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Propagating Pattern Selection and Causality Reconsidered
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Pattern selection, occurring when a nonuniform state of a nonlinear dissipative system propagates into
an initially unstable, homogeneous basic state is reconsidered by application of the causality principle.
In particular, the nonlinear marginal stability criterion that determines the selection of a nonlinear front
solution is replaced by an exact general necessary condition that has never been considered before. The
demonstration is based on the causal signaling problem derived in the context of plasma physics.

PACS numbers: 47.54.+ r, 47.15.Fe, 47.20.Ky, 47.20.–k
From macro- to microscales, the Universe presents a
striking mixture of order within disorder and of disorder
within order. This leads to a great variety of patterns from
solar granulation [1] to sunflower Fibonacci spirals [2],
and from life cycles (population dynamics) [3] to heart
attack fibrillations [4]. The ultimate goal of the theoreti-
cal analyses in pattern forming systems is “to understand
whether, or under what circumstances, pattern formation
(. . .) is an intrinsic property of the systems themselves
or, perhaps, depends sensitively on initial configurations,
boundaries, or externally imposed perturbations” [5]. In
the past decade, attention has been focused on elemen-
tary models exhibiting pattern formation and that are theo-
retically and numerically tractable [6]. Insights gained on
these toy models have then been extrapolated or extended
to real systems such as Rayleigh-Bénard convection [7],
cellular or dendritic solidification fronts [8], cellular flame
fronts [9], liquid crystals [10], or solar dynamo waves [11].

Of particular interest is the pattern propagation, and
great attention [12,13] has been paid to situations where a
stable nonuniform state of a nonlinear dissipative system,
generated from a localized initial perturbation, propagates
into an initially unstable or metastable homogeneous infi-
nite domain. The interface separating the stable nonuni-
form state from the unstable homogeneous state is a front,
which moves at a constant velocity in several experiments
[10,14], and an important part of the theoretical work about
front propagation has been devoted to the understanding
of the selection principle which determines the velocity of
the front and the typical wavelength of the nonlinear stable
state behind. The front propagation may be of two types
[12,13] (pulled or pushed regime) schematically depend-
ing on whether the state into which the front propagates is
unstable or metastable. To explain this selection, a linear
(pulled regime) and a nonlinear (pushed regime) marginal
stability criterion have been proposed [13] and compare
favorably with the experiments in both cases [10,14], but
no systematic derivation of these criteria has been given.
The reader is referred to the literature for a detailed discus-
sion of these criteria, and we will present here the linear
selection criterion developed by Dee and Langer [5] and
rephrased by Huerre and Monkewitz [15]. For simplic-
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ity, let us consider a one-dimensional problem with x, the
spatial coordinate. For an unstable basic state, the linear
Green function defines the linear propagation of an initial
impulse perturbation. The linear response to any initially
localized perturbation will be obtained by convolution of
the Fourier transform of the perturbation with the Green
function. At long time, the response will be dictated by
the long time dynamics of the Green function. In particu-
lar, it will be exponentially decaying outside a wedge (or
several wedges) limited by spatiotemporal rays x�t � yl

(t being the time since the impulse has been applied)
such that

dv

dk
� yl , (1)

Im�v 2 ylk� � 0 , (2)

with v being the complex frequency and k the complex
wave number for which the plane wave exp�i�kx 2 vt��
is a solution of the linearized equation of motion; i.e.,
v and k are solutions of the linear dispersion relation
D�v, k� � 0. Conditions (1) and (2) correspond to the
classical marginal absolute instability criterion. In fact,
from the works of Briggs and Bers [16] on plasma waves,
we know that these conditions are not sufficient and an
extra “pinching” condition, that will be detailed later, has
to be fulfilled.

The nonlinear response will be obtained by letting the
wave packet saturate, and it is legitimate to imagine that
saturation will occur inside the unstable wedge where the
amplitude would be exponentially growing if saturating
nonlinearities were absent. The fronts bounding the satu-
rated state are then the edges defined by the velocities yl

satisfying Eqs. (1) and (2). This linear selection principle
was first derived by Kolmogorov et al. [12] and is fully
equivalent to the marginal stability criterion. It may be
rephrased by saying that the front which is selected from
the linear criterion, also referred to as the Kolmogorov
front or the pulled front, is such that, in the frame moving
with the front, the basic state is at the absolute instability
threshold. If the front were going slower than yl , it would
be unstable since any infinitely small perturbation would
© 2000 The American Physical Society
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develop and propagate ahead of the front. Fronts moving
faster than yl are possible since perturbations ahead of
the front are advected toward the front and are eventually
absorbed in the saturated region. The linear selection crite-
rion is therefore not sufficient, and among these fast fronts
one must determine which is dynamically selected. A non-
linear selection principle has been proposed to that aim
[13], and the nonlinearly selected front is referred to as the
nonlinear front or the pushed front.

The existence and selection of a pushed front is obvious
when considering a metastable basic state. In this case, the
linear analysis does not enable us to predict the propagation
of the bifurcated domain since the linear Green function is
damped at any location in any moving frame. The pattern
propagation front is therefore nonlinearly determined by
solving in any frame moving at velocity y the problem of
existence of a purely time-periodic solution at the unknown
frequency v, asymptotic to a saturated plane wave at 2`

and to the basic state at 1`. In this metastable case, when
several such fronts exist and move at different velocities,
the selected one is merely the fastest. But the existence of
such a nonlinear front is not limited to the stable parame-
ter range. At the linear instability threshold, front solutions
start to exist for any propagation velocity and the selected
one may be determined by “continuity” [17] with the lin-
early unstable range. Nonlinearly selected fronts may be
found not only in systems exhibiting a subcritical bifurca-
tion but also for systems undergoing a purely supercritical
bifurcation [13,18]. In the latter case, the selection cannot
be determined by a continuity argument. The selection
principle (extended marginal stability criterion) conjec-
tured and tested numerically in Ref. [13] may be stated as
“the front is nonlinearly selected (pushed) when it is simul-
taneously faster and steeper (with the steepness defined as
the spatial decreasing at x ! 1`) than the corresponding
linearly selected (pulled) front” [13].

The purpose of the present paper is to give an exact non-
linear selection criterion based on the causality principle.
For a generalized complex Ginzburg-Landau equation, the
new criteria enable us to recover former results whereas,
for a nonlinear problem involving a higher order linear dis-
persion relation, it will predict a selection that may differ
from the marginal stability principle. We illustrate the new
criterion on the real subcritical Ginzburg-Landau equation
describing a pitchfork bifurcation in an extended system
for which front selection has been exactly determined [13]:

≠tA � ≠xxA 1 mA 1 �2a 2 1�A3 2 aA5, (3)

with A�x, t� the order parameter, m the bifurcation pa-
rameter which will be taken positive in the following, and
a a coefficient which equals to unity, except when oth-
erwise specified for the purpose of illustration. Figure 1
shows for m . 0 the different phase diagrams �A, dA�dx�
for steady front solutions in the frame moving at velocity
y, i.e., fronts in the form A�x 2 yt�, where y is the
constant asymptotic velocity, linking a saturated non-
FIG. 1. Phase diagrams for front solutions with velocity y.
The bold lines indicate the stable eigendirections of the fixed
point A0. (a) y , 2

p
m. (b) y . 2

p
m. (c) y � 2

p
m. Both

stable eigendirections of A0 have merged. (d) y � ynl�m� and
m , 3�4.

linear state at x � 2` to an unstable state when x �
1`. Front solutions are sketched as heteroclinic orbits
which depart from the fixed point A2 � �A � �1�2 1p

m 1 1�4 �1�2, dA�dx � 0� and arrive at the fixed point
A0 � �A � 0, dA�dx � 0� along a specific eigendirec-
tion, the slope of which is linked to the steepness of the
front at x ! 1` (a large slope indicates a steep front).
For y , 2

p
m, the heteroclinic orbit spirals around A0

which is a focus [Fig. 1(a)]. For y . 2
p

m the hetero-
clinic orbit asymptotes generically to A0 on the least stable
eigendirection [Fig. 1(b)]. For y � 2

p
m, both stable

eigendirections merge [Fig. 1(c)]. When m , 3�4, for
discrete values of y, some heteroclinic orbits arrive at A0
along the most stable eigendirection. The largest velocity
y for which such an exceptional heteroclinic orbit exists
[Fig. 1(d)] is given by

ynl�m� � 2
p

3 1
4
p

3
�1�2 1

p
m 1 1�4 � . (4)

Following the above-mentioned conjecture, the front
moves at the linearly selected velocity yl � 2

p
m when

m . 3�4, but at the nonlinearly selected velocity ynl

larger than yl when m , 3�4.
When a higher dimensional equation is considered, the

choice of the stable manifold to connect with at the origin
may involve more than two eigendirections and the non-
linear selection principle should be extended and proven.
In this case, the linear criterion is still valid and the se-
lected velocity is the value yl at which two eigenvalues
of the evolution operator linearized around A0 are equal,
forcing the corresponding eigensubspaces to coalesce and
recompose. In a frame moving slower than the linearly se-
lected front, i.e., at velocity y , yl , the instability of the
basic state is linearly absolute, whereas, in a frame mov-
ing faster than yl , the instability is convective. As argued
1911
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in many places [12,13,18] a nonlinear front, excited from
a localized initial condition, should be linearly stable and
therefore should move faster than yl . In other words, the
instability of the basic state should be convective in the
frame moving with a nonlinear front to avoid initial tran-
sient propagating ahead of the front. But, for a linearly
unstable basic state, a front solution exists for any veloc-
ity y . yl and one should determine which one, if any, is
dynamically correct, i.e., which one appears from initially
localized perturbations.

To answer this question, we shall first consider the re-
lated problem of the linear response to a forcing at fre-
quency v, applied continuously at a fixed location x � 0,
in a frame moving at velocity y . yl . This “signaling”
problem has been fully solved in plasma physics by Bers
[16] and involves the subtle problem of causality. For a
forcing which starts at time t � 0, we shall require that no
response precedes the cause, i.e., that the response to the
forcing is identically zero for t , 0. Bers [16], making
use of spatial and temporal Laplace transform, has shown
that the causality condition imposes the dispersion relation
for linear plane waves D�v, k� to be such that the temporal
growth rates Im�v�k�� of temporal modes (homogeneous
in space, i.e., k real) are bounded, let us say by vimax
[Fig. 2(a)]. A similar requirement does not hold for spa-
tial modes (v real) which may lie on both sides of the real
k axis and spatial growth rates are not constrained to be
bounded [Fig. 2(b)].

The formal symmetry between v and k in the disper-
sion relation D�v, k� is therefore broken by the causality
which specifies that “information” propagates only toward
positive time but may propagate in any direction in space.
In particular, in the signaling problem, one should deter-
mine on which side of the source each spatial branch k�v�
propagates. When the basic state is stable, common sense
tell us that the waves should be damped (evanescent) while
propagating away from the source [Fig. 2(c1)] and that,
therefore, branches k1 with positive Im�k� propagate to-

FIG. 2. (a) Temporal modes v�k�, k real; (b) spatial branches
k�v�, v real, in k plane; (c) response to forcing localized in
space and harmonic in time. (1) Stable case; (2) convectively
unstable case; (3) absolutely unstable case.
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ward 1`, whereas k2 waves with negative Im�k� propa-
gate toward 2`. To prove this conjecture and extend it
to an unstable basic state, Bers does not refer to the con-
cept of group velocity since the group velocity dv�dk is
in general complex, but to the causality principle taking
the forcing source of the form d�x�H�t� exp�2ivt� with
causality insured by the Heaviside function H�t�. Using
contour closure to compute the inverse Laplace transform,
he shows that the signaling problem has no solution when
the instability is absolute since physically the initial tran-
sients are exponentially growing at the source. When the
instability is convective, the initial transients are moving
away from the source and the spatial branches separate
between k1- and k2-type depending on which side of the
source they propagate [Fig. 2(c2)]. In the latter case, dif-
ferentiation between k1 and k2 branches does not rely on
the sign of Im�k� since amplified waves are possible but
on a contours deformation procedure which enables us to
evaluate the Laplace transform of the response. Schemati-
cally a k1 branch may be deformed continuously by in-
creasing the imaginary part of v to a branch lying entirely
in the upper half of the complex k plane (Fig. 2(b2); see
[16] for details). When the instability is absolute, the sig-
naling problem is ill posed and k1 and k2 branches cannot
be differentiated as in the convective case. The causality
principle cannot be applied, but this case is not interesting
for front propagation since the pulled front is faster than
any front in the reference frame of which the instability is
absolute.

In a frame moving at a velocity larger than the linear ve-
locity yl , the instability is convective and a nonlinear front,
issuing from a localized initial perturbation, stationary in
that frame should emit a k1 wave ahead of it, in the linear
region where the amplitude is small enough for the linear
theory to apply (a k2 linear wave propagates information
from 1`, i.e., requires a source at 1`). This condition is
necessary only for the front solution to be generated from
an initially localized perturbation, and applies, in particu-
lar, to the case of pushed (or nonlinearly selected) fronts.
In other words, a front moving at a velocity larger than
yl , the velocity of the pulled (or linearly selected) front,
must connect the unstable state ahead of the nonlinear re-
gion to a k1 linear branch in order to be causal. Clearly in
this case, the pushed front will act as a wave maker in the
frame moving with the front, radiating a k1 linear wave
ahead. These dynamics contrast with the pulled (linearly
selected) front for which the wave maker is the edge of the
linear Green function. Just behind the edge, the amplitude
grows exponentially in space and saturates when nonlinear
effects come into play. The pulled front is unambigu-
ously causal since the velocity of the pulled front is deter-
mined by a saddle point of the dispersion relation [Eqs. (1)
and (2)] of instability waves supplemented by a pinch-
ing condition between k2 and k1 waves. As emphasized
in [19], this pinching condition linked to causality im-
plies that the sign condition Im�≠2v�≠k2� , 0 be satisfied
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at the pinch point. To illustrate the difference between
these causality considerations and the extended marginal
stability criterion, let us consider the Nozaki-Bekki front
[20], an analytic solution of Eq. (3) in the case of a super-
critical bifurcation when a � 0, which reads

A �
p

m��1 1 exp�kNB�x 2 yNBt��� , (5)

with yNB � 3
p

m�2 and kNB �
p

m�2. The pulled front
shape cannot be determined analytically but it moves at
the velocity yl � 2

p
m and its steepness equals kl �

p
m.

The velocity yl is smaller than yNB, and the nonlinear
selection criterion stipulates that the Nozaki-Bekki front
will not be selected since its steepness kNB is smaller than
kl . Hence, the selected front is the pulled front. In this
case, the extended marginal stability criterion determines
the right selected front. However, the causality condition
would have determined here which front is selected with-
out referring to the somehow intuitive idea of steepness
of the front. The Nozaki-Bekki front indeed links a k2

linear branch when x � 1` and therefore is not a causal
front. Our purpose has been illustrated on a very simple
real amplitude equation for which the fronts have a zero
frequency; however, the results still hold for complex and
higher order amplitude equations. Furthermore, the same
argument holds for the propagation of other types of solu-
tions, for example, pulses which should connect a k2 wave
at x � 2` to a k1 wave at x � 1`, although the case of
pulses is less ambiguous since they propagate usually in a
stable medium.

For a simple dispersion relation such as the one ob-
tained from the linear Ginzburg-Landau equation, we have
in the convective case the particular property that, for any
v, Im�k1�v�� . Im�k2�v��. Our condition that dynami-
cally accessible fronts should be asymptotic to a k1 wave
corresponds to the steepness conjecture in the nonlinear
selection criterion [13]. But it may happen in more com-
plex systems such as in the instability of a boundary layer
over a membrane [21] that, for some v and some particular
spatial branches, Im�k1�v�� , Im�k2�v��. The extended
marginal stability criterion (nonlinear selection principle)
applied to such a case will predict a noncausal front solu-
tion receiving energy from 1`. The present criterion that
a pushed front should be causal, and therefore asymptotic
to a k1 linear wave ahead of the front, would determine the
correct selection of the front velocity. It constitutes a defi-
nite extension of the previous selection conjectures since it
gives up the intuitive idea of steepness of the fronts. In the
pulled regime, the causality considerations show that all
fronts with velocity larger than yl constitute a continuum
of noncausal fronts and are not excitable by a localized
perturbation.

We have therefore proposed a front selection criterion
based upon the physical concept of causality. This new
criterion merely reads “the selected front (if any) is the
fastest causal front,” and recovers the nonambiguous case
of the marginal stability criterion when the fastest causal
front coincides with the steepest.
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