& supercritical. When the front selection is nonlinear, a
the flow only over the correlation lengthand therefore, nonlinear solution exists whereas the instability is still con-
whenu>L "2, their effect is limited to diffusive layers small vective and the bifurcation is shown to be subcritical. In this
compared td_. case, because of the nonnormality of the linear evolution

Confinement effects are not so trivial when an advectiorPPerator;*?°~*initial perturbations of exponentially small
term is added to the Ginzburg—Landau equation and cann@mplitude induce large transients which trigger the nonlinear
be removed since the boundary conditions single out &ansition.
unique reference frame. This equation qualitatively describes The present study builds upon the results of Refs. 15-17
open flows such as the Rayleigh'—rmd* or Couette—Taylor where the concept of nonlinear absolute instability is intro-
experiment$® with crossflow, or more classically jets, duced and where solutions in a semi-infinite domain are ana-
wakes, mixing layers, and boundary lay@riar which the lytically derived. To construct the fully nonlinear solution in
mean advection is nonzero in the laboratory frame since flui@ finite domain, the solution in a semi-infinite domain deter-
particles continually enter and leave the domain. A similarmined by the method of matched asymptotic expansfaiss
equation holds in closed flows when the instability is travel-used, allowing us to obtaimnalytically the scaling laws
ing in the laboratory frame, as in binary convection. found numerically in Refs. 3, 5, 8, 10.

When order one advection is present, confinement in a In a related study the bifurcation structure of the com-
box of sizeL,®° or spatial inhomogeneities due to slow plex Ginzburg—Landau equation in a finite domain has been
variations of the equation paramet&rs;*3delay the linear numerically computed and interpreted in terms of a front
threshold by an order one quantity since the instability hasolution. In that case, bifurcation is observed to be supercriti-
now to become absolufeWeakly nonlineamanalyses are of cal and to occur solely when the instability is absolute. From
little help to describe the bifurcation since their validity is the present point of view, this corresponds to the fact that in
limited to order (~°) departure from criticality in the finite the supercritical complex Ginzburg—Landau model the front
box cas&!®and to exponentially small departure from criti- solution is alwaydinearly selected® In this respect the su-
cality in the variable coefficient cagé. percritical Ginzburg—Landau equation is not generic.
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In the present analysis, we examine instead the dynamicBhe wave of zero group velocity is characterized by the fol-
of the different states which prevail in a finite box in the caselowing absolute frequency and wave number:
of an elementary model exhibiting monlinearly selected

front solution. Many extensions of the real or complex wo=i(u—U?/4), 3
Ginzburg—Landau equatiorisee, for example, Ref. 16
might have been suitable candidates. We have chosen to k,=—iU/2. (4)

study the van der Pol-Duffing type equatitk), where the
mean advection effect includes a quadratic term in the perfhe flow is convectively unstable iHi(wg) <0, i.e., if u
turbation amplitude that accounts for nonlinear variations in< u,=U?/4, and absolutely unstable jif>u,. To be con-
the wave speed. It should be emphasized that this equation $stent with the literatur@ these notions pertaining to waves
considered here as a toy model. It is not rationally derivedn an infinite domain are callelibcal since they do not take
from the Navier—Stokes equations via a multiple scale apinto account spatial inhomogeneities such as boundary con-
proach since the asymptotic expansion close to the absolutétions.
instability threshold becomes invalid when advection is order ~ When the boundary conditions E@) are enforced, the
unity.!® Indeed recent numerical simulations of bluff body streamwise directiox becomes an eigendirection and the
wake$? have demonstrated that such surprisingly large nonlinear solutions take the forrA(x,t) =R(exp(—iwt) ¢(X)),
linear modifications to the mean flow are essential in order tavith ,, the global frequency and ¢,(x) the linearglobal
understand the structure of the bifurcated wake. mode (the termglobal refers to physical space and not to
phase space as in dynamical systems thegimen by

Il. NONLINEAR MODEL wn=i(pu—U%4— m2n?/L2) = wo—im’n?/L?, (5

The Ginzburg—Landau equation describes the wave am-  ¢_(x)=exg U(x—L)/2]sin(z7nx/L). (6)
plitude in a bifurcating spatially extended system and has
been considered to model the transition of clé8ed well as Equation (5) shows that the global thresholds=U?/4
operf® fluid dynamical systems. For simplicity we discuss + 72/L2= 4, + 7%/L2, at which the leading eigenvalus, is
the real amplitude case, which corresponds to an instabilitestabilized, differs from the local instability threshold
breaking a discrete symmetry, and add the tet&’ d,A =0 by two terms: an order one term depending only ot
which represents the lowest-order nonlinear contribution t@ue to the advection, and an order? term due to the finite
the mean advection velocity consistent wik-—A sym-  size of the box. Therefore, we obtain the seemingly para-
metry. The model reads: doxical result that, no matter what the length of the interval,

G A= uA—(U— aA2)a A+ d, A—AS, (1) theglobal .b_ifur.cated solution prevails fou> u., i.e., vyhen

the instability islocally absolute, whereas when the interval

with A(x,t) the order parametet) the mean advection ve- s taken to be infinite right from the start, the bifurcation

locity, u the bifurcation parameter. Rescalirgt, A would  tgkes place at.=0, i.e., when the instability ikcally con-
bring one of the parametetsor « to unity but we keep both  yective.

parameters to facilitate the discussion. ker 0 the standard This singular behavior of the spectrum hs»% has
Ginzburg—Landau equation with real amplitude and real copeen discussed, without referring to the concepts of local
efficients is recovered. Solutions of E@.) are sought in a apsolute or convective instability, by Reddy and Trefethen

finite domain (0..) with boundary conditions: in their study of the advection-diffusion operator. It is related
AO)=A(L,1)=0. (2)  to the transient amplification of initial perturbations associ-
ated with the nonnormality of the linear global operator. In

IIl. LINEAR SOLUTION other words, the linearized form of E@l) with boundary

conditions Eq.(2) is such that its eigenmodes E@®) are

Before applying the boundary conditions Eg), con-  nonorthogonal. A practical way to understand the physics
sider an infinite domain for which infinitesimal amplitude associated with nonnormality is to consider the response to
solutions of Eq.(1) represent instability waves of the form time-harmonic forcing at the real frequeneay. When the
R{exp(kx— wt))} with the wave numbek and the frequency flow is globally unstable, the amplification is infinite when
o linked by the dispersion relatiom=Uk+i(x—k?). The forcing is applied at the global frequency. As noticed in Ref.
system is linearly stable if any infinitesimal initial condition 22 it is finite but it is extremely large in a whole band of
is damped. This is the caseldf{w) <0 for anyk real, i.e., if when the flow is locally convectively unstable, and it is
n<0. In the “laboratory” frame[but without applying the smaller than onéno amplification when the flow is locally
boundary conditions Eq.(2)], the group velocity vy  stable. WherL—co the amplification goes to infinity fos
=dw/dk discriminates between convectively unstable flow,inside the unstable band-(\/u, V). When the Galilean
for which initial transients are advected downstream, andnvariance is broken, then the linear global evolution opera-
absolutely unstable flow, for which initial transients grow to tor is nonnormal, and its spectrum bifurcates when a finite
infinity with time at any fixed locatiorx. These concepts, domain becomes locally absolutely unstable. However, prior
originally introduced in plasma physié&have been success- to this global bifurcationge-pseudospectra for smatl cross
fully applied to the understanding of open flow dynanfié§.  the realw-axis, when a convectively unstable region appears.

Downloaded 03 May 2001 to 129.104.34.3. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 11, No. 10, October 1999 Against the wind 2979

IV. WEAKLY NONLINEAR SOLUTION IN FINITE but a single one is dynamically selectéd?® Two cases are
DOMAIN possible: either the front is selected by the linear marginal

We show that this nonnormality associated with largeStPHity principle or it moves faster and is selected by a
time-harmonic amplification has two effects on the nonIinear';_?fnl'near c|r|t<_ar|or_11. To each ff)f_ the(:jse Cases IS a(sj,_souater(]:l a
analysis: first it strongly limits the validity of the standard ferent SO ut|op In a semi-infinite jomain. Acco_r_ m_g_tot €
weakly nonlinear theory second, when the global bifurca- results derived in Ref. 16, a solution in a semi-infinite do-
tion is subcritical, it allows the nonlinear solution to be ex- Man called a nonlinear global que may be wewe_d as a
cited by extremely low amplitude perturbations stationary frontor a front able to withstand advectipwith

Since the linear global modes have well-separated zerohamtp))lltudehat some Iofcatlor;‘. h licati fth
growth rates Eq(5), a naive idea consists in performing a It has been shown in Ref. 16 that t € app |cat|or1 oft es.e
weakly nonlinear analysis, as in Refs. 8, 10, 14, by introduc!€SU!tS t0 Ea.(1) leads to the two possible generic cases:

ing a small paramete such thatu — ug= 7A . The solu- When a<6/U, the front is linearly selected in an infinite
tion is then expanded in powers O)fGA=E<7]i.A- and a domain. The threshold necessary to obtain a nonlinear global
. I 1

slow time scaleT= 72t is introduced. At first order we ob- mode in a semi-infinite domain coincides with the absolute

tain A,(x,t,T)=R{a(T) b(x)exp(—iwt)} with the global ins_tability threshold,ut._ In _this_ case, the Qistanc‘Ax re-
amplitudea(T) still unknown. Equations5) and (6) define quired to reach saturation is given at leading order by:

w=w; and ¢(X)=¢41(x). At third order the compatibility Ax=r(p—p) Y2 (10)
condition imposes tha(T) obey the Landau equation ‘
da/dT=Apa—c|al?a, 7) Physically, this scaling may be t_mderstood by conadgnng
_ that close tox=0 the amplitude is small and the solution
with may be viewed as the superposition of two waves of com-
P i 1/2
c=(y| 63— ad? 9 )| ), (8) plex wave number differing only by an ordej ¢ u,)

complex term.
where(|) stands for the usual inner product over the interval  \when o>6/U. the front is nonlinearly selected in an
O=x=<L and ¢(x)=exp(-~Ux/2)sin(mx/L) belongs to the infinite domain. A nonlinear mode in a semi-infinite domain
kernel of the adjoint operator at=ug. We obtain: may still be viewed as a front blocked by the upstream
1274 1— exp( —UL)](4— aU) © bo;nd?(rﬁ, bgt n?\)/v(the nF;)nflinleea:c gI(()jbaI )mode ttheShr?m
c= s . =3a (U—-3a ") (see Ref. or detailss smaller than
UL(4m"+ UL (16m"+ UTLY) i - In this case, the distancex required to reach saturation

Two limits are important: wheh goes to infinity andJ is s proportional at leading order to:
finite c~127%(4—aU)(UL) % when U vanishes(as in
Ref. 2 c~3/4. Note at this stage that the weakly nonlinear
nature of the instability changes from supercritical to sub-
critical whena exceeds 44. . o

In the above computation, the choice @fspecified in Phys](?ally, this size cor_responds to t'he fact that the.poundary
Eq. (6) is such that its maximum amplitude is unitt lead- condition atx=0 is fu]ﬂlled by thg linear superposition of
ing order in 1L). Therefore, if we assume the consistency oftWO waves, propagating, respectively, upstream and down-
the expansion, thapA,;<1 at any locationx, the weakly stream, with spatial g_rowth_ rz_;ltes_dlffenng by order unity.
nonlinear theory is limited, whebl is finite, to u— ug<c The vz_ilue_a=6/U which _dlstmgmshes between the two
~L~5. This restriction, already given in Refs. 8, 10, is in CaSes is given by comparing,, with p;. _
fact due to the nonnormality of the global operator. It is far _ Equation(10) has been derived analytically in Refs. 16,
more severe than the usual restrictior uc<L ~2 given by 17 and mdependently obtained numerically in Refs. 8 10.
the separation in the global eigenvalues E5). When u The scaling law Eq(lll) has recently been observed in a
— e is small but larger than T2(4—aU)(UL) "5, the Hele-Shaw cell experimerif.

Landau-type expansion becomes invalid and a different non- L&t us now discuss the implication of these scaling laws
linear description should be used. on the structure of fully nonlinear solutions in a box of finite

size. Intuitively, a solution confined in a box of sikewill

resemble the solution in the semi-infinite domain modified

by a diffusive boundary layer of width of order unity at the

The basic idea underlying the fully nonlinear descriptiondownstream boundary=L if saturation is reached before

is that, wherL is large enough, the solution is similar to that x=L (Fig. 1). Therefore the condition L' large” is not suf-
described in Ref. 15 for a semi-infinite domain. The solutionficient to insure that the saturation amplitude is indeed at-
consists of a front separating the basic state from the bifurtained, and we enforce instedd-Ax>1. Whena<6/U,
cated region downstream, which would have moved upwe substitute Eq(10) in the latter condition and we expand
stream had the domain been infinite, and is prevented frorthe quantity u—pu, in powers of : wu— pu=m?/L>
doing so by the upstream boundary condition. This front so-+ y/L3, where the first term on the right hand side means
lution has recently been calculated for model problems irthat the control parametgr is close to the thresholg g,
infinite domainst®® For an unstable basic state, an infinity and v is still unknown. The conditio. —Ax>1 imposes
of front solutions corresponding to different velocities exist y>2#? and therefore:

szln( ) (11

M= e

V. FULLY NONLINEAR SOLUTION IN FINITE DOMAIN
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FIG. 1. Nonlinear global mode in a box of size Ax is the distance :
required to reach the saturation amplityd&? :
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In that case the amplitude of the solution is constant at the b) GS
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value u*'“ outside two boundary layers, one of six& given
by Eq. (10) at the upstream boundary=0 and the other of
size unity at the downstream boundary L.

The bifurcation diagranjFig. 2(@)] is obtained by plot-
ting the maximum amplitude of the numerically determined
steady solution of Eq(l) as a function ofw. The solution
has been computed for=10X 7. The interval inyx where
the flow is locally stable is marked b$ convectively un-
stable byC, absolutely unstable b&. G S marks the linearly
globally stable domaing < ug= u;+ m%/L?, W the domain
of validity of the weakly nonlinear theory|u— ug|
<487*(UL) ~° andK the domainu— ug>L 2 where the
solution is obtained as a linear front blocked by the upstream
boundary condition. The terminolod¢ is used for Kolmog-
orov, since the linear front velocity selection was first dis- Amax
covered in Ref. 18. 0.4/

The bifurcation diagraniFig. 2(@)] is in sharp contrast
with the classical “easy bifurcation” ca$ef a finite un- 03
stable system with no advecti@h=0: in the latter case, the
bifurcation takes place close @=0, the linear operator is 0.2
normal and the Landau constant is order unity.

With a finite advection y#0), the bifurcation takes 0.1
place when the flow is absolutely unstablest>> u.). Fur-
thermore, the Landau constant being order, the domain oz 020 oz "
of validity (W in gray) of the Landau model is extremely
limited and the strongly nonlinear saturated solution takesic. 2. Numerically computed bifurcation diagrarfreavy ling for U of
over very rapidly(for L= g Iarger than ordeL_3), It is order unity andL=10X 7 large but finite.(a) a<6/U (a«=1,U=4). (b)
somewhat of a surprise that the domain of existence of theé>6MU («=1,U=12). (al) Enlargement aroungi in the casex<4/U
strongly nonlinear solution coincides with the domain of lin- (=“5=L3J=Ul=)1)(bile)aﬁglgregme;nnin;;f:;‘iﬁn'ntrtlze C:zzifsfuaff/:UZ(S
ear absolute instability. =1).

This is no longer true whea>6/U since the nonlinear
solution in a semi-infinite domatf exists foru> u., which
includes the ranged.. , u{ where the basic state is still con- connects the nonlinear solution which bifurcatesaddle
vectively unstable. In that case, because of the logarithmiaode bifurcation close to u= . to the basic state. The
scaling forAx [Eq. (11)], the global mode in the box of size basic state is destabilized via a subcritical pitchfork bifurca-
L exists whenu exceedsu., by an exponentially small quan- tion at ug, with an orderL ~° nonlinear coefficient in the
tity. In Fig. 2(b), N marks the domairiin gray) where the Landau equation.
solution is obtained as a nonlinearly selected front blocked To obtain the bifurcation diagrams of Fig. 2, the station-
by the upstream boundary conditiéand not a linearly se- ary solutions of Eq(1) have been computed numerically as
lected front as in the region markedl). The bifurcation trajectories in A,dA/dx) phase space. They have been ob-
diagram is radically different from the previous case since, irtained by perturbation of the nonlinear global modes already
the finite box, the basic stafe=0 is linearly stable untig; ~ computed in the case of a semi-infinite domain in Ref. 16.
and therefore the flow exhibits hysterefieavy lines and The numerical procedure used to compute the stable and un-
arrows in Fig. 2b)] betweenu., and ug . In this subcritical ~ stable branches of the bifurcations diagrdffg. 2) is a type
range, an unstable solutiofdash-dotted curyeexists and of shooting method: in a semi-infinite domain, a nonlinear

[
—_
—
Y
[\®]
—

0.5¢ 0.5

0.4r 0.4
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a) I slopevg [Figs. 3c) and 4a)]. In this example for whichJ
b) LF) =12, ©=36 anda=1, the size of the box = may be
7 HH H considered as large, since the stable bifurcated solution is

extremely close to that obtained in a semi-infinite domain
[Fig. 4@]. The existence of the unstable branch with order
one maximum amplitudgFig. 4(b)] close toug shows that
the system is strongly subcritical wher>6/U. This is not

0 Vo in contradiction with the weakly nonlinear analysis in the
bzs ] Czs -~ vicinity of ug, which predicts subcriticality for a different
' A but smaller threshold & [Eq. (9)]. When 4U < a<6/U, the
a2k 32k system is weakly subcritical with a small hysteresis loop
T Yu T Us which exists in an extremely narrow band limited to the
s T~ sal domain(its size measured in terms of the parameteis of
10. orderL ~®) for n<pg- Inthis case, the bifurcation diagram
) 3 16800 o D 1as7 1ass v is similar to Fig. 2a), but with a negative slope aig, as

shown in the enlargemeffig. 2(a2)] of Fig. 2(a).

FIG. 3. Principle of determination of the different nonlinear global modes. The subcritical nature of the fully nonlinear instability

(a) Sizel of solutions as a function of the initial slopg. L= is one of ~ Whena>6/U leads us to consider how noise may induce the

the box sizes we consideb) and(c) are enlargements around the intersec- transition. The new kind of global mode in the range

tion points each of which represents a solution in a domain oflsizer. <u<pug exists not because the linear wave of zero group
velocity is destabilizedlinear absolute instabilifybut be-

global mode has a nonzero initial slopa/dx(0). This par- ~ cause the nonlinear front is able to withstand the advection.

ticular value ofdA/dx(0) with A(0)=0 is the single initial Numerical simulations of the evolution equati¢h) with
condition which converges t&,=(\/u,0) at infinity (initial boundary conditions Eq2) show that such global modes are
condition on the stable manifold @§,). When trajectories triggered only if the amplitude of the initial perturbation is
are integrated forward in space using the boundary conditioffge enough for the transient to reach an amplitude of order
at the origin A(0)=0 and a smaller initial slopev, unity in the finite domain. From the global point of view, the
=dA/dx(0) than that of the semi-infinite nonlinear global @mplification of the initial transient is a linear effect associ-
mode, the size of the solution is finite, i.e., there is a poinf@ted with the nonnormality of the global operator. The am-
x=1| such thatA(1)=0. The pointl is computed as a func- Plification factor is knowf’ to be comparable to the time-
tion of the initial slopev, and presents a concave shapeharmonic amplification mentioned in the first part of the
when ., < u< ug (Fig. 3). paper and to increase exponentially withlt may therefore
Coming back to the solution in a finite domain, the sec-Pe expected that the “activation amplitudgsymbolized by
ond boundary conditioA(L) =0 must be applied in order to the small black region in Fig.(8), which has been widened
single out solutions of size. These solutions are found by to make it visibld, i.e., the minimum amplitude of the initial
intersecting the previously obtained concave cuvig. 3  Perturbation sufficient to trigger the nonlinear global mode,
with the horizontal linel=L. Therefore, two solutions of Will decrease exponentially with. Numerical results are in
sizeL exist if u..<u<ug: one possesses a very small ini- Very good agreement with this interpretation: We have cho-
tial slopev, [Figs. 3b) and 4b)] and corresponds to the Sen initial perturbations possessing a uniform amplitude in
unstable branch of Fig.(B). The second one corresponding SPace. For a box size= 10w, the amplitude of this initial

: - . - 41 : ;
to the stable branch of Fig(t® possesses an order one initial condition must exceed 3410 ™" to trigger a nonlinear
front which moves upstream and saturates in a global mode.

If the box length isL=5, this threshold becomes 9.5

x 10”2 and ifL =24, it becomes 7.X 10 ’. If such a non-
linearly self-sustained global mode were present in a real
experiment, this activation amplitude would be too small to
be detected since initial and entrance noise, which are say of
order 10 # in a precise experimental setup, would generate
order unity transients even for a moderate box &izk any
case, the entrance noise determined by the precision of the
experimental setup exceeds by several orders of magnitude
the threshold to trigger a large nonlinear response. The bi-
furcation would therefore seem to effectively take place
close tou,, as in the semi-infinite case.

a)

PN W oe o

o
o
o
=
=
o

b)

N Wes U

0 0.5 1 1.5

VI. DISCUSSION AND COMPARISON WITH OPEN
FLOW EXPERIMENTS

FIG. 4. Nonlinear global modes obtained at the intersection points of Fig. 3. ) ) ) ) ) -
(a) Stable mode with slope,. (b) Unstable mode with slope,, . This type of bifurcation induced by transient amplifica-
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tion of initial noise is associated with the nonnormality of the log Ax
linear evolution operator; it has been invoked to explain dy- N -—
namics in Couette and Poiseuille fi&&The present paper
shows that a fully nonlinear analysis must be undertaken in - L3
order to determine the dynamics of open flows and that the
notion of nonnormality only quantifies how the systemmay 1= 7= o . ____ -
be triggered by noise, but tells us nothing about its ultimate !

response. An elementary partial differential equatibnhas L=25 |

been studied for which two extremely different bifurcation i .“. L1
scenarios have been identified, depending on the nonlinearity i

present in the systeifas measured by the parameter;, but
without any change in the nonnormality of the linear opera-
tor.

5 4 3 2 -1 0

Several open flows which follow the bifurcation scenario log(,u - 'u’t)

depicted in Fig. &) have been identified experimentally Or g 5. size of the global modes versus the deviation from the absolute
numerically: as an example of linearly determined bifurca-instability threshold for the Taylor—Couette problem with throughflow. The
tion scenario, we have analyzed the Taylor—Couette problergifferent symbols show measurements bycBe et al. obtained from nu-
with throughflow, within the framework of the complex merical 5|mulat|0n§ of the NaV|er—'St(_)kes _equatlons. The continuous line
. . h h h h represents the scaling law E40) which is valid asu tends tou, . A global
Glnz.bur.g—Landau equation and V_Ve. a\{e S own t at.t € d¥ode effectively saturates over a long distance and Hg).should be valid
namics in an open geometry of sizes similar to that in a  if the region within the dashed—dotted lin@ehich depends on the sizeof
semi-infinite domairt’ In particular, the flow behaves like an the systemincludes sufficiently small departures from the absolute thresh-
oscillator when the Taylor numbeétr.e., the bifurcation pa- old 4.
rameter which measures the rotation of the inner cylinder

exceeds the absolute instability threshold. For this problem _ o
Blchel et al®> have compared numerical simulations of thegg\r':'/;irgnggaéeénggtéal (t)h;l fg;'sl_ Eolr(r)esﬁgngjﬁorteh?ozb'
Navier—Stokes equation with those of the Ginzburg—LandaL\JNhere the flow saturateé is observe_d ' 9
equation in a system of finite length. In Ref. 17, we have Rayleigh—Beard convection with throughflod,bluff

demonstrated that when the threshold of absolute instabili%ody wakeg® and resonant hot jéfalso belong to the class
# s approached, the scaling law B0 is in good agree- for which the bifurcation scenario of Fig(& holds. Open

ment with numerical calculations of the lendite., the dis- . . . ) .
flows which bifurcate following the fully nonlinear scenario

tance necessary to reach order one amplitwdéhe modes . .
[Fig. 2(b)] are not so common, the only known exception

obtained above threshold by Buelet al. This indicates that eing the shear flow experiment in a Hele-Shaw?Belhere
the system possesses the intrinsic dynamics of a semi—infinit%1e scaling law Eq(11) has recently been reported and for

system; the influence of the outlet boundary condition is re-

stricted to a very narrow domain near the outlet but does no\f\’h'Ch 't.he nonlinear transition seems to precede the absolute
instability threshold. Several experimental situations con-

affect the global dynamics of the system. This analysis is erning the problem of front propagation, for example,

valid because the system considered is sufficiently long and . L .

. : . hemical system$: are known to exhibit nonlinear front se-
the present analysis determines precisely whether the resu‘iesction Adding a throuahflow in this chemical experiment
obtained by Buohelet al. fall within the range of validity of ' g 9 P

scaling law Eq.(10). A global mode cannot be obtained if should yield an experimental open flow which bifurcates ac-

the departure from the threshold of absolute instabjlifyis cording to the _nonllnear scenalﬁﬁlg. 2Ab)]. I .

smaller thanm?/L2. But otherwise, the system behaves as in _In_ conclusion, we _elmpha_3|ze that the main |ngr§d_|ent
a semi-infinite domain and a global mode which has satu—smtﬁ(.:"_:‘nt for th_e subcrmcaI. bifurcation to occur Ina f|n|tg
rated over a distance comparable to the size of the box igox is the nonlinear selection of the front velocity. In this

obtained only if the bifurcation parameter exceeds the globageSpeCt’ model equatiofd) displays the necessary minimal

instability thresholdug by an additional quantity 2%/L3 eatures but other models would exhibit similar qualitative
G .

[see Eq.12)]. The domainu— u>72(11L2+ 2/L%) where dynamics.

the scaling law Eq(10) pertaining to the semi-infinite inter-

val remains valid for the finite interval is indicated in Fig. 5 ACKNOWLEDGMENTS
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