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Ice protection systems

de-icing anti-icing

Prevention of ice from accumulating on 
surfaces or in aircraft systems.

cyclic removal of already 
accumulated ice from the aircraft.

Mechanical 
systems

Thermal 
systems

Chemical 
systems

● Electrothermal-
type systems 
(ETIPS)

● Bleed air 
systems

● Pneumatic boot 
systems

● Electromechanical 
systems (EMPIS)

● spraying of an 
anti-icing fluid

● Passive anti-ice 
and de-ice 
systems
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Ice protection systems: spraying of an anti-icing 
fluid

Pros:
● Simple and quick to implement.
● Process adapted to all aircraft.

Cons:
● High economic/environmental 

impact.
● Limited durability (effective 

only during the take-off stage).
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Ice protection systems: pneumatic boot systems

Sweet, D. Collins aerospace technical note, 2019

Sweet, D. Collins aerospace technical note, 2019

V. Palanque, PhD, 2022

Pros:
● Moderate technological complexity.
● Reliability

Cons:
● « all or none » system.
● Low ice residue on the wall

https://www.youtube.com/watch?v=HrjP_iYlJ1k

https://www.youtube.com/watch?v=HrjP_iYlJ1k
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Ice protection systems : bleed air system

● Hot air extraction from the engine.

● Injection into the leading edge of the wing (via piccolo tube).

● Low energy efficiency.
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Ice protection systems : electro-thermal systems

● Composed of several heater mats.
● Integrated in a multi-layered material.
● Can be used in two ways:

➢ Anti-icing : the protected surface is constantly heated so as to prevent ice 
formation (ex: Helicopter tail rotor)

➢ De-icing : Ice accretes and the heaters are activated according to a 
predefined cycle. Therefore, melted regions at the ice/surface interface 
appear and reduce the ice block’s adhesion, which eventually leads to ice 
shedding.

C

B

A

D
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Heater mats
● More and more developed in 

"all electric" aircrafts.

● In de-icing mode: cyclic 
activation of the heater 
mats.

Multi-layered material
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Ice protection systems : electro-mechanical systems

The objective of the system is to trigger the natural frequencies of the airfoil 
to achieve de-icing.

(V. Palanque, PhD, 2022)

Electric supply 
devicePiezoelectric 

actuator

Gonidec, et al. (2019). Procédé d’alimentation électrique d’un dégivrage et d’un antigivrage de nacelle par ultrasons. Library Catalog: Google 
Patents.
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Ice protection systems : passive anti-ice and de-ice 
systems

FDO-GNR films. Both anti and de-icing propertie. (Wang et al., ACS Appl. Mater. Interfaces, 2016)

● Surface treatment or coating.
● Hydrophobic and/or icephobic properties

● Main difficulty : coating durability, surface treatment renewal.

● Deteriorated surface condition may lead to enhanced accretion rate ⇒ May 
be counterproductive.

● Best option : combine both passive and active protection systems.
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Electro-thermal ice protection system (ETIPS) : an unsteady 
phenomenon by nature

Operating of an ETIPS (Aerospace 2023)

Parting 
strip
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Electro-thermal ice protection system (ETIPS) : physical 
phenomena

Illustration of the different physical phenomena taking place when an 
electrothermal ice protection system is being operated (Aerospace 2023)
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Electro-thermal ice protection system (ETIPS) : shortcomings 
of the classical Messinger approach

● The Messinger balance is a steady state model unsuitable for the deicing 
mode where the phenomena are intrinsically unsteady (like ice shedding 
for instance).

● An uniform temperature. Needs to compute the temperature gradients.

● No dynamics for the liquid film which runbacks.

⇒ Need of a more sophisticated 
approach to compute ice shape

⇒ The triple layer approach

PhD works of Chauvin & Bennani
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Electro-thermal ice protection system (ETIPS) : typical 
architecture of an icing suite
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Electro-thermal ice protection system (ETIPS) : typical 
architecture of an icing suite



17

Electro-thermal ice protection system (ETIPS) : typical 
architecture of an icing suite

Triple layer approach

Sandwich structure 
of the heated wall.

Fracture solver

Layer 1

Layer 2

Layer 3

Layer 1

Layer 4

Layer 5

Strong coupling
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Electro-thermal ice protection system (ETIPS) : the triple layer 
approach

• Running film layer:
 Lubrification theory: 
 Mass conservation: 
 Energy conservation: 

• Ice layer and melted film layer
 Heat transfer in the tangential direction is neglected
 Mass conservation: 
 Energy conservation:                      + boundary conditions

Classical finite 
volume method 

Finite element 
method
 

Chauvin et al., FINEL 2018

6 possible modes : 
1)full evaporative,
2)running wet,
3)rime ice,
4)glaze ice, 
5)Rime ice+static film
6)Glaze ice+static film
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Electro-thermal ice protection system (ETIPS) : the triple layer 
approach. An illustration.

Chauvin et al., FINEL 2018

runback ice build-up (ice ridges).
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Electro-thermal ice protection system (ETIPS). Coupling between the 
ice accretion solver and the heat conduction solver.

Chauvin et al., FINEL 2018

Heat conduction 
solver (wall)

Accretion solver

Loop on (k) :

Boundary condition from the 
accretion solver to the heat 
conduction solver (wall).

Boundary condition from the 
heat conduction solver 
(wall) to the accretion solver. 

● The coupling coefficients      
and       are optimized by a 
Schwarz algorithm.

● Mathematical framework for 
unsteady problems with linear 
BC and steady problems with 
non-linear BC.

● To convergence :
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Bennani et al., CAMWA 2020

Conduction solver

Non-linear contribution (evaporation) Linear contribution

Linear contribution

Electro-thermal ice protection system (ETIPS). Schwarz coupling. 
Illustration on solving the heat equation.
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Electro-thermal ice protection system (ETIPS). Schwarz coupling. 
Illustration on solving the heat equation.

Bennani et al., CAMWA 2020
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Electro-thermal ice protection system (ETIPS). Schwarz coupling. 
Illustration on a real accretion problem (1/2).

Bennani et al., CAMWA 2020

0

Power density (kW/m2)

PS

HM1 and HM2

40s 80s

t=40s

Heated leading edge :
● 1 parting strip (PS) 

permanently on.

● 2 symetric heater mats 
(HM).

● Unsteady (deicing) 
mode
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Electro-thermal ice protection system (ETIPS). Schwarz coupling. 
Illustration on a real accretion problem (2/2).

● Stiff coupling for real applications.

● Justifies an optimization of the 
coupling coefficients to maximize 
and sometimes make possible the 
convergence.

Oscillations between accretion modes : 
rime, glaze, running wet, static film, ...

Bennani et al., CAMWA 2020
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Electro-thermal ice protection system (ETIPS). Ice shedding.

Theoretically, ice shedding due to heating and aerodynamic forces

● No reliable correlations available with aerodynamic 
forces

● Empirical criteria based on L (film width) and h (film 
thickness)

film width L

Film 
thickness
h



26

Electro-thermal ice protection system (ETIPS).  Modeling the 
mechanical behavior and shedding of ice

Physical model

Crack energy:

Regularized crack energy 
(Bourdin et al., 2008):

  Regularization        
 by length scale l 

 General idea: evaluate the energy required to create/propagate a crack and 
compare to available internal energy

(Christian Miehe, Martina Hofacker, Fabian Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic
implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, 2010)

: crack energy release rate

Tends to 
localize

Tends to 
spread

: Damage function
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Electro-thermal ice protection system (ETIPS).  Modeling the 
mechanical behavior and shedding of ice

Physical model

 Total energy balance:

 Conservation of energy:

 Energy transfer illustration:

Elastic 
energy 
dissipated 
into crack 
energy

Work of 
external 
forces 
creates 
elastic 
energy

Reversible Irreversible

Allows to write a stationary damaged 
equilibrium state compatible with the 
external constraints + equation on the 
damage function d.
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 Shear test (fine mesh)

 Mixed Mode, comparison with experiments:

Experiment

SimulationBolander et al. Fracture analyses using spring networks with random 
geometry, Engineering Fracture Mechanics 61 (1998) 569-591

Electro-thermal ice protection system (ETIPS).  Modeling the 
mechanical behavior and shedding of ice. Basic tests.
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Electro-thermal ice protection system (ETIPS).  Scenario.

PhD thesis, Bennani, 2014

Parting strip

● Pressure in Pc* transferred entirely into the 
film (hydrostatic balance).

● Air flow accelerates to bypass the ice layer 
=> pressure in the film > external pressure.

● => A force appears. Added to this are the 
viscous effects
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Electro-thermal ice protection system (ETIPS).  Scenario.

PhD thesis, Bennani, 2014

● Shedding in adhesive mode. Part of the interface 
is melted and the adhesive forces holding the ice to 
the surface are no longer sufficient.

● Shedding in cohesive mode. Part of the interface is 
melted. Ice may still adhere, but a crack may initiate 
near the stress concentration zone and propagate 
along the surface.

● Fracture in the core of the ice. Part of the 
interface is melted. Ice can still adhere, but a crack 
can initiate near the stress concentration zone and 
propagate into the core of the ice block.

● Ice shedding is an interaction of all the above 
phenomena.
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Electro-thermal ice protection system (ETIPS).  Scenario.

PhD thesis, Bennani, 2014
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Electro-thermal ice protection system (ETIPS). Illustrative test 
cases.

Chauvin et al., FINEL 2018

Stefan problem

250 K

=300 K
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Bennani et al., Aerospace 2023

Electro-thermal ice protection system (ETIPS). Illustrative test 
cases.
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Bennani et al., Aerospace 2023

Anti-icing mode

Electro-thermal ice protection system (ETIPS). Illustrative test 
cases.
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Bennani et al., Aerospace 2023

De-icing mode

Electro-thermal ice protection system (ETIPS). Illustrative test 
cases.
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Bennani et al., 
Aerospace 2023

Electro-thermal ice protection system (ETIPS). Illustrative test 
cases.

De-icing mode
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Electro-thermal ice protection system (ETIPS). Coupling between the 
ice accretion solver and the heat conduction solver.
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Morphology of liquid water with ice protection systems : 
Partially wetting films and rivulets modeling

PhD works of J. Lallement (2019)
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Disjoining energy near the contact line

PhD works of J. Lallement (2019)
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Transition to rivulets. Experiments from Johnson

PhD works of J. Lallement (2019)
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Some examples of the effects near the contact line

PhD works of J. Lallement (2019)
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