Fundamentals of Solidification GRAE WORSTER

Department of Applied Mathematics and Theoretical Physics

UNIVERSITY OF CAMBRIDGE

Advection—Diffusion Equation (conservation of heat)

Specific enthalpy H is heat per unit mass at constant pressure

Conservation

$$\frac{\partial}{\partial t}(\rho H) + \nabla \cdot \mathbf{q} = 0$$

Heat flux

$$\mathbf{q} = \rho H \mathbf{u} - k \nabla T$$

advection Fickian diffusion

$$\rho \frac{\partial H}{\partial t} + H \frac{\partial \rho}{\partial t} + H \nabla \cdot (\rho \mathbf{u}) + \rho \mathbf{u} \cdot \nabla H = \nabla \cdot (k \nabla T)$$

Specific heat capacity

$$c_p = \frac{\partial H}{\partial T} \bigg|_p$$

$$\frac{DH}{Dt} = \rho c_p \frac{DT}{Dt} = \nabla \cdot (k\nabla T)$$

Stefan Condition

(conservation of heat)

frame fixed in solid

frame fixed with interface

$$\mathbf{n} \cdot \mathbf{q}_s = \mathbf{n} \cdot \mathbf{q}_l$$

$$\rho_s H_s(-V) - k_s \mathbf{n} \cdot \nabla T_s = \rho_l H_l \left(\mathbf{u}_l \cdot \mathbf{n} - V \right) - k_l \mathbf{n} \cdot \nabla T_l$$

$$\rho_s(-H_s + H_l)V - H_l\left[\rho_s V + \rho_l(\mathbf{u}_l \cdot \mathbf{n} - V)\right] = k_s \mathbf{n} \cdot \nabla T_s - k_l \mathbf{n} \cdot \nabla T_l$$

$$\rho_s LV = k_s \mathbf{n} \cdot \nabla T_s - k_l \mathbf{n} \cdot \nabla T_l \qquad L = H_l - H_s$$

Measurements of Sea-Ice Thickness

http://icestories.exploratorium.edu

Dutch ship Varna stuck in pack ice during first International Polar Year 1882–83

Calculating the Thickness of Sea Ice Stefan's Problem

The location of the interface between ice and ocean is determined by the

$$\rho L \frac{da}{dt} = k \frac{\partial T}{\partial z} \bigg|_{z=a-}$$

Similarity Solution to Stefan's Problem (Neumann 1860's)

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2}$$

Boundary conditions

$$T = T_0 \quad (z = 0)$$

$$T = T_m \quad (z = a(t))$$

Stefan condition

$$\rho L \frac{da}{dt} = k \frac{\partial T}{\partial z} \bigg|_{z=a-}$$

Scale temperature differences with $\Delta T = T_m - T_0$, lengths with H, times with τ

$$\frac{\Delta T}{\tau} \sim \kappa \frac{\Delta T}{H^2} \quad \Rightarrow \quad H \sim (\kappa \tau)^{1/2}$$

$$\rho L \frac{H}{\tau} \sim k \frac{\Delta T}{H} \quad \Rightarrow \quad H \sim \left(\frac{\kappa \tau}{\mathcal{S}}\right)^{1/2}$$

No intrinsic timescale. Only extrinsic timescale is elapsed time t so choose $\tau \sim t$.

Similarity Solution to Stefan's Problem

Dimensionless variables

$$T - T_0 = \Delta T \ \theta\left(\frac{z}{H}, \frac{t}{\tau}\right) = \Delta T \ \theta\left(\frac{z}{\sqrt{\kappa t}}, 1\right) = \Delta T \ \theta(\eta)$$

Similarity variable

$$\eta = \frac{z}{2\sqrt{\kappa t}}$$

Equation and boundary conditions become

Similarity Solution to Stefan's Problem

Temperature in the ice is
$$T = T_0 + (T_m - T_0) \frac{\text{erf } \eta}{\text{erf } \lambda}$$

where

$$\eta = \frac{z}{2\sqrt{\kappa t}}$$

with

$$a = 2\lambda\sqrt{\kappa t}$$

$$a = 2\lambda\sqrt{\kappa t}$$
 $\sqrt{\pi}\lambda e^{\lambda^2} \operatorname{erf} \lambda = \mathcal{S}^{-1}$

Quasi-Steady Approximation valid for large Stefan number

Scale temperature differences with $\Delta T = T_m - T_0$, times with τ , lengths with $H \sim \left(\frac{\kappa \tau}{\varsigma}\right)^{1/2}$

Scaled equations

$$\frac{da}{dt} = \frac{\partial T}{\partial z}\Big|_{z=a-} \qquad \frac{\partial^2 T}{\partial z^2} = \frac{1}{S} \frac{\partial T}{\partial t}$$

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{\mathcal{S}} \frac{\partial T}{\partial t}$$

Stefan condition

$$\rho L \frac{da}{dt} = k \frac{T_m - T_0}{a}$$
$$a = \sqrt{\frac{2\kappa}{S}t}$$

Agrees with full similarity solution when $S \gg 1$

Sphere Growing into a Supercooled Melt

Using quasi-steady approximation

$$\nabla^2 T = 0 \quad \Rightarrow \quad T = T_{\infty} + (T_m - T_{\infty}) \frac{a}{r}$$

Stefan condition

$$\rho L \frac{da}{dt} = -k \frac{\partial T}{\partial r} \bigg|_{r=a^{\perp}} = k \frac{T_m - T_{\infty}}{a}$$

$$a = \sqrt{\frac{2\kappa}{\mathcal{S}}}t$$

Planar Growth into a Supercooled Melt

Energy conservation
$$H \equiv$$

Energy conservation
$$H \equiv \left[\rho c_p (T_m - T_\infty) - L\right] a + \int_a^\infty \rho c_p (T - T_\infty) dz = 0$$

Approximate
$$\int_{a}^{\infty} T(z,t) dz \approx (T_m - T_{\infty})\delta$$
 gives $\delta \approx (S - 1)a$

$$\delta \approx (\mathcal{S} - 1)a$$

Stefan condition
$$\rho L \frac{da}{dt} = k \frac{T_m - T_\infty}{\delta} \qquad \text{gives} \qquad a = \sqrt{\frac{2\kappa}{\mathcal{S}(\mathcal{S} - 1)}t}$$

$$a = \sqrt{\frac{2\kappa}{\mathcal{S}(\mathcal{S} - 1)}}t$$

Kinetic Undercooling

Kinetic growth

$$V = \mathcal{G}(T_m - T_i)$$

$$-V\frac{\partial T}{\partial z} = \kappa \frac{\partial^2 T}{\partial z^2}$$

$$-V\frac{\partial T}{\partial z} = \kappa \frac{\partial^2 T}{\partial z^2} \qquad \text{gives} \qquad T = T_{\infty} + (T_i - T_{\infty})e^{-Vz/\kappa}$$

Stefan condition
$$\rho LV = \rho c_p \kappa (T_i - T_\infty) \frac{V}{\kappa}$$
 gives $(T_i - T_\infty) = \mathcal{S}(T_m - T_\infty)$

$$(T_i - T_{\infty}) = \mathcal{S}(T_m - T_{\infty})$$

$$V = \mathcal{G}(1 - \mathcal{S})(T_m - T_\infty)$$

Gibbs-Thomson Undercooling

Clausius-Clapeyron equation (equilibrium)

$$\rho_s L \frac{T_m - T_i}{T_m} = p_s - p_l + (p_l - p_m) \left[1 - \frac{\rho_s}{\rho_l} \right]$$

At a curved interface

$$p_s - p_l = \gamma \mathcal{K}$$

where

Curvature

$$\mathcal{K} \equiv \nabla \cdot \mathbf{n} = \frac{2}{a}$$

for a sphere of radius a

Interface temperature

$$T_i = T_m - \frac{T_m}{\rho_s L} \gamma \mathcal{K} \equiv T_m - \Gamma \mathcal{K}$$

Critical Nucleation Radius

Stefan condition

$$\rho L \frac{da}{dt} = k \frac{T_i - T_\infty}{a}$$

$$= k \left[(T_m - T_\infty) \frac{1}{a} - \frac{2\gamma T_m}{\rho_s L} \frac{1}{a^2} \right]$$

Sphere melts if

$$a < a_c \equiv \frac{2\gamma T_m}{\rho_s L(T_m - T_\infty)}$$
 $\approx 6 \text{ nm} \text{ for } \Delta T \approx 10^{\circ} \text{C}$

Note

$$\Gamma = a_c \Delta T$$

Morphological Stability

Perturb interface

$$z = \eta = \eta_0 e^{i\alpha x + \sigma t}$$

Perturbed temperature field
$$T = T_{\infty} + (T_m - T_{\infty})e^{-Vz/\kappa} + \theta(z, x, t)$$

Quasi-stationary perturbation Large wavenumber

$$\nabla^2 \theta = 0$$

$$\theta = \theta_0 e^{-\alpha z} e^{i\alpha x + \sigma t}$$

Morphological Stability

Interfacial temperature

$$T_m - \Gamma \alpha^2 \eta = T(\eta) = T_m - \Delta T \frac{V}{\kappa} \eta + \theta(0)$$

Stefan

$$\rho L(V + \sigma \eta) = -\rho c_p \kappa \left[-\Delta T \frac{V}{\kappa} + \Delta T \frac{V^2}{\kappa^2} \eta - \alpha \theta(0) \right]$$

Linear terms
$$-a_c\alpha^2\eta_0 = -\frac{V}{\kappa}\eta_0 + \frac{\theta_0}{\Delta T}$$

$$\mathcal{S}\sigma\eta_0 = -\frac{V^2}{\kappa}\eta_0 + \kappa\alpha\frac{\theta_0}{\Delta T}$$

$$-a_{c}\alpha^{2}\eta_{0} = -\frac{V}{\kappa}\eta_{0} + \frac{\theta_{0}}{\Delta T}$$

$$S\sigma = -\frac{V^{2}}{\kappa} + \kappa\alpha \left(\frac{V}{\kappa} - a_{c}\alpha^{2}\right)$$

$$S\sigma\eta_{0} = -\frac{V^{2}}{\kappa}\eta_{0} + \kappa\alpha\frac{\theta_{0}}{\Delta T}$$

Dispersion Relation

$$\mathcal{S}\frac{\kappa}{V^2}\sigma = -1 + \frac{\kappa}{V}\alpha - \frac{\kappa^2}{V^2}a_c\alpha^3$$

Maximum growth rate when

$$\frac{d\sigma}{d\alpha} = 0 \quad \Rightarrow \quad \alpha = \alpha_m \equiv \sqrt{\frac{3}{a_d a_c}}$$

Wavelength
$$\lambda_m = \frac{2\pi}{\alpha_m} = \frac{2\pi}{\sqrt{3}} \sqrt{a_d a_c}$$
 where diffusion length $a_d = \frac{\kappa}{V}$

Ostwald Ripening

Hardy & Voorhees, Met. Trans. A 1988

Ostwald Ripening

Mean radius

a(t)

Mean temperature

T(t)

$$\rho L \dot{a} = k \left(\frac{T_m - \frac{2\Gamma}{a} - T}{a} \right) \qquad \qquad \rho \frac{L}{c_p} \dot{a} = k \frac{T_m - T}{a} - 2k \frac{\Gamma}{a^2}$$

$$\rho \frac{L}{c_p} \dot{a} = k \frac{T_m - T}{a} - 2k \frac{\Gamma}{a^2}$$

Scaling

$$\rho L \frac{a}{t} \sim k \frac{\Delta T}{a} \sim k \frac{\Gamma}{a^2}$$

Similarity solution

$$a \sim \left(\frac{k\Gamma}{\rho L}t\right)^{1/3}$$

$$a \sim \left(\frac{k\Gamma}{\rho L}t\right)^{1/3}$$

$$\Delta T \sim \left(\frac{k\Gamma}{\rho L\Gamma^2}t\right)^{-1/3}$$

Summary

Diffusion-controlled solidification has thickness proportional to $\sqrt{\kappa t}$

At large Stefan number, thickness is proportional to $\sqrt{\frac{\kappa t}{\mathcal{S}}} \ll \sqrt{\kappa t}$

which allows use of the quasi-stationary approximation

Rapid solidification is limited by molecular kinetics, giving $T_i < T_m$

Solidification into a supercooled melt is morphologically unstable

Surface energy mitigates morphological instability and ultimately leads to coarsening

Morphological Stability

