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Advection—Diffusion Equation
(conservation of heat)

Specific enthalpy H is heat per unit mass at constant pressure
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frame fixed in solid
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Stefan Condition
(conservation of heat)

n .

dqs = 1n-q;

frame fixed with interface

solid | liquid

~V

Y_V

@ |

,03H3<—V) — ksn . VTS = ,OZHZ (ul -1 — V) — kln . VTZ

,08(—‘[:’S —+ HZ)V — H; [pSV -+ pl(ul -n — V)] — ksn VT, — kln - V1

ps LV =kn-VIy —kn- VI

a:
n
L =H, — H,



Measurements of Sea-Ice Thickness

http://icestories.exploratorium.edu

Dutch ship Varna stuck in pack ice during first International Polar Year 1882-83




Calculating the Thickness of Sea Ice
Stefan’s Problem
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The location of the interface between ice and ocean is determined by the

Stefan condition pL— = k—



Similarity Solution to Stefan’s Problem
(Neumann 1860°s)
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No intrinsic timescale. Only extrinsic timescale 1s elapsed time ¢ so choose 7 ~ .



Similarity Solution to Stefan’s Problem

z 1 z
Dimensionless variables 1" — Ty = AT 9<ﬁ7 ;) = AT 9(\/?7 1) = AT 6(n)
. . . . _ Z
Similarity variable U N
Equation and boundary conditions become
0" +2n6" =0
6(0) =0
O(N) =1
1, L
= — 8 —
SA 20 (M) AT

where a = 2\ Kt



Similarity Solution to Stefan’s Problem
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Quasi-Steady Approximation
valid for large Stefan number
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Agrees with full similarity solution when & > 1



Sphere Growing into a Supercooled Melt
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Planar Growth into a Supercooled Melt
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Kinetic Undercooling
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Gibbs-Thomson Undercooling

Clausius-Clapeyron equation (equilibrium)
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Critical Nucleation Radius
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Morphological Stability
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Quasi-stationary perturbation ,
Large wavenumber V<=0
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Morphological Stability
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Dispersion Relation
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The Guardian. Photograph M. Scott Moon/AP



Ostwald Ripening
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Hardy & Voorhees, Met. Trans. A 1988



Ostwald Ripening
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Summary

Diffusion-controlled solidification has thickness proportional to +/kt

t
At large Stefan number, thickness is proportional to 4/ % < VKt

which allows use of the quasi-stationary approximation
Rapid solidification is limited by molecular kinetics, giving 1; < T,
Solidification into a supercooled melt is morphologically unstable

Surface energy mitigates morphological instability and ultimately leads to coarsening



Morphological Stability




